1
|
Ji M, Zhang X, Heng J, Tanveer M, Zhang J, Guo Z, Hu Z. New insights for simultaneous nutrient removal enhancement and greenhouse gas emissions reduction of constructed wetland by optimizing its redox environment through manganese oxide addition. WATER RESEARCH 2024; 253:121348. [PMID: 38401472 DOI: 10.1016/j.watres.2024.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Manganese oxide (MnOx) is receiving increased interest in the nutrient removal of constructed wetlands (CWs); however, its service effectiveness for simultaneous greenhouse gas (GHG) emissions reduction is still vague. In this study, three vertical flow CWs, i.e., volcanics (CCW), manganese sand uniformly mixing with volcanics (Mn-CW) and MnOx doped volcanics (MnV-CW), were constructed to investigate the underlying mechanisms of MnOx on nutrient removal enhancement and greenhouse gas (GHG) emissions reduction. The results showed that the MnOx doped volcanics optimized the oxidation-reduction potential surrounding the substrate (-164.0 ∼ +141.1 mv), and resulted in the lowest GHG emissions (CO2-equivalent) from MnV-CW, 16.8-36.5 % lower than that of Mn-CW and CCW. This was mainly ascribed to mitigation of N2O produced during the NO3--N reduction process, according to results of 15N stable isotope labeling. Analysis of the microbial community structure revealed that due to the optimized redox conditions through chemical doping of MnOx on volcanics, the abundance of microbe involved in denitrification and Mn-oxidizing process in the MnV-CW was significantly increased at genus level, which led to a higher Mn cycling efficiency between biogenic MnOx and Mn2+, and enhanced denitrification efficiency and N2O emission reduction. This study would help to understand and provide a preferable reference for future applications for manganese-based CW.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jiayang Heng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Muhammad Tanveer
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Zizhang Guo
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
2
|
Ji M, Gao H, Zhang J, Hu Z, Liang S. Environmental impacts on algal-bacterial-based aquaponics system by different types of carbon source addition: water quality and greenhouse gas emission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26665-26674. [PMID: 38451459 DOI: 10.1007/s11356-024-32717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Carbon source addition is an important way improving the carbon and nitrogen transformation in aquaculture system; however, its effectiveness of algal-bacterial-based aquaponics (AA) through carbon source addition is still vague. In this study, the influences of organic carbon (OC-AA system) and inorganic carbon (IC-AA system) addition and without carbon source addition (C-AA system) on the operational performance of AA system were investigated. Results showed that 10.1-19.5% increase of algal-bacterial biomass enhanced the purifying effect of ammonia nitrogen in OC-AA system and IC-AA system relative to C-AA system. Moreover, extra electron donor supply in the OC-AA system obtained the lowest NO3--N concentration. However, that was at the cost of aggravated N2O conversion ratio, which increased by more than 2.0-folds than other systems, attributing to 2.9-folds increase of nirS gene abundance. In addition, carbon source addition increased the pH and then decreased the fish biomass production of AA system. The results of this study would provide theoretical supports of carbon source addition on the performance of nutrient transformation and greenhouse gas effect in AA system.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Hang Gao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
3
|
Ji M, Gao H, Diao L, Zhang J, Liang S, Hu Z. Environmental impacts of antibiotics addition to algal-bacterial-based aquaponic system. Appl Microbiol Biotechnol 2022; 106:3777-3786. [PMID: 35513518 DOI: 10.1007/s00253-022-11944-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
Abstract
Antibiotics usage is a double-edged sword among the production promotion and environmental aggravation of aquaculture system. In this study, the effects of sulfadiazine addition on algal-bacterial-based aquaponic (AA) system were thoroughly investigated. Results showed that sulfadiazine addition increased the nitrogen (N) and carbon (C) recovery of AA system by 1.3 times and 2.9 times, respectively. Meanwhile, the global warming potential was increased by 63% due to aggravated nitrous oxide (N2O) emission. This was mainly because sulfadiazine increased the abundance of nirS genes and decreased the abundance of nosZ genes, which subsequently led to higher N2O accumulation. Furthermore, resistance gene (sul-1, sul-2, and intI-1) abundance in the treatment group was an order higher than that of the control group, which would give rise to the environmental risk for agroecological system. KEY POINTS: • Sulfadiazine addition increased NUE at expense of aggravated GHG emissions. • Sulfadiazine disrupted the balance between the abundance of nirS and nosZ genes. • Sulfadiazine addition increased the resistance gene abundance of AA system.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Hang Gao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lingling Diao
- Chengyang Branch of Qingdao Ecological Environment Bureau, Qingdao, 266109, People's Republic of China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.,College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
4
|
Mojiri A, Zhou JL, Ratnaweera H, Rezania S, Nazari V M. Pharmaceuticals and personal care products in aquatic environments and their removal by algae-based systems. CHEMOSPHERE 2022; 288:132580. [PMID: 34687686 DOI: 10.1016/j.chemosphere.2021.132580] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The consumption of pharmaceuticals and personal care products (PPCPs) has been widely increasing, yet up to 90-95% of PPCPs consumed by human are excreted unmetabolized. Moreover, the most of PPCPs cannot be fully removed by wastewater treatment plants (WWTPs), which release PPCPs to natural water bodies, affecting aquatic ecosystems and potentially humans. This study sought to review the occurrence of PPCPs in natural water bodies globally, and assess the effects of important factors on the fluxes of pollutants into receiving waterways. The highest ibuprofen concentration (3738 ng/L) in tap water was reported in Nigeria, and the highest naproxen concentration (37,700 ng/L) was reported in groundwater wells in Penn State, USA. Moreover, the PPCPs have affected aquatic organisms such as fish. For instance, up to 24.4 × 103 ng/g of atenolol was detected in P. lineatus. Amongst different technologies to eliminate PPCPs, algae-based systems are environmentally friendly and effective because of the photosynthetic ability of algae to absorb CO2 and their flexibility to grow in different wastewater. Up to 99% of triclosan and less than 10% of trimethoprim were removed by Nannochloris sp., green algae. Moreover, variable concentrations of PPCPs might adversely affect the growth and production of algae. The exposure of algae to high concentrations of PPCPs can reduce the content of chlorophyll and protein due to producing reactive oxygen species (ROS), and affecting expression of some genes in chlorophyll (rbcL, psbA, psaB and psbc).
Collapse
Affiliation(s)
- Amin Mojiri
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway; Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - Harsha Ratnaweera
- Faculty of Sciences and Technology, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mansoureh Nazari V
- School of Pharmacy, University of 17 August 1945, Jakarta, 14350, Indonesia
| |
Collapse
|