1
|
Alqarzaee F, Al Bari MA, Razzak SA, Uddin S. Biomass-based hydrogen production towards renewable energy sources: an advance study. EMERGENT MATERIALS 2024. [DOI: 10.1007/s42247-024-00931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/06/2024] [Indexed: 01/03/2025]
|
2
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
3
|
Li SJ, Sun HY, Zhang S, Zhao Y, Zhou ZY, Yu L, Wang Q, Yin K. Enhancing biohydrogen production from xylose at low temperature (20 °C) using natural FeS 2 Ore: Thermodynamic analysis and mechanistic insights. BIORESOURCE TECHNOLOGY 2024; 406:131030. [PMID: 38917911 DOI: 10.1016/j.biortech.2024.131030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
This study investigates the efficacy of pyrite in enhancing biohydrogen production from xylose at low temperature (20 °C). Higher hydrogen yield rates (Rm) and reduced lag time (λ) were achieved across initial xylose concentrations ranging from 2-10 g/L. At an optimal xylose concentration of 5 g/L, pyrite reduced λ by 2.5 h and increased Rm from 1.3 to 2.7 mL h-1. These improvements are attributed to pyrite's ability to enhance the secretion of extracellular polymeric substance and flavins, facilitate NADH and NAD+ generation and transition, and favor biohydrogen production. Thermodynamic analyses and Gibbs free energy calculations further elucidated pyrite's role in the full reaction process and rate-limiting steps at low temperature. This study offers valuable insights into improving the efficiency of biohydrogen production at low temperature, with significant implications for energy conservation.
Collapse
Affiliation(s)
- Si-Jia Li
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hao-Yu Sun
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Su Zhang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhao
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Yang Zhou
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Klebs Environmental Technology (Suzhou) Co., Ltd, Kunshan 215333, China.
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Ke Yin
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Mazzoli R, Pescarolo S, Gilli G, Gilardi G, Valetti F. Hydrogen production pathways in Clostridia and their improvement by metabolic engineering. Biotechnol Adv 2024; 73:108379. [PMID: 38754796 DOI: 10.1016/j.biotechadv.2024.108379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Simone Pescarolo
- Biology applied to the environment, Laboratories of microbiology and ecotoxicology, Ecobioqual, Environment Park. Via Livorno 60, 10144 Torino, Italy
| | - Giorgio Gilli
- Department of Sciences of Public Health and Pediatrics, School of Medicine, University of Torino, Via Santena 5 bis, 10126 Torino, Italy
| | - Gianfranco Gilardi
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Francesca Valetti
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
5
|
Plummer SM, Plummer MA, Merkel PA, Waidner LA. Using directed evolution to improve hydrogen production in chimeric hydrogenases from algal species. Enzyme Microb Technol 2024; 173:110349. [PMID: 37984199 DOI: 10.1016/j.enzmictec.2023.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Algae generate hydrogen from sunlight and water utilizing high-energy electrons generated during photosynthesis. The amount of hydrogen produced in heterologous expression of the wild-type hydrogenase is currently insufficient for industrial applications. One approach to improve hydrogen yields is through directed evolution of the DNA of the native hydrogenase. Here, we created 113 chimeric algal hydrogenase gene variants derived from combining segments of three parent hydrogenases, two from Chlamydomonas reinhardtii (CrHydA1 and CrHydA2) and one from Scenedesmus obliquus (HydA1). To generate chimeras, there were seven segments into which each of the parent hydrogenase genes was divided and recombined in a variety of combinations. The chimeric and parental hydrogenase sequences were cloned for heterologous expression in Escherichia coli, and 40 of the resultant enzymes expressed were assayed for H2 production. Chimeric clones that resulted in equal or greater production obtained with the cloned CrHydA1 parent hydrogenase were those comprised of CrHydA1 sequence in segments #1, 2, 3, and/or 4. These best-performing chimeras all contained one common region, segment #2, the part of the sequence known to contain important amino acids involved in proton transfer or hydrogen cluster coordination. The amino acid sequence distances among all chimeric clones to that of the CrHydA1 parent were determined, and the relationship between sequence distances and experimentally-derived H2 production was evaluated. An additional model determined the correlation between electrostatic potential energy surface area ratios and H2 production. The model yielded several algal mutants with predicted hydrogen productions in a range of two to three times that of the wild-type hydrogenase. The mutant data and the model can now be used to predict which specific mutant sequences may result in even higher hydrogen yields. Overall, results provide more precise details in planning future directed evolution to functionally improve algal hydrogenases.
Collapse
Affiliation(s)
| | | | - Patricia A Merkel
- H2OPE Biofuels LLC, Greenwood Village, CO, USA; Children's Hospital, 3123 East 16th Avenue, B518, Aurora, CO, USA
| | - Lisa A Waidner
- H2OPE Biofuels LLC, Greenwood Village, CO, USA; University of West Florida, Pensacola, FL USA.
| |
Collapse
|
6
|
Zhang S, Zhang X, Yuan Y, Li K, Liu H. Renewable biohydrogen production from Clostridium sp. LQ25 using different forms of ferric as electron acceptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158911. [PMID: 36152847 DOI: 10.1016/j.scitotenv.2022.158911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Clostridium sp. LQ25 was cultured in different forms of ferric (ferric citrate and ferric hydroxide) as electron acceptors to investigate growth, ferric reduction, hydrogen production, fermentation products and fermentation process. The growth of the strain LQ25 detected by protein was 82.8 ± 2.1 mg/L and 73.5 ± 1.7 mg/L using ferric citrate and ferric hydroxide as electron acceptors, which was 33.3 % and 18.4 % higher than without ferric, respectively. The accumulation concentration of Fe(II) was 9.0 ± 0.6 mg/L and 5.0 ± 0.2 mg/L when using ferric citrate and ferric hydroxide as electron acceptors, and ferric citrate was 1.8-fold higher than ferric hydroxide, which indicated that the ability of ferric reduction was higher using ferric citrate as electron acceptor. The hydrogen production of strain LQ25 was 238.0 ± 1.0 mmol/mol glucose and 113.0 ± 1.3 mmol/mol glucose under condition of ferric citrate and ferric hydroxide as electron acceptors, which was 2.6 and 1.2-fold higher than without ferric, respectively. The growth and hydrogen production of strain LQ25 was promoted by using ferric as electron acceptor, while the fermentation type of strain did not change and was always butyrate type. The differential expression of the genes of strain LQ25 was significant when using ferric as electron acceptor, mainly in NADH and PFL pathway. This study provided preliminary evidence for hydrogen production by Clostridium sp. LQ25 in the presence of electron acceptor.
Collapse
Affiliation(s)
- Shan Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, China
| | - Xiaodan Zhang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, China
| | - Yuan Yuan
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, China
| | - Kaiqiang Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, China
| | - Hongyan Liu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, China.
| |
Collapse
|
7
|
Nguyen HTT, Noori MT, Min B. Accelerating anaerobic digestion process with novel single chamber microbial electrochemical systems with baffle. BIORESOURCE TECHNOLOGY 2022; 359:127474. [PMID: 35714783 DOI: 10.1016/j.biortech.2022.127474] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
A newly designed microbial electrochemical system (MES) with the addition of a baffle between the electrodes was integrated with the anaerobic digestion (AD) process for biogas upgradation. Novel MES configuration attained an increased methane production rate of 292.6 mL/L∙d and methane yield of 0.36 ± 0.006 [Formula: see text] /gCOD, which were higher than the values (185.3 mL/L∙d and 0.33 ± 0.009 [Formula: see text] /gCOD) from the MES operation without baffle, respectively. Moreover, the MES with baffle operation resulted in increased substrate removal (88.4 ± 0.5%) and less volatile fatty acids accumulation with a high energy efficiency of 99.6 %. Microbial community analysis revealed that acids metabolizing bacteria, Firmicutes, and Methanothrix were highly enriched in the cathode biofilm of MES with baffle. This study suggests that the baffle addition into the single chamber MES is beneficial to further improve the methanogenesis process for practical applications in the scaled-up MES-AD process.
Collapse
Affiliation(s)
- Huong Thi Thu Nguyen
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Md Tabish Noori
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
8
|
Cao Y, Liu H, Liu W, Guo J, Xian M. Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement. Microb Cell Fact 2022; 21:166. [PMID: 35986320 PMCID: PMC9389701 DOI: 10.1186/s12934-022-01893-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022] Open
Abstract
Confronted with the exhaustion of the earth’s fossil fuel reservoirs, bio-based process to produce renewable energy is receiving significant interest. Hydrogen is considered as an attractive energy carrier that can replace fossil fuels in the future mainly due to its high energy content, recyclability and environment-friendly nature. Biological hydrogen production from renewable biomass or waste materials by dark fermentation is a promising alternative to conventional routes since it is energy-saving and reduces environmental pollution. However, the current yield and evolution rate of fermentative hydrogen production are still low. Strain improvement of the microorganisms employed for hydrogen production is required to make the process competitive with traditional production methods. The present review summarizes recent progresses on the screening for highly efficient hydrogen-producing strains using various strategies. As the metabolic pathways for fermentative hydrogen production have been largely resolved, it is now possible to engineer the hydrogen-producing strains by rational design. The hydrogen yields and production rates by different genetically modified microorganisms are discussed. The key limitations and challenges faced in present studies are also proposed. We hope that this review can provide useful information for scientists in the field of fermentative hydrogen production. Hydrogen can be generated by microorganisms. Dark fermentation is efficient for biological hydrogen production. Strain improvement is critical to enhancing hydrogen-producing ability.
Collapse
|
9
|
Uetsuki K, Kawashima H, Ohno E, Ishikawa T, Iida T, Yamamoto K, Furukawa K, Nakamura M, Honda T, Ishigami M, Hirooka Y, Fujishiro M. Measurement of fasting breath hydrogen concentration as a simple diagnostic method for pancreatic exocrine insufficiency. BMC Gastroenterol 2021; 21:211. [PMID: 33971823 PMCID: PMC8111728 DOI: 10.1186/s12876-021-01776-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pancreatic exocrine insufficiency (PEI) is associated with the outcome of pancreatic disease. However, there is no method for assessing PEI that can be used noninvasively and easily for outpatient. It has been reported that changes in intestinal bacteria caused by PEI may increase breath hydrogen concentration (BHC) levels during glucose or lactose loading. We have evaluated the usefulness of fasting breath hydrogen concentration (FBHC) measurement without glucose loading for the evaluation of PEI. METHODS Sixty patients underwent FBHC measurement, BT-PABA testing, and microbiome analysis. They were classified into PEI group (PABA excretion rate < 73.4%, n = 30) and non-PEI group (n = 30). The FBHC of the two groups were compared, and the diagnostic ability of PEI by them was evaluated. The 16 s rRNA (V3-V4) from fecal samples was analyzed by MiSeq. RESULTS FBHC levels was higher in the PEI group 15.70 (1.4 to 77.0) ppm than in the non-PEI group 2.80 (0.7 to 28.2) ppm (P < 0.0001). FBHC was negatively correlated with PABA excretion rate (r = - 0.523, P < 0.001). The cutoff value of FBHC of 10.7 ppm (95% CI: 0.678-0.913, P < 0.001) showed a sensitivity of 73.3% and specificity of 83.3% for PEI diagnosis. In the PEI group, there was a significant increase of relative abundance of phylum Firmicutes (P < 0.05) and the genus Clostridium (P < 0.05). CONCLUSION FBHC shows good potential as a simple and repeatable test for the diagnosis of PEI. The elevated FBHC levels may be caused by hydrogen-producing bacteria such as Clostridium.
Collapse
Affiliation(s)
- Kota Uetsuki
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroki Kawashima
- Department of Endoscopy, Nagoya University Hospital, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tadashi Iida
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Furukawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masanao Nakamura
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Masatoshi Ishigami
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Gastroenterological Oncology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|