1
|
Eckerstorfer MF, Dolezel M, Miklau M, Greiter A, Heissenberger A, Kastenhofer K, Schulz F, Hagen K, Otto M, Engelhard M. Environmental Applications of GM Microorganisms: Tiny Critters Posing Huge Challenges for Risk Assessment and Governance. Int J Mol Sci 2025; 26:3174. [PMID: 40243930 PMCID: PMC11989004 DOI: 10.3390/ijms26073174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
In recent years, the interest in developing genetically modified microorganisms (GMMs), including GMMs developed by genome editing, for use in the environment has significantly increased. However, the scientific knowledge on the ecology of such GMMs is severely limited. There is also little experience at the hands of regulators on how to evaluate the environmental safety of GMMs and on how to assess whether they provide sustainable alternatives to current (agricultural) production systems. This review analyzes two different GMM applications, GM microalgae for biofuel production and nitrogen-fixing GM soil bacteria for use as biofertilizers. We assess the challenges posed by such GMMs for regulatory environmental risk assessment (ERA) against the background of the GMO legislation existing in the European Union (EU). Based on our analysis, we present recommendations for ERA and the monitoring of GMM applications, and in particular for the improvement of the existing EU guidance. We also explore whether existing approaches for technology assessment can provide a framework for the broader assessment of GMM applications. To this end, we recommend developing and implementing an evidence-based sustainability analysis and other methods of technology assessment to support decision making and to address broader societal concerns linked to the use of GMM applications in the environment.
Collapse
Affiliation(s)
- Michael F. Eckerstorfer
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marion Dolezel
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Marianne Miklau
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Anita Greiter
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Andreas Heissenberger
- Team Landuse & Biosafety Unit, Umweltbundesamt–Environment Agency Austria, Spittelauer Lände 5, 1090 Vienna, Austria; (M.D.); (M.M.); (A.G.); (A.H.)
| | - Karen Kastenhofer
- Institute of Technology Assessment, Austrian Academy of Sciences, Bäckerstraße 13, 1010 Vienna, Austria; (K.K.); (F.S.)
| | - Freya Schulz
- Institute of Technology Assessment, Austrian Academy of Sciences, Bäckerstraße 13, 1010 Vienna, Austria; (K.K.); (F.S.)
| | - Kristin Hagen
- Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Federal Agency for Nature Conservation, Konstantinstrasse 110, 53179 Bonn, Germany; (K.H.); (M.O.); (M.E.)
| | - Mathias Otto
- Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Federal Agency for Nature Conservation, Konstantinstrasse 110, 53179 Bonn, Germany; (K.H.); (M.O.); (M.E.)
| | - Margret Engelhard
- Division Assessment Synthetic Biology, Enforcement Genetic Engineering Act, Federal Agency for Nature Conservation, Konstantinstrasse 110, 53179 Bonn, Germany; (K.H.); (M.O.); (M.E.)
| |
Collapse
|
2
|
Ali SS, Al-Tohamy R, Al-Zahrani M, Schagerl M, Kornaros M, Sun J. Advancements and challenges in microalgal protein production: A sustainable alternative to conventional protein sources. Microb Cell Fact 2025; 24:61. [PMID: 40059178 PMCID: PMC11892233 DOI: 10.1186/s12934-025-02685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
The increasing global demand for sustainable protein sources necessitates the exploration of alternative solutions beyond traditional livestock and crop-based proteins. Microalgae present a promising alternative due to their high protein content, rapid biomass accumulation, and minimal land and water requirements. Furthermore, their ability to thrive on non-arable land and in wastewater systems enhances their sustainability and resource efficiency. Despite these advantages, scalability and economical feasibility remain major challenges in microalgal protein production. This review explores recent advancements in microalgal protein cultivation and extraction technologies, including pulsed electric field, ultrasound-assisted extraction, enzyme-assisted extraction, and microwave-assisted extraction. These innovative techniques have significantly improved protein extraction efficiency, purity, and sustainability, while addressing cell wall disruption and protein recovery challenges. Additionally, the review examines protein digestibility and bioavailability, particularly in the context of human nutrition and aquafeed applications. A critical analysis of life cycle assessment studies highlights the environmental footprint and economical feasibility of microalgal protein production compared to conventional protein sources. Although microalgal protein production requires significant energy inputs, advancements in biorefinery approaches, carbon dioxide sequestration, and industrial integration can help mitigate these limitations. Finally, this review outlines key challenges and future research directions, emphasizing the need for cost reduction strategies, genetic engineering for enhanced yields, and industrial-scale process optimization. By integrating innovative extraction techniques with biorefinery models, microalgal proteins hold immense potential as a sustainable, high-quality protein source for food, feed, and nutraceutical applications.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Majid Al-Zahrani
- Biological Sciences Department, College of Science and Art at Rabigh, King Abdulaziz University, Rabigh, 25732, Saudi Arabia
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna, 1030, Austria.
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, Patras, 26504, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Huang JJ, Xu W, Lin S, Cheung PCK. The bioactivities and biotechnological production approaches of carotenoids derived from microalgae and cyanobacteria. Crit Rev Biotechnol 2025; 45:276-304. [PMID: 39038957 DOI: 10.1080/07388551.2024.2359966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/03/2024] [Accepted: 05/13/2024] [Indexed: 07/24/2024]
Abstract
Microalgae and cyanobacteria are a rich source of carotenoids that are well known for their potent bioactivities, including antioxidant, anti-cancer, anti-proliferative, anti-inflammatory, and anti-obesity properties. Recently, many interests have also been focused on the biological activities of these microalgae/cyanobacteria-derived carotenoids, such as fucoxanthin and β-carotene potential to be the salutary nutraceuticals, on treating or preventing human common diseases (e.g., cancers). This is due to their special chemical structures that demonstrate unique bioactive functions, in which the biologically active discrepancies might attribute to the different spatial configurations of their molecules. In addition, their abundance and bioaccessibilities make them more popularly applied in food and pharmaceutical industries, as compared to the macroalgal/fungal-derived ones. This review is focused on the recent studies on the bioactivities of fucoxanthin and some carotenoids derived from microalgae and cyanobacteria in relationship with human health and diseases, with emphasis on their potential applications as natural antioxidants. Various biotechnological approaches employed to induce the production of these specific carotenoids from the culture of microalgae/cyanobacteria are also critically reviewed. These well-developed and emerging biotechnologies present promise to be applied in food and pharmaceutical industries to facilitate the efficient manufacture of the bioactive carotenoid products derived from microalgae and cyanobacteria.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, People's Republic of China
| |
Collapse
|
4
|
Huang JJ, Xie Q, Lin S, Xu W, Cheung PCK. Microalgae-derived astaxanthin: bioactivities, biotechnological approaches and industrial technologies for its production. Crit Rev Food Sci Nutr 2025:1-35. [PMID: 39992396 DOI: 10.1080/10408398.2025.2468863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Microalgae are rich sources of astaxanthin well recognized for their potent bioactivities such as antioxidant, anti-cancer, and anti-inflammatory activities. Recent interests focused on the bioactivities of microalgae-derived astaxanthin on treating or preventing cancers mediated by their antioxidant and anti-inflammatory properties. This is due to the special structural configuration of microalgae-derived astaxanthin in terms of unsaturation (conjugated double bonds), stereochemical isomerism (3S,3'S optical isomer) and esterification (monoester), which display more potent bioactivities, compared with those from the other natural sources such as yeasts and higher plants, as well as synthetic astaxanthin. This review focuses on the recent advances on the bioactivities of microalgae-derived astaxanthin in association with cancers and immune diseases, with emphasis on their potential applications as natural antioxidants. Various well-developed biotechnological approaches for inducing astaxanthin production from microalgal culture, along with the proven and emerging industrial technologies to commercialize astaxanthin products in a large-scale manner, are also critically reviewed. These would facilitate the manufacture of bioactive microalgae-derived astaxanthin products to be applied in the food and pharmaceutical industries as salutary nutraceuticals.
Collapse
Affiliation(s)
- Jim Junhui Huang
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Republic of Singapore
| | - Qun Xie
- Guangzhou Pharmaceutical Vocational School, Guangzhou, Guangdong Province, People's Republic of China
| | - Shaoling Lin
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, People's Republic of China
| | - Wenwen Xu
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong S.A.R, People's Republic of China
| |
Collapse
|
5
|
Battarra C, Angstenberger M, Bassi R, Dall'Osto L. Efficient DNA-free co-targeting of nuclear genes in Chlamydomonas reinhardtii. Biol Direct 2024; 19:108. [PMID: 39529073 PMCID: PMC11556018 DOI: 10.1186/s13062-024-00545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydomonas reinhardtii, a model organism for unicellular green microalgae, is widely used in basic and applied research. Nonetheless, proceeding towards synthetic biology requires a full set of manipulation techniques for inserting, removing, or editing genes. Despite recent advancements in CRISPR/Cas9, still significant limitations in producing gene knock-outs are standing, including (i) unsatisfactory genome editing (GE) efficiency and (ii) uncontrolled DNA random insertion of antibiotic resistance markers. Thus, obtaining efficient gene targeting without using marker genes is instrumental in developing a pipeline for efficient engineering of strains for biotechnological applications. We developed an efficient DNA-free gene disruption strategy, relying on phenotypical identification of mutants, to (i) precisely determine its efficiency compared to marker-relying approaches and (ii) establish a new DNA-free editing tool. This study found that classical CRISPR Cas9-based GE for gene disruption in Chlamydomonas reinhardtii is mainly limited by DNA integration. With respect to previous results achieved on synchronized cell populations, we succeeded in increasing the GE efficiency of single gene targeting by about 200 times and up to 270 times by applying phosphate starvation. Moreover, we determined the efficiency of multiplex simultaneous gene disruption by using an additional gene target whose knock-out did not lead to a visible phenotype, achieving a co-targeting efficiency of 22%. These results expand the toolset of GE techniques and, additionally, lead the way to future strategies to generate complex genotypes or to functionally investigate gene families. Furthermore, the approach provides new perspectives on how GE can be applied to (non-) model microalgae species, targeting groups of candidate genes of high interest for basic research and biotechnological applications.
Collapse
Affiliation(s)
- Claudia Battarra
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy
| | - Max Angstenberger
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy.
- Institute of Molecular Biosciences, Goethe University Frankfurt am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany.
| | - Roberto Bassi
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy.
| | - Luca Dall'Osto
- Department of Biotechnology, University of Verona, Cà Vignal 1, Strada le Grazie 15, 31734, Verona, Italy
| |
Collapse
|
6
|
Zuorro A, Lavecchia R, Contreras-Ropero JE, Martínez JBG, Barajas-Ferreira C, Barajas-Solano AF. Natural Antimicrobial Agents from Algae: Current Advances and Future Directions. Int J Mol Sci 2024; 25:11826. [PMID: 39519377 PMCID: PMC11545849 DOI: 10.3390/ijms252111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Infectious diseases have significantly shaped human history, leading to significant advancements in medical science. The discovery and development of antibiotics represented a critical breakthrough, but the rise of antibiotic-resistant pathogens now presents a serious global health threat. Due to the limitations of current synthetic antimicrobials, such as toxicity and environmental concerns, it is essential to explore alternative solutions. Algae, particularly microalgae and cyanobacteria, have emerged as promising sources of bioactive antimicrobial compounds. This review provides a comprehensive analysis of the antimicrobial properties of algal-derived compounds, including polysaccharides, fatty acids, and phenols, which have shown effectiveness against multi-drug-resistant bacteria. A co-occurrence bibliometric analysis using VOSviewer highlighted five key research clusters: antibiotic resistance, algal extracts, biosynthesis, water treatment, and novel pharmacological compounds. Furthermore, the primary mechanisms of action of these bioactive compounds, such as the inhibition of protein synthesis and cell membrane disruption, were identified, demonstrating their potential against both common and multi-resistant pathogens. Future research should prioritize optimizing algal biomass production, utilizing genetic and metabolic engineering, and creating innovative delivery systems to enhance the efficient production of bioactive compounds.
Collapse
Affiliation(s)
- Antonio Zuorro
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Roberto Lavecchia
- Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy;
| | - Jefferson E. Contreras-Ropero
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Janet B. García Martínez
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| | - Crisóstomo Barajas-Ferreira
- School of Chemical Engineering, Universidad Industrial de Santander, Cra 27, Calle 9, Bucaramanga 680006, Colombia;
| | - Andrés F. Barajas-Solano
- Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, Cucuta 540003, Colombia; (J.E.C.-R.); (J.B.G.M.); (A.F.B.-S.)
| |
Collapse
|
7
|
Guo L, Yang G. Pioneering DNA assembling techniques and their applications in eukaryotic microalgae. Biotechnol Adv 2024; 70:108301. [PMID: 38101551 DOI: 10.1016/j.biotechadv.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Assembling DNA fragments is a fundamental manipulation of cloning microalgal genes and carrying out microalgal synthetic biological studies. From the earliest DNA recombination to current trait and metabolic pathway engineering, we are always accompanied by homology-based DNA assembling. The improvement and modification of pioneering DNA assembling techniques and the combinational applications of the available assembling techniques have diversified and complicated the literature environment and aggravated our identification of the core and pioneering methodologies. Identifying the core assembling methodologies and using them appropriately and flourishing them even are important for researchers. A group of microalgae have been evolving as the models for both industrial applications and biological studies. DNA assembling requires researchers to know the methods available and their improvements and evolvements. In this review, we summarized the pioneering (core; leading) DNA assembling techniques developed previously, extended these techniques to their modifications, improvements and their combinations, and highlighted their applications in eukaryotic microalgae. We predicted that the gene(s) will be assembled into a functional cluster (e.g., those involving in a metabolic pathway, and stacked on normal microalgal chromosomes, their artificial episomes and looming artificial chromosomes. It should be particularly pointed out that the techniques mentioned in this review are classified according to the strategy used to assemble the final construct.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; MoE Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Cao K, Cui Y, Sun F, Zhang H, Fan J, Ge B, Cao Y, Wang X, Zhu X, Wei Z, Yao Q, Ma J, Wang Y, Meng C, Gao Z. Metabolic engineering and synthetic biology strategies for producing high-value natural pigments in Microalgae. Biotechnol Adv 2023; 68:108236. [PMID: 37586543 DOI: 10.1016/j.biotechadv.2023.108236] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/16/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Microalgae are microorganisms capable of producing bioactive compounds using photosynthesis. Microalgae contain a variety of high value-added natural pigments such as carotenoids, phycobilins, and chlorophylls. These pigments play an important role in many areas such as food, pharmaceuticals, and cosmetics. Natural pigments have a health value that is unmatched by synthetic pigments. However, the current commercial production of natural pigments from microalgae is not able to meet the growing market demand. The use of metabolic engineering and synthetic biological strategies to improve the production performance of microalgal cell factories is essential to promote the large-scale production of high-value pigments from microalgae. This paper reviews the health and economic values, the applications, and the synthesis pathways of microalgal pigments. Overall, this review aims to highlight the latest research progress in metabolic engineering and synthetic biology in constructing engineered strains of microalgae with high-value pigments and the application of CRISPR technology and multi-omics in this context. Finally, we conclude with a discussion on the bottlenecks and challenges of microalgal pigment production and their future development prospects.
Collapse
Affiliation(s)
- Kai Cao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Yulin Cui
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Hao Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yujiao Cao
- School of Foreign Languages, Shandong University of Technology, Zibo 255090, China
| | - Xiaodong Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyu Zhu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China; School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Zuoxi Wei
- School of Life Sciences and medicine, Shandong University of Technology, Zibo 255049, China
| | - Qingshou Yao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jinju Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yu Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chunxiao Meng
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Zhengquan Gao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| |
Collapse
|
9
|
Kolackova M, Janova A, Dobesova M, Zvalova M, Chaloupsky P, Krystofova O, Adam V, Huska D. Role of secondary metabolites in distressed microalgae. ENVIRONMENTAL RESEARCH 2023; 224:115392. [PMID: 36746204 DOI: 10.1016/j.envres.2023.115392] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Proficient photosynthetic microalgae/cyanobacteria produce a remarkable amount of various biomolecules. Secondary metabolites (SM) represent high value products for global biotrend application. Production improvement can be achieved by nutritional, environmental, and physiological stress as a first line tools for their stimulation. In recent decade, an increasing interest in algal stress biology and omics techniques have deepened knowledge in this area. However, deep understanding and connection of specific stress elucidator are missing. Hence, the present review summarizes recent evidence with an emphasis on the carotenoids, phenolic, and less-discussed compounds (glycerol, proline, mycosporins-like amino acids). Even when they are synthesized at very low concentrations, it highlights the need to expand knowledge in this area using genome-editing tools and omics approaches.
Collapse
Affiliation(s)
- Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Anna Janova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Monika Zvalova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Olga Krystofova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
10
|
LaPanse AJ, Burch TA, Tamburro JM, Traller JC, Pinowska A, Posewitz MC. Adaptive laboratory evolution for increased temperature tolerance of the diatom Nitzschia inconspicua. Microbiologyopen 2023; 12:e1343. [PMID: 36825881 PMCID: PMC9791160 DOI: 10.1002/mbo3.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Outdoor microalgal cultivation for the production of valuable biofuels and bioproducts typically requires high insolation and strains with high thermal (>37°C) tolerance. While some strains are naturally thermotolerant, other strains of interest require improved performance at elevated temperatures to enhance industrial viability. In this study, adaptive laboratory evolution (ALE) was performed for over 300 days using consecutive 0.5°C temperature increases in a constant temperature incubator to attain greater thermal tolerance in the industrially relevant diatom Nitzschia inconspicua str. Hildebrandi. The adapted strain was able to grow at a constant temperature of 37.5°C; whereas this constant temperature was lethal to the parental control, which had an upper-temperature boundary of 35.5°C before adaptive evolution. Several high-temperature clonal isolates were obtained from the evolved population following ALE, and increased temperature tolerance was observed in the clonal, parent, and non-clonal adapted cultures. This ALE method demonstrates the development of enhanced industrial algal strains without the production of genetically modified organisms (GMOs).
Collapse
Affiliation(s)
| | - Tyson A. Burch
- Department of ChemistryColorado School of MinesGoldenColoradoUSA
| | - Jacob M. Tamburro
- Department of Quantitative Biosciences and EngineeringColorado School of MinesGoldenColoradoUSA
| | | | | | | |
Collapse
|
11
|
Advances in Genetic Engineering in Improving Photosynthesis and Microalgal Productivity. Int J Mol Sci 2023; 24:ijms24031898. [PMID: 36768215 PMCID: PMC9915242 DOI: 10.3390/ijms24031898] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Even though sunlight energy far outweighs the energy required by human activities, its utilization is a key goal in the field of renewable energies. Microalgae have emerged as a promising new and sustainable feedstock for meeting rising food and feed demand. Because traditional methods of microalgal improvement are likely to have reached their limits, genetic engineering is expected to allow for further increases in the photosynthesis and productivity of microalgae. Understanding the mechanisms that control photosynthesis will enable researchers to identify targets for genetic engineering and, in the end, increase biomass yield, offsetting the costs of cultivation systems and downstream biomass processing. This review describes the molecular events that happen during photosynthesis and microalgal productivity through genetic engineering and discusses future strategies and the limitations of genetic engineering in microalgal productivity. We highlight the major achievements in manipulating the fundamental mechanisms of microalgal photosynthesis and biomass production, as well as promising approaches for making significant contributions to upcoming microalgal-based biotechnology.
Collapse
|
12
|
Lee TM, Lin JY, Tsai TH, Yang RY, Ng IS. Clustered regularly interspaced short palindromic repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. BIORESOURCE TECHNOLOGY 2023; 368:128350. [PMID: 36414139 DOI: 10.1016/j.biortech.2022.128350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Carbon dioxide is the major greenhouse gas and regards as the critical issue of global warming and climate changes. The inconspicuous microalgae are responsible for 40% of carbon fixation among all photosynthetic plants along with a higher photosynthetic efficiency and convert the carbon into lipids, protein, pigments, and bioactive compounds. Genetic approach and metabolic engineering are applied to accelerate the growth rate and biomass of microalgae, hence achieve the mission of carbon neutrality. Meanwhile, CRISPR/Cas9 is efficiently to enhance the productivity of high-value compounds in microalgae for it is easier operation, more affordable and is able to regulate multiple genes simultaneously. The genetic engineering strategies provide the multidisciplinary concept to evolute and increase the CO2 fixation rate through Calvin-Benson-Bassham cycle. Therefore, the technologies, bioinformatics tools, systematic engineering approaches for carbon neutrality and circular economy are summarized and leading one step closer to the decarbonization society in this review.
Collapse
Affiliation(s)
- Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Jia-Yi Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Han Tsai
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
13
|
Allouzi MMA, Allouzi S, Al-Salaheen B, Khoo KS, Rajendran S, Sankaran R, Sy-Toan N, Show PL. Current advances and future trend of nanotechnology as microalgae-based biosensor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Trovão M, Schüler LM, Machado A, Bombo G, Navalho S, Barros A, Pereira H, Silva J, Freitas F, Varela J. Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Mar Drugs 2022; 20:440. [PMID: 35877733 PMCID: PMC9318807 DOI: 10.3390/md20070440] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we review different microalgal strain improvement approaches and their applications, with a primary focus on random mutagenesis. Current challenges hampering strain improvement, selection, and commercialization will be discussed. The combination of these approaches with high-throughput technologies, such as fluorescence-activated cell sorting, as tools to select the most promising mutants, will also be discussed.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Lisa M. Schüler
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Adriana Machado
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
15
|
Inoue H, Tajima K, Mitsumori C, Inoue-Kashino N, Miura T, Ifuku K, Hirota R, Kashino Y, Fujita K, Kinoshita H. Biodiversity risk assessment of genetically modified Chaetoceros gracilis for outdoor cultivation. J GEN APPL MICROBIOL 2022; 68:151-162. [PMID: 35650023 DOI: 10.2323/jgam.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A genetically modified (GM) strain of the diatom Chaetoceros gracilis expressing the phosphite dehydrogenase gene (ptxD), which is a useful gene both for the biological containment and the avoidance of microbial contamination, was characterized to estimate the risk against the biodiversity by laboratory experiments. GM strain could grow in the medium containing phosphite as a sole source of phosphorus, while its general characteristics such as growth, salt tolerance, heat and dehydration resistance in the normal phosphate-containing medium were equivalent to those of wild type (WT) strain. The increase in potential toxicity of GM strain against plant, crustacean, fish and mammal was also disproved. The dispersal ability of WT strain cultured in an outdoor raceway pond was investigated for 28 days by detecting the psb31 gene in vessels, settled at variable distances (between 5 and 60 m) from the pond. The diatom was detected only in one vessel placed 5 m apart. To estimate the influence on the environment, WT and GM strains were inoculated into freshwater, seawater and soil. The influence on the microbiome in those samples was assessed by 16S rRNA gene amplicon sequencing, in addition to the analysis of the survivability of those strains in the freshwater and the seawater. The results indicated that the effect to the microbiome and the survivability were comparable between WT and GM strains. All results showed that the introduction of the ptxD gene into the diatom had a low risk on biodiversity.
Collapse
Affiliation(s)
- Hidetoshi Inoue
- Biological Resource Center, National Institute of Technology and Evaluation (NITE)
| | - Kumiko Tajima
- Biological Resource Center, National Institute of Technology and Evaluation (NITE)
| | - Cristina Mitsumori
- Biological Resource Center, National Institute of Technology and Evaluation (NITE)
| | | | - Takamasa Miura
- Biological Resource Center, National Institute of Technology and Evaluation (NITE)
| | | | - Ryuichi Hirota
- Graduate School of Integrated Sciences for Life, Hiroshima University
| | | | - Katsutoshi Fujita
- Biological Resource Center, National Institute of Technology and Evaluation (NITE)
| | - Hiroshi Kinoshita
- Biological Resource Center, National Institute of Technology and Evaluation (NITE)
| |
Collapse
|
16
|
Cai P, Han M, Zhang R, Ding S, Zhang D, Liu D, Liu S, Hu QN. SynBioStrainFinder: A microbial strain database of manually curated CRISPR/Cas genetic manipulation system information for biomanufacturing. Microb Cell Fact 2022; 21:87. [PMID: 35568950 PMCID: PMC9107733 DOI: 10.1186/s12934-022-01813-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microbial strain information databases provide valuable data for microbial basic research and applications. However, they rarely contain information on the genetic operating system of microbial strains. RESULTS We established a comprehensive microbial strain database, SynBioStrainFinder, by integrating CRISPR/Cas gene-editing system information with cultivation methods, genome sequence data, and compound-related information. It is presented through three modules, Strain2Gms/PredStrain2Gms, Strain2BasicInfo, and Strain2Compd, which combine to form a rapid strain information query system conveniently curated, integrated, and accessible on a single platform. To date, 1426 CRISPR/Cas gene-editing records of 157 microbial strains have been manually extracted from the literature in the Strain2Gms module. For strains without established CRISPR/Cas systems, the PredStrain2Gms module recommends the system of the most closely related strain as a reference to facilitate the construction of a new CRISPR/Cas gene-editing system. The database contains 139,499 records of strain cultivation and genome sequences, and 773,298 records of strain-related compounds. To facilitate simple and intuitive data application, all microbial strains are also labeled with stars based on the order and availability of strain information. SynBioStrainFinder provides a user-friendly interface for querying, browsing, and visualizing detailed information on microbial strains, and it is publicly available at http://design.rxnfinder.org/biosynstrain/ . CONCLUSION SynBioStrainFinder is the first microbial strain database with manually curated information on the strain CRISPR/Cas system as well as other microbial strain information. It also provides reference information for the construction of new CRISPR/Cas systems. SynBioStrainFinder will serve as a useful resource to extend microbial strain research and application for biomanufacturing.
Collapse
Affiliation(s)
- Pengli Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Dachuan Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
17
|
Kuo EY, Yang RY, Chin YY, Chien YL, Chen YC, Wei CY, Kao LJ, Chang YH, Li YJ, Chen TY, Lee TM. Multi-omics approaches and genetic engineering of metabolism for improved biorefinery and wastewater treatment in microalgae. Biotechnol J 2022; 17:e2100603. [PMID: 35467782 DOI: 10.1002/biot.202100603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022]
Abstract
Microalgae, a group of photosynthetic microorganisms rich in diverse and novel bioactive metabolites, have been explored for the production of biofuels, high value-added compounds as food and feeds, and pharmaceutical chemicals as agents with therapeutic benefits. This article reviews the development of omics resources and genetic engineering techniques including gene transformation methodologies, mutagenesis, and genome-editing tools in microalgae biorefinery and wastewater treatment. The introduction of these enlisted techniques has simplified the understanding of complex metabolic pathways undergoing microalgal cells. The multiomics approach of the integrated omics datasets, big data analysis, and machine learning for the discovery of objective traits and genes responsible for metabolic pathways was reviewed. Recent advances and limitations of multiomics analysis and genetic bioengineering technology to facilitate the improvement of microalgae as the dual role of wastewater treatment and biorefinery feedstock production are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eva YuHua Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Ru-Yin Yang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yuan Yu Chin
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Lin Chien
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu Chu Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Cheng-Yu Wei
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Li-Jung Kao
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yi-Hua Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Yu-Jia Li
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Te-Yuan Chen
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Tse-Min Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Frontier Center for Ocean Science and Technology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
18
|
Naduthodi MIS, Südfeld C, Avitzigiannis EK, Trevisan N, van Lith E, Alcaide Sancho J, D’Adamo S, Barbosa M, van der Oost J. Comprehensive Genome Engineering Toolbox for Microalgae Nannochloropsis oceanica Based on CRISPR-Cas Systems. ACS Synth Biol 2021; 10:3369-3378. [PMID: 34793143 PMCID: PMC8689688 DOI: 10.1021/acssynbio.1c00329] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Microalgae can produce
industrially relevant metabolites using
atmospheric CO2 and sunlight as carbon and energy sources,
respectively. Developing molecular tools for high-throughput genome
engineering could accelerate the generation of tailored strains with
improved traits. To this end, we developed a genome editing strategy
based on Cas12a ribonucleoproteins (RNPs) and homology-directed repair
(HDR) to generate scarless and markerless mutants of the microalga Nannochloropsis oceanica. We also developed an episomal
plasmid-based Cas12a system for efficiently introducing indels at
the target site. Additionally, we exploited the ability of Cas12a
to process an associated CRISPR array to perform multiplexed genome
engineering. We efficiently targeted three sites in the host genome
in a single transformation, thereby making a major step toward high-throughput
genome engineering in microalgae. Furthermore, a CRISPR interference
(CRISPRi) tool based on Cas9 and Cas12a was developed for effective
downregulation of target genes. We observed up to 85% reduction in
the transcript levels upon performing CRISPRi with dCas9 in N. oceanica. Overall, these developments substantially
accelerate genome engineering efforts in N. oceanica and potentially provide a general toolbox for improving other microalgal
strains.
Collapse
Affiliation(s)
- Mihris Ibnu Saleem Naduthodi
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Christian Südfeld
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | | | - Nicola Trevisan
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Eduard van Lith
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Javier Alcaide Sancho
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
| | - Sarah D’Adamo
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - Maria Barbosa
- Bioprocess Engineering, Wageningen University, Wageningen 6708 PB, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
19
|
Rau EM, Ertesvåg H. Method Development Progress in Genetic Engineering of Thraustochytrids. Mar Drugs 2021; 19:515. [PMID: 34564177 PMCID: PMC8467673 DOI: 10.3390/md19090515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Thraustochytrids are unicellular, heterotrophic marine eukaryotes. Some species are known to store surplus carbon as intracellular lipids, and these also contain the long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA). Most vertebrates are unable to synthesize sufficient amounts of DHA, and this fatty acid is essential for, e.g., marine fish, domesticated animals, and humans. Thraustochytrids may also produce other commercially valuable fatty acids and isoprenoids. Due to the great potential of thraustochytrids as producers of DHA and other lipid-related molecules, a need for more knowledge on this group of organisms is needed. This necessitates the ability to do genetic manipulation of the different strains. Thus far, this has been obtained for a few strains, while it has failed for other strains. Here, we systematically review the genetic transformation methods used for different thraustochytrid strains, with the aim of aiding studies on strains not yet successfully transformed. The designs of transformation cassettes are also described and compared. Moreover, the potential problems when trying to establish transformation protocols in new thraustochytrid species/strains are discussed, along with suggestions utilized in other organisms to overcome similar challenges. The approaches discussed in this review could be a starting point when designing protocols for other non-model organisms.
Collapse
Affiliation(s)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N7491 Trondheim, Norway;
| |
Collapse
|
20
|
de Grahl I, Reumann S. Stramenopile microalgae as "green biofactories" for recombinant protein production. World J Microbiol Biotechnol 2021; 37:163. [PMID: 34453200 PMCID: PMC8397651 DOI: 10.1007/s11274-021-03126-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022]
Abstract
Photoautotrophic microalgae have become intriguing hosts for recombinant protein production because they offer important advantages of both prokaryotic and eukaryotic expression systems. Advanced molecular tools have recently been established for the biotechnologically relevant group of stramenopile microalgae, particularly for several Nannochloropsis species and diatoms. Strategies for the selection of powerful genetic elements and for optimization of protein production have been reported. Much needed high-throughput techniques required for straight-forward identification and selection of the best expression constructs and transformants have become available and are discussed. The first recombinant proteins have already been produced successfully in stramenopile microalgae and include not only several subunit vaccines but also one antimicrobial peptide, a fish growth hormone, and an antibody. These research results offer interesting future applications in aquaculture and as biopharmaceuticals. In this review we highlight recent progress in genetic technology development for recombinant protein production in the most relevant Nannochloropsis species and diatoms. Diverse realistic biotechnological applications of these proteins are emphasized that have the potential to establish stramenopile algae as sustainable green factories for an economically competitive production of high-value biomolecules.
Collapse
Affiliation(s)
- Imke de Grahl
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany.
| | - Sigrun Reumann
- Plant Biochemistry and Infection Biology, Institute of Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, 22609, Hamburg, Germany
| |
Collapse
|
21
|
Savio S, di Natale C, Paolesse R, Lvova L, Congestri R. Keeping Track of Phaeodactylum tricornutum (Bacillariophyta) Culture Contamination by Potentiometric E-Tongue. SENSORS 2021; 21:s21124052. [PMID: 34204672 PMCID: PMC8231153 DOI: 10.3390/s21124052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022]
Abstract
The large-scale cultivation of microalgae provides a wide spectrum of marketable bioproducts, profitably used in many fields, from the preparation of functional health products and feed supplement in aquaculture and animal husbandry to biofuels and green chemistry agents. The commercially successful algal biomass production requires effective strategies to maintain the process at desired productivity and stability levels. Hence, the development of effective early warning methods to timely indicate remedial actions and to undertake countermeasures is extremely important to avoid culture collapse and consequent economic losses. With the aim to develop an early warning method of algal contamination, the potentiometric E-tongue was applied to record the variations in the culture environments, over the whole growth process, of two unialgal cultures, Phaeodactylum tricornutum and a microalgal contaminant, along with those of their mixed culture. The E-tongue system ability to distinguish the cultures and to predict their growth stage, through the application of multivariate data analysis, was shown. A PLS regression method applied to the E-tongue output data allowed a good prediction of culture growth time, expressed as growth days, with R2 values in a range from 0.913 to 0.960 and RMSEP of 1.97–2.38 days. Moreover, the SIMCA and PLS-DA techniques were useful for cultures contamination monitoring. The constructed PLS-DA model properly discriminated 67% of cultures through the analysis of their growth media, i.e., environments, thus proving the potential of the E-tongue system for a real time monitoring of contamination in microalgal intensive cultivation.
Collapse
Affiliation(s)
- Saverio Savio
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Corrado di Natale
- Department of Electronics Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Larisa Lvova
- Department of Electronics Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Correspondence: (L.L.); (R.C.); Tel.: +39-06727594732 (L.L.); +39-0672595989 (R.C.)
| | - Roberta Congestri
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Correspondence: (L.L.); (R.C.); Tel.: +39-06727594732 (L.L.); +39-0672595989 (R.C.)
| |
Collapse
|
22
|
Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
|
24
|
Perspective Design of Algae Photobioreactor for Greenhouses—A Comparative Study. ENERGIES 2021. [DOI: 10.3390/en14051338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The continued growth and evolving lifestyles of the human population require the urgent development of sustainable production in all its aspects. Microalgae have the potential of the sustainable production of various commodities; however, the energetic requirements of algae cultivation still largely contribute to the overall negative balance of many operation plants. Here, we evaluate energetic efficiency of biomass and lipids production by Chlorella pyrenoidosa in multi-tubular, helical-tubular, and flat-panel airlift pilot scale photobioreactors, placed in an indoor environment of greenhouse laboratory in Central Europe. Our results show that the main energy consumption was related to the maintenance of constant light intensity in the flat-panel photobioreactor and the culture circulation in the helical-tubular photobioreactor. The specific power input ranged between 0.79 W L−1 in the multi-tubular photobioreactor and 6.8 W L−1 in the flat-panel photobioreactor. The construction of multi-tubular photobioreactor allowed for the lowest energy requirements but also predetermined the highest temperature sensitivity and led to a significant reduction of Chlorella productivity in extraordinary warm summers 2018 and 2019. To meet the requirements of sustainable yearlong microalgal production in the context of global change, further development towards hybrid microalgal cultivation systems, combining the advantages of open and closed systems, can be expected.
Collapse
|
25
|
Chakdar H, Hasan M, Pabbi S, Nevalainen H, Shukla P. High-throughput proteomics and metabolomic studies guide re-engineering of metabolic pathways in eukaryotic microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 321:124495. [PMID: 33307484 DOI: 10.1016/j.biortech.2020.124495] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
Eukaryotic microalgae are a rich source of commercially important metabolites including lipids, pigments, sugars, amino acids and enzymes. However, their inherent genetic potential is usually not enough to support high level production of metabolites of interest. In order to move on from the traditional approach of improving product yields by modification of the cultivation conditions, understanding the metabolic pathways leading to the synthesis of the bioproducts of interest is crucial. Identification of new targets for strain engineering has been greatly facilitated by the rapid development of high-throughput sequencing and spectroscopic techniques discussed in this review. Despite the availability of high throughput analytical tools, examples of gathering and application of proteomic and metabolomic data for metabolic engineering of microalgae are few and mainly limited to lipid production. The present review highlights the application of contemporary proteomic and metabolomic techniques in eukaryotic microalgae for redesigning pathways for enhanced production of algal metabolites.
Collapse
Affiliation(s)
- Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh 275103, India
| | - Mafruha Hasan
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR - Indian Agricultural Research Institute, New Delhi 110 012
| | - Helena Nevalainen
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia; Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW 2109, Australia
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India; School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
26
|
Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol 2021; 39:1019-1036. [PMID: 33541719 DOI: 10.1016/j.tibtech.2020.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
The major bottleneck in commercializing biofuels and other commodities produced by microalgae is the high cost associated with phototrophic cultivation. Improving microalgal productivities could be a solution to this problem. Synthetic biology methods have recently been used to engineer the downstream production pathways in several microalgal strains. However, engineering upstream photosynthetic and carbon fixation metabolism to enhance growth, productivity, and yield has barely been explored in microalgae. We describe strategies to improve the generation of reducing power from light, as well as to improve the assimilation of CO2 by either the native Calvin cycle or synthetic alternatives. Overall, we are optimistic that recent technological advances will prompt long-awaited breakthroughs in microalgal research.
Collapse
|
27
|
Goswami RK, Mehariya S, Obulisamy PK, Verma P. Advanced microalgae-based renewable biohydrogen production systems: A review. BIORESOURCE TECHNOLOGY 2021; 320:124301. [PMID: 33152683 DOI: 10.1016/j.biortech.2020.124301] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
The reliance of fossil fuel for industrial and energy sectors has resulted in its depletion. Therefore, enormous efforts have been considered to move-out from fossil fuels to renewable energy sources based industrial process developments. Recently, biohydrogen (bio-H2) has been recognised as a clean source of fuel with high-energy efficiency, which can be produced via different routes. Among them, biological fermentation processes are highly recommended due to eco-friendly and economically viable approaches compared to that of thermochemical processes. However, the low H2 yield and high production cost are major bottlenecks for commercial scale operations. Thus, this review proposed an integrated microalgae-based H2 production process, which will provides a possible route for commercialization in near future. Furthermore, process integration to improve efficiency and implementation of advanced strategies for the enhancement of bio-H2 production, economic viability, and future research needs are discussed.
Collapse
Affiliation(s)
- Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Rajasthan, India
| | - Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa dell'Annunziata, Italy
| | | | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Rajasthan, India.
| |
Collapse
|
28
|
Gu Y, Cao H, Li F, Yu J, Nian R, Feng D, Lin J, Song H, Liu W. Production of functional human nerve growth factor from the submandibular glands of mice using a CRISPR/Cas9 genome editing system. World J Microbiol Biotechnol 2020; 36:176. [PMID: 33103226 DOI: 10.1007/s11274-020-02951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022]
Abstract
Nerve growth factor (NGF) is an essential trophic factor for the growth and survival of neurons in the central and peripheral nervous systems. For many years, mouse NGF (mNGF) has been used to treat various neuronal and non-neuronal disorders. However, the biological activity of human NGF (hNGF) is significantly higher than that of mNGF in human cells. Using the CRISPR/Cas9 system, we constructed the transgenic mice expressing hNGF specifically in their submandibular glands. As demonstrated by fluorescence immunohistochemical staining, these mice produced hNGF successfully, with 0.8 mg produced per gram of submandibular glands. hNGF with 99% purity was successfully extracted by two-step ion-exchange chromatography and one-step size-exclusion chromatography from the submandibular glands of these transgenic mice. Further, the purified hNGF was verified by LC-MS/MS. We analyzed the NH2-terminus of hNGF using both Edman degradation and LC-MS/MS-based methods. Both results showed that the obtained hNGF lost the NH2-terminal octapeptide (SSSHPIFH). Moreover, the produced hNGF demonstrated a strong promotion in the proliferation of TF1 cells.
Collapse
Affiliation(s)
- Yi Gu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, China
| | - Hui Cao
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Fei Li
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Jianli Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.,University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing, 100049, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
| | - Dongxiao Feng
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China
| | - Jingtao Lin
- Dalang Hospital of Dongguan, No. 85 Jinlangzhong Road, Dalang, 523770, Dongguan, China
| | - Haipeng Song
- Shenzhen Innova Nanobodi Co., Ltd, No. 7018 Caitian Road, Shenzhen, 518000, China.
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
29
|
CRISPR/Cas technology promotes the various application of Dunaliella salina system. Appl Microbiol Biotechnol 2020; 104:8621-8630. [PMID: 32918585 DOI: 10.1007/s00253-020-10892-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022]
Abstract
Dunaliella salina (D. salina) has been widely applied in various fields because of its inherent advantages, such as the study of halotolerant mechanism, wastewater treatment, recombinant proteins expression, biofuel production, preparation of natural materials, and others. However, owing to the existence of low yield or in the laboratory exploration stage, D. salina system has been greatly restricted for practical production of various components. In past decade, significant progresses have been achieved for research of D. salina in these fields. Among them, D. salina as a novel expression system demonstrated a bright prospect, especially for large-scale production of foreign proteins, like the vaccines, antibodies, and other therapeutic proteins. Due to the low efficiency, application of traditional regulation tools is also greatly limited for exploration of D. salina system. The emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system offers a precise editing tool to overcome the obstacles of D. salina system. This review not only comprehensively summarizes the recent progresses of D. salina in domain of gene engineering but also gives a deep analysis of problems and deficiencies in different fields of D. salina. Moreover, further prospects of CRISPR/Cas system and its significant challenges have been discussed in various aspects of D. salina. It provides a great referencing value for speeding up the maturity of D. salina system, and also supplies practical guiding significance to expand the new application fields for D. salina. KEY POINTS: • The review provides recent research progresses of various applications of D. salina. • The problems and deficiencies in different fields of D. salina were deeply analyzed. • The further prospects of CRISPR/Cas technology in D. salina system were predicted. • CRISPR/Cas system will promote the new application fields and maturity for D. salina.
Collapse
|
30
|
Lupette J, Benning C. Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie 2020; 178:15-25. [PMID: 32389760 DOI: 10.1016/j.biochi.2020.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Microalgae are single-cell, photosynthetic organisms whose biodiversity places them at the forefront of biological producers of high-value molecules including lipids and pigments. Some of these organisms particular are capable of synthesizing n-3 very long chain polyunsaturated fatty acids (VLC-PUFAs), known to have beneficial effects on human health. Indeed, VLC-PUFAs are the precursors of many signaling molecules in humans involved in the complexities of inflammatory processes. This mini-review provides an inventory of knowledge on the synthesis of VLC-PUFAs in microalgae and on the diversity of signaling molecules (prostanoids, leukotrienes, SPMs, EFOX, isoprostanoids) that arise in humans from VLC-PUFAs.
Collapse
Affiliation(s)
- Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
31
|
Ng I, Keskin BB, Tan S. A Critical Review of Genome Editing and Synthetic Biology Applications in Metabolic Engineering of Microalgae and Cyanobacteria. Biotechnol J 2020; 15:e1900228. [DOI: 10.1002/biot.201900228] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Batuhan Birol Keskin
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan 701 Taiwan
| |
Collapse
|
32
|
Zhang S, Guo F, Yan W, Dai Z, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Recent Advances of CRISPR/Cas9-Based Genetic Engineering and Transcriptional Regulation in Industrial Biology. Front Bioeng Biotechnol 2020; 7:459. [PMID: 32047743 PMCID: PMC6997136 DOI: 10.3389/fbioe.2019.00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
Industrial biology plays a crucial role in the fields of medicine, health, food, energy, and so on. However, the lack of efficient genetic engineering tools has restricted the rapid development of industrial biology. Recently, the emergence of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system brought a breakthrough in genome editing technologies due to its high orthogonality, versatility, and efficiency. In this review, we summarized the barriers of CRISPR/Cas9 and corresponding solutions for efficient genetic engineering in industrial microorganisms. In addition, the advances of industrial biology employing the CRISPR/Cas9 system were compared in terms of its application in bacteria, yeast, and filamentous fungi. Furthermore, the cooperation between CRISPR/Cas9 and synthetic biology was discussed to help build complex and programmable gene circuits, which can be used in industrial biotechnology.
Collapse
Affiliation(s)
- Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Zhongxue Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, China
| |
Collapse
|
33
|
Antonacci A, Scognamiglio V. Biotechnological Advances in the Design of Algae-Based Biosensors. Trends Biotechnol 2019; 38:334-347. [PMID: 31706693 DOI: 10.1016/j.tibtech.2019.10.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023]
Abstract
In addition to their use in biomass production and bioremediation, algae have been extensively exploited in biosensing applications. Algae-based biosensors have demonstrated potential for sensitive, sustainable, and multiplexed detection of analytes of agroenvironmental and security interest. Their advantages include the availability of different algal bioreceptors including whole cells and their photosynthetic subcomponents, their potential to be integrated into dual transduction miniaturized devices, and the opportunity for continuous environmental monitoring. Despite obstacles including limited stability and selectivity, algae-based biosensing is a realistic prospect that has some recent effective applications. Strategic exploitation of cutting-edge technologies including materials science, nanotechnology, microfluidics, and genome editing will help to achieve the full potential of algae-based sensors.
Collapse
Affiliation(s)
- Amina Antonacci
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy.
| | - Viviana Scognamiglio
- Institute of Crystallography (IC-CNR), Department of Chemical Sciences and Materials Technologies, Via Salaria km 29.300, 00015 Monterotondo, Italy.
| |
Collapse
|
34
|
Gale GAR, Schiavon Osorio AA, Mills LA, Wang B, Lea-Smith DJ, McCormick AJ. Emerging Species and Genome Editing Tools: Future Prospects in Cyanobacterial Synthetic Biology. Microorganisms 2019; 7:E409. [PMID: 31569579 PMCID: PMC6843473 DOI: 10.3390/microorganisms7100409] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/19/2022] Open
Abstract
Recent advances in synthetic biology and an emerging algal biotechnology market have spurred a prolific increase in the availability of molecular tools for cyanobacterial research. Nevertheless, work to date has focused primarily on only a small subset of model species, which arguably limits fundamental discovery and applied research towards wider commercialisation. Here, we review the requirements for uptake of new strains, including several recently characterised fast-growing species and promising non-model species. Furthermore, we discuss the potential applications of new techniques available for transformation, genetic engineering and regulation, including an up-to-date appraisal of current Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR associated protein (CRISPR/Cas) and CRISPR interference (CRISPRi) research in cyanobacteria. We also provide an overview of several exciting molecular tools that could be ported to cyanobacteria for more advanced metabolic engineering approaches (e.g., genetic circuit design). Lastly, we introduce a forthcoming mutant library for the model species Synechocystis sp. PCC 6803 that promises to provide a further powerful resource for the cyanobacterial research community.
Collapse
Affiliation(s)
- Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - Alejandra A Schiavon Osorio
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Baojun Wang
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, UK.
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|