1
|
Tanwar S, Kalra S, Bari VK. Insights into the role of sterol metabolism in antifungal drug resistance: a mini-review. Front Microbiol 2024; 15:1409085. [PMID: 39464401 PMCID: PMC11502366 DOI: 10.3389/fmicb.2024.1409085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Sterols are essential for eukaryotic cells and are crucial in cellular membranes' structure, function, fluidity, permeability, adaptability to environmental stressors, and host-pathogen interactions. Fungal sterol, such as ergosterol metabolism, involves several organelles, including the mitochondria, lipid droplets, endoplasmic reticulum, and peroxisomes that can be regulated mainly by feedback mechanisms and transcriptionally. The majority of sterol transport in yeast occurs via non-vesicular transport pathways mediated by lipid transfer proteins, which determine the quantity of sterol present in the cell membrane. Pathogenic fungi Candida, Aspergillus, and Cryptococcus species can cause a range of superficial to potentially fatal systemic and invasive infections that are more common in immunocompromised patients. There is a significant risk of morbidity and mortality from these infections, which are very difficult to cure. Several antifungal drugs with different modes of action have received clinical approval to treat fungal infections. Antifungal drugs targeting the ergosterol biosynthesis pathway are well-known for their antifungal activity; however, an imbalance in the regulation and transport of ergosterol could lead to resistance to antifungal therapy. This study summarizes how fungal sterol metabolism and regulation can modulate sterol-targeting antifungal drug resistance.
Collapse
|
2
|
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023; 11:2237. [PMID: 37626733 PMCID: PMC10452232 DOI: 10.3390/biomedicines11082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the biological activity and structural diversity of steroids and related isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine invertebrates. To evaluate their biological activity, an extensive examination of refereed literature sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR method. Notable properties observed among these compounds include strong anti-inflammatory, antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the activity of individual steroids are presented, accompanied by images of selected terrestrial or marine organisms. Furthermore, this review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review are of scientific interest to the academic community and carry practical implications in the fields of pharmacology and medicine. By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids, this review offers valuable insights that contribute to both theoretical understanding and applied research. This review draws upon data from various authors to compile information on the biological activity of natural steroids containing an oxirane ring.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
3
|
Ma R, Hua X, He CL, Wang HH, Wang ZX, Cui BD, Han WY, Chen YZ, Wan NW. Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes. Angew Chem Int Ed Engl 2022; 61:e202212589. [PMID: 36328962 DOI: 10.1002/anie.202212589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 11/06/2022]
Abstract
Expanding the enzymatic toolbox for the green synthesis of valuable molecules is still of high interest in synthetic chemistry and the pharmaceutical industry. Chiral thiiranes are valuable sulfur-containing heterocyclic compounds, but relevant methods for their enantioselective synthesis are limited. Herein, we report a biocatalytic thionation strategy for the enantioselective synthesis of thiiranes, which was developed based on the halohydrin dehalogenase (HHDH)-catalyzed enantioselective ring-opening reaction of epoxides with thiocyanate and a subsequent nonenzymatic rearrangement process. A novel HHDH was identified and engineered for enantioselective biocatalytic thionation of various aryl- and alkyl-substituted epoxides on a preparative scale, affording the corresponding thiiranes in up to 43 % isolated yield and 98 % ee. Large-scale synthesis and useful transformations of chiral thiiranes were also performed to demonstrate the utility and scalability of the biocatalytic thionation strategy.
Collapse
Affiliation(s)
- Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xia Hua
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Cheng-Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Hui-Hui Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhu-Xiang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Rahelivao MP, Bauer I, Lübken T, Kataeva O, Vehlow A, Cordes N, Knölker HJ. First Synthesis, Confirmation of Stereochemistry, and Cytotoxic Activity of Oxyfungiformin. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ingmar Bauer
- TU Dresden: Technische Universitat Dresden Chemistry GERMANY
| | - Tilo Lübken
- TU Dresden: Technische Universitat Dresden Chemistry GERMANY
| | - Olga Kataeva
- TU Dresden: Technische Universitat Dresden Chemistry GERMANY
| | - Anne Vehlow
- TU Dresden Faculty of Medicine Carl Gustav Carus: Technische Universitat Dresden Medizinische Fakultat Carl Gustav Carus Medicine GERMANY
| | - Nils Cordes
- TU Dresden Faculty of Medicine Carl Gustav Carus: Technische Universitat Dresden Medizinische Fakultat Carl Gustav Carus Radiotherapy and Radiation Oncology GERMANY
| | - Hans-Joachim Knölker
- Technische Universität Dresden Institut für Organische Chemie Bergstr. 66 1069 Dresden GERMANY
| |
Collapse
|
5
|
Sachdeva H, Khaturia S, Saquib M, Khatik N, Khandelwal AR, Meena R, Sharma K. Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents. Appl Biochem Biotechnol 2022; 194:6438-6467. [PMID: 35900713 DOI: 10.1007/s12010-022-04099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.
Collapse
Affiliation(s)
- Harshita Sachdeva
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India.
| | - Sarita Khaturia
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh (Sikar), Rajasthan, India
| | - Mohammad Saquib
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Narsingh Khatik
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | | | - Ravina Meena
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | - Khushboo Sharma
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| |
Collapse
|
6
|
Vrabl P, Siewert B, Winkler J, Schöbel H, Schinagl CW, Knabl L, Orth-Höller D, Fiala J, Meijer MS, Bonnet S, Burgstaller W. Xanthoepocin, a photolabile antibiotic of Penicillium ochrochloron CBS 123823 with high activity against multiresistant gram-positive bacteria. Microb Cell Fact 2022; 21:1. [PMID: 34983506 PMCID: PMC8725544 DOI: 10.1186/s12934-021-01718-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background With the steady increase of antibiotic resistance, several strategies have been proposed in the scientific community to overcome the crisis. One of many successful strategies is the re-evaluation of known compounds, which have been early discarded out of the pipeline, with state-of-the-art know-how. Xanthoepocin, a polyketide widespread among the genus Penicillium with an interesting bioactivity spectrum against gram-positive bacteria, is such a discarded antibiotic. The purpose of this work was to (i) isolate larger quantities of this metabolite and chemically re-evaluate it with modern technology, (ii) to explore which factors lead to xanthoepocin biosynthesis in P. ochrochloron, and (iii) to test if it is beside its known activity against methicillin-resistant Staphylococcus aureus (MRSA), also active against linezolid and vancomycin-resistant Enterococcus faecium (LVRE)—a very problematic resistant bacterium which is currently on the rise. Results In this work, we developed several new protocols to isolate, extract, and quantify xanthoepocin out of bioreactor batch and petri dish-grown mycelium of P. ochrochloron. The (photo)chemical re-evaluation with state-of-the-art techniques revealed that xanthoepocin is a photolabile molecule, which produces singlet oxygen under blue light irradiation. The intracellular xanthoepocin content, which was highest under ammonium-limited conditions, varied considerably with the applied irradiation conditions in petri dish and bioreactor batch cultures. Using light-protecting measures, we achieved MIC values against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), which were up to 5 times lower than previously published. In addition, xanthoepocin was highly active against a clinical isolate of linezolid and vancomycin-resistant Enterococcus faecium (LVRE). Conclusions This interdisciplinary work underlines that the re-evaluation of known compounds with state-of-the-art techniques is an important strategy in the combat against multiresistant bacteria and that light is a crucial factor on many levels that needs to receive more attention. With appropriate light protecting measures in the susceptibility tests, xanthoepocin proved to be a powerful antibiotic against MRSA and LVRE. Exploring the light response of other polyketides may be pivotal for re-introducing previously discarded metabolites into the antibiotic pipeline and to identify photosensitizers which might be used for (antimicrobial) photodynamic therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01718-9.
Collapse
Affiliation(s)
- Pamela Vrabl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Bianka Siewert
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| | - Jacqueline Winkler
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Harald Schöbel
- MCI - The Entrepreneurial University, Maximilianstraße 2, 6020, Innsbruck, Austria
| | - Christoph W Schinagl
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Ludwig Knabl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - Dorothea Orth-Höller
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria.,MB-Lab, Clinical Microbiology Laboratory, Franz Fischer Str. 7b, 6020, Innsbruck, Austria
| | - Johannes Fiala
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.,Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck (CMBI), Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Michael S Meijer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.,Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Wolfgang Burgstaller
- Institute of Microbiology, University of Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
7
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Antitumor Profile of Carbon-Bridged Steroids (CBS) and Triterpenoids. Mar Drugs 2021; 19:324. [PMID: 34205074 PMCID: PMC8228860 DOI: 10.3390/md19060324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
8
|
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021; 26:686. [PMID: 33525706 PMCID: PMC7865715 DOI: 10.3390/molecules26030686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities, polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8% show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus, Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
9
|
Dembitsky VM. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog Lipid Res 2020; 79:101048. [PMID: 32603672 DOI: 10.1016/j.plipres.2020.101048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
In this review, steroids with a tertiary butyl group, which are usually called neo steroids, are a small group of natural lipids isolated from higher plants, fungi, marine sponges, and yeast. In addition, steroids with a tertiary butyl group have been synthesized in some laboratories in Canada, USA, Europe, and Japan and their biological activity was studied. Some natural neo steroids demonstrate antitumor or hepatoprotective activities. In addition, synthetic neo steroids exhibit anticancer and neuroprotective properties. However, to confirm the above data, both practical and clinical experimental studies are necessary. Nevertheless, the results may be useful for pharmacologists, chemists, biochemists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada.
| |
Collapse
|
10
|
Epoxide containing molecules: A good or a bad drug design approach. Eur J Med Chem 2020; 201:112327. [PMID: 32526552 DOI: 10.1016/j.ejmech.2020.112327] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Functional group modification is one of the main strategies used in drug discovery and development. Despite the controversy of being identified for many years as a biologically hazardous functional group, the introduction of an epoxide function in a structural backbone is still one of the possible modifications being implemented in drug design. In this manner, it is our intention to prove with this work that epoxides can have significant interest in medicinal chemistry, not only as anticancer agents, but also as important drugs for other pathologies. Thus, this revision paper aims to highlight the biological activity and the proposed mechanisms of action of several epoxide-containing molecules either in preclinical studies or in clinical development or even in clinical use. An overview of the chemistry of epoxides is also reported. Some of the conclusions are that effectively most of the epoxide-containing molecules referred in this work were being studied or are in the market as anticancer drugs. However, some of them in preclinical studies, were also associated with other different activities such as anti-malarial, anti-arthritic, insecticidal, antithrombotic, and selective inhibitory activity of FXIII-A (a transglutaminase). As for the epoxide-containing molecules in clinical trials, some of them are being tested for obesity and schizophrenia. Finally, drugs containing epoxide groups already in the market are mostly used for the treatment of different types of cancer, such as breast cancer and multiple myeloma. Other diseases for which the referred drugs are being used include heart failure, infections and gastrointestinal disturbs. In summary, epoxides can be a suitable option in drug design, particularly in the design of anticancer agents, and deserve to be better explored. However, and despite the promising results, it is imperative to explore the mechanisms of action of these compounds in order to have a better picture of their efficiency and safety.
Collapse
|