1
|
Zhou J, Lin WH, Yu YL, Dong CD, Zhang H, Hu Z, Kao CM. Transitioning weathered oil fields towards new energy: A review on utilizing hydrogenotrophic methanogens for petroleum hydrocarbons remediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135279. [PMID: 39047569 DOI: 10.1016/j.jhazmat.2024.135279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/06/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The weathering process can cause the volatilization of light components in crude oil, leading to the accumulation of total petroleum hydrocarbons (TPH) in weathered oil field soils. These TPH compounds are relatively resistant to biodegradation, posing a significant environmental hazard by contributing to soil degradation. TPH represents a complex mixture of petroleum-based hydrocarbons classified as persistent organic pollutants in soil and groundwater. The release of TPH pollutants into the environment poses serious threats to ecosystems and human health. Currently, various methods are available for TPH-contaminated soil remediation, with bioremediation technology recognized as an environmentally friendly and cost-effective approach. While converting TPH to CO2 is a common remediation method, the complex structures and diverse types of petroleum hydrocarbons (PHs) involved can result in excessive CO2 generation, potentially exacerbating the greenhouse effect. Alternatively, transforming TPH into energy forms like methane through bioremediation, followed by collection and reuse, can reduce greenhouse gas emissions and energy consumption. This process relies on the synergistic interaction between Methanogens archaea and syntrophic bacteria, forming a consortium known as the oil-degrading bacterial consortium. Methanogens produce methane through anaerobic digestion (AD), with hydrogenotrophic methanogens (HTMs) utilizing H2 as an electron donor, playing a crucial role in biomethane production. Candidatus Methanoliparia (Ca. Methanoliparia) was found in the petroleum archaeal community of weathered Oil field in northeast China. Ca. Methanoliparia has demonstrated its independent ability to decompose and produce new energy (biomethane) without symbiosis, contribute to transitioning weathered oil fields towards new energy. Therefore, this review focuses on the principles, mechanisms, and developmental pathways of HTMs during new energy production in the degradation of PHs. It also discusses strategies to enhance TPH degradation and recovery methods.
Collapse
Affiliation(s)
- Jiaping Zhou
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Wei-Han Lin
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Haibing Zhang
- China University of Petroleum-Beijing at Karamay, Karamay, PR China
| | - Zhongtao Hu
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, Australia
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Madison AS, Sorsby SJ, Wang Y, Key TA. Increasing in situ bioremediation effectiveness through field-scale application of molecular biological tools. Front Microbiol 2023; 13:1005871. [PMID: 36845972 PMCID: PMC9950576 DOI: 10.3389/fmicb.2022.1005871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/28/2022] [Indexed: 02/12/2023] Open
Abstract
Leveraging the capabilities of microorganisms to reduce (degrade or transform) concentrations of pollutants in soil and groundwater can be a cost-effective, natural remedial approach to manage contaminated sites. Traditional design and implementation of bioremediation strategies consist of lab-scale biodegradation studies or collection of field-scale geochemical data to infer associated biological processes. While both lab-scale biodegradation studies and field-scale geochemical data are useful for remedial decision-making, additional insights can be gained through the application of Molecular Biological Tools (MBTs) to directly measure contaminant-degrading microorganisms and associated bioremediation processes. Field-scale application of a standardized framework pairing MBTs with traditional contaminant and geochemical analyses was successfully performed at two contaminated sites. At a site with trichloroethene (TCE) impacted groundwater, framework application informed design of an enhanced bioremediation approach. Baseline abundances of 16S rRNA genes for a genus of obligate organohalide-respiring bacteria (i.e., Dehalococcoides) were measured at low abundances (101-102 cells/mL) within the TCE source and plume areas. In combination with geochemical analyses, these data suggested that intrinsic biodegradation (i.e., reductive dechlorination) may be occurring, but activities were limited by electron donor availability. The framework was utilized to support development of a full-scale enhanced bioremediation design (i.e., electron donor addition) and to monitor remedial performance. Additionally, the framework was applied at a second site with residual petroleum hydrocarbon (PHC) impacted soils and groundwater. MBTs, specifically qPCR and 16S gene amplicon rRNA sequencing, were used to characterize intrinsic bioremediation mechanisms. Functional genes associated with anaerobic biodegradation of diesel components (e.g., naphthyl-2-methyl-succinate synthase, naphthalene carboxylase, alkylsuccinate synthase, and benzoyl coenzyme A reductase) were measured to be 2-3 orders of magnitude greater than unimpacted, background samples. Intrinsic bioremediation mechanisms were determined to be sufficient to achieve groundwater remediation objectives. Nonetheless, the framework was further utilized to assess that an enhanced bioremediation could be a successful remedial alternative or complement to source area treatment. While bioremediation of chlorinated solvents, PHCs, and other contaminants has been demonstrated to successfully reduce environmental risk and reach site goals, the application of field-scale MBT data in combination with contaminant and geochemical data analyses to design, implement, and monitor a site-specific bioremediation approach can result in more consistent remedy effectiveness.
Collapse
Affiliation(s)
- Andrew S. Madison
- Golder Associates USA Inc., (Currently WSP USA Inc.), Marlton, NJ, United States,*Correspondence: Andrew S. Madison, ✉
| | - Skyler J. Sorsby
- Golder Associates USA Inc., (Currently WSP USA Inc.), Marlton, NJ, United States
| | | | - Trent A. Key
- ExxonMobil Environmental and Property Solutions Company, Spring, TX, United States
| |
Collapse
|
3
|
Rossmassler K, Challacombe JF, De Long SK. Pulling needles out of a haystack: Subtractive community metatranscriptomics retrieves anaerobic o-xylene degradation pathway genes out of a mixed microbial culture. J Microbiol Methods 2022; 197:106481. [DOI: 10.1016/j.mimet.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
|
4
|
Liu JF, Lu YW, Zhou L, Li W, Hou ZW, Yang SZ, Wu XL, Gu JD, Mu BZ. Simultaneous detection of transcribed functional assA gene and the corresponding metabolites of linear alkanes (C 4, C 5, and C 7) in production water of a low-temperature oil reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141290. [PMID: 32745846 DOI: 10.1016/j.scitotenv.2020.141290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/25/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Methanogenic hydrocarbon degradation is an important biogeochemical process in oil reservoirs; however, genomic DNA-based analysis of microorganisms and metabolite detection are not conclusive for identification of the ongoing nature of this bioprocess. In this study, a suite of analyses, involving the study of microbial community and selective gene quantification of both genomic DNA and RNA together with signature metabolites, were performed to comprehensively advance the understanding of the methanogenic biodegradation of hydrocarbons in a low-temperature oilfield. The fumarate addition products for alkanes-C4, C5, and C7-alkylsuccinates-and transcribed assA and mcrA genes were simultaneously detected in the production water sample, providing robust and convincing evidence for both the initial activation of n-alkanes and methane metabolism in this oilfield. The clone library of assA gene transcripts showed that Smithella was active and most likely responsible for the addition of fumarate to n-alkanes, whereas Methanoculleus and Methanothrix were the dominant and active methane-producers via CO2 reduction and acetoclastic pathways, respectively. Additionally, qPCR results of assA and mcrA genes and their transcribed gene copy numbers revealed a roughly similar transcriptional activity in both n-alkanes-degraders and methane producers, implying that they were the major participants in the methanogenic degradation of n-alkanes in this oilfield. To the best of our knowledge, this is the first report presenting sufficient speculation, through detection of signature intermediates, corresponding gene quantification at transcriptional levels, and microbial community analysis, of methanogenic degradation of n-alkanes in production water of an oil reservoir.
Collapse
Affiliation(s)
- Jin-Feng Liu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Yu-Wei Lu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Lei Zhou
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei Li
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Zhao-Wei Hou
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Shi-Zhong Yang
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Xiao-Lin Wu
- Exploration and Development Research Institute of Daqing Oilfield Company Limited, PetroChina, Daqing, Heilongjiang 163712, PR China
| | - Ji-Dong Gu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, PR China
| | - Bo-Zhong Mu
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center of Microbial Enhanced Oil Recovery, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Laczi K, Erdeiné Kis Á, Szilágyi Á, Bounedjoum N, Bodor A, Vincze GE, Kovács T, Rákhely G, Perei K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front Microbiol 2020; 11:590049. [PMID: 33304336 PMCID: PMC7701123 DOI: 10.3389/fmicb.2020.590049] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The accumulation of petroleum hydrocarbons in the environment substantially endangers terrestrial and aquatic ecosystems. Many microbial strains have been recognized to utilize aliphatic and aromatic hydrocarbons under aerobic conditions. Nevertheless, most of these pollutants are transferred by natural processes, including rain, into the underground anaerobic zones where their degradation is much more problematic. In oxic zones, anaerobic microenvironments can be formed as a consequence of the intensive respiratory activities of (facultative) aerobic microbes. Even though aerobic bioremediation has been well-characterized over the past few decades, ample research is yet to be done in the field of anaerobic hydrocarbon biodegradation. With the emergence of high-throughput techniques, known as omics (e.g., genomics and metagenomics), the individual biodegraders, hydrocarbon-degrading microbial communities and metabolic pathways, interactions can be described at a contaminated site. Omics approaches provide the opportunity to examine single microorganisms or microbial communities at the system level and elucidate the metabolic networks, interspecies interactions during hydrocarbon mineralization. Metatranscriptomics and metaproteomics, for example, can shed light on the active genes and proteins and functional importance of the less abundant species. Moreover, novel unculturable hydrocarbon-degrading strains and enzymes can be discovered and fit into the metabolic networks of the community. Our objective is to review the anaerobic hydrocarbon biodegradation processes, the most important hydrocarbon degraders and their diverse metabolic pathways, including the use of various terminal electron acceptors and various electron transfer processes. The review primarily focuses on the achievements obtained by the current high-throughput (multi-omics) techniques which opened new perspectives in understanding the processes at the system level including the metabolic routes of individual strains, metabolic/electric interaction of the members of microbial communities. Based on the multi-omics techniques, novel metabolic blocks can be designed and used for the construction of microbial strains/consortia for efficient removal of hydrocarbons in anaerobic zones.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ágnes Erdeiné Kis
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | | | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|