1
|
Hu G, Gao C, Li X, song W, Wu J. Microbial engineering for monocyclic aromatic compounds production. FEMS Microbiol Rev 2025; 49:fuaf003. [PMID: 39900471 PMCID: PMC11837758 DOI: 10.1093/femsre/fuaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/13/2025] [Accepted: 02/02/2025] [Indexed: 02/05/2025] Open
Abstract
Aromatic compounds serve pivotal roles in plant physiology and exhibit antioxidative and antimicrobial properties, leading to their widespread application, such as in food preservation and pharmaceuticals. However, direct plant extraction and petrochemical synthesis often struggle to meet current needs due to low yield or facing economic and environmental hurdles. In the past decades, systems metabolic engineering enabled eco-friendly production of various aromatic compounds, with some reaching industrial levels. In this review, we highlight monocyclic aromatic chemicals, which have relatively simple structures and are currently the primary focus of microbial synthesis research. We then discuss systems metabolic engineering at the enzyme, pathway, cellular, and bioprocess levels to improve the production of these chemicals. Finally, we overview the current limitations and potential resolution strategies, aiming to provide reference for future studies on the biosynthesis of aromatic products.
Collapse
Affiliation(s)
- Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaomin Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Fernandes GFS, Kim SH, Castagnolo D. Harnessing biocatalysis as a green tool in antibiotic synthesis and discovery. RSC Adv 2024; 14:30396-30410. [PMID: 39318457 PMCID: PMC11420778 DOI: 10.1039/d4ra04824e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Biocatalysis offers a sustainable approach to drug synthesis, leveraging the high selectivity and efficiency of enzymes. This review explores the application of biocatalysis in the early-stage synthesis of antimicrobial compounds, emphasizing its advantages over traditional chemical methods. We discuss various biocatalysts, including enzymes and whole-cell systems, and their role in the selective functionalization and preparation of antimicrobials and antibacterial building blocks. The review underscores the potential of biocatalysis to advance the development of new antibiotics and suggests directions and potential applications of enzymes in drug development.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Seong-Heun Kim
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London 150 Stamford Street London SE1 9NH UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
3
|
Zhang F, Naeem M, Yu B, Liu F, Ju J. Improving the enzymatic activity and stability of N-carbamoyl hydrolase using deep learning approach. Microb Cell Fact 2024; 23:164. [PMID: 38834993 PMCID: PMC11151596 DOI: 10.1186/s12934-024-02439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Optically active D-amino acids are widely used as intermediates in the synthesis of antibiotics, insecticides, and peptide hormones. Currently, the two-enzyme cascade reaction is the most efficient way to produce D-amino acids using enzymes DHdt and DCase, but DCase is susceptible to heat inactivation. Here, to enhance the enzymatic activity and thermal stability of DCase, a rational design software "Feitian" was developed based on kcat prediction using the deep learning approach. RESULTS According to empirical design and prediction of "Feitian" software, six single-point mutants with high kcat value were selected and successfully constructed by site-directed mutagenesis. Out of six, three mutants (Q4C, T212S, and A302C) showed higher enzymatic activity than the wild-type. Furthermore, the combined triple-point mutant DCase-M3 (Q4C/T212S/A302C) exhibited a 4.25-fold increase in activity (29.77 ± 4.52 U) and a 2.25-fold increase in thermal stability as compared to the wild-type, respectively. Through the whole-cell reaction, the high titer of D-HPG (2.57 ± 0.43 mM) was produced by the mutant Q4C/T212S/A302C, which was about 2.04-fold of the wild-type. Molecular dynamics simulation results showed that DCase-M3 significantly enhances the rigidity of the catalytic site and thus increases the activity of DCase-M3. CONCLUSIONS In this study, an efficient rational design software "Feitian" was successfully developed with a prediction accuracy of about 50% in enzymatic activity. A triple-point mutant DCase-M3 (Q4C/T212S/A302C) with enhanced enzymatic activity and thermostability was successfully obtained, which could be applied to the development of a fully enzymatic process for the industrial production of D-HPG.
Collapse
Affiliation(s)
- Fa Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bo Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feixia Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
- Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, 050024, China.
| |
Collapse
|
4
|
Wang F, Qi H, Li H, Ma X, Gao X, Li C, Lu F, Mao S, Qin HM. State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. Crit Rev Biotechnol 2024; 44:495-513. [PMID: 37160372 DOI: 10.1080/07388551.2023.2193861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 05/11/2023]
Abstract
D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hongbin Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Huimin Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xuanzhen Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Xin Gao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Chao Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Shuhong Mao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| | - Hui-Min Qin
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P.R. China
| |
Collapse
|
5
|
Duan X, Pi Q, Tang L. pH-dependent and whole-cell catalytic decolorization of dyes using recombinant dye-decolorizing peroxidase from Rhodococcus jostii. Bioprocess Biosyst Eng 2024; 47:355-366. [PMID: 38326513 DOI: 10.1007/s00449-024-02968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Dyes in wastewater have adverse effects on the environment and human health. Dye-decolorizing peroxidase (DyP) is a promising biocatalyst to dyes degradation, but the decolorization rates varied greatly which influencing factors and mechanisms remain to be fully disclosed. To explore an effective decolorizing approach, we have studied a DyP from Rhodococcus jostii (RhDyPB) which was overexpressed in Escherichia coli to decolorize four kinds of dyes, Reactive blue 19, Eosin Y, Indigo carmine, and Malachite green. We found the decolorization rates of the dyes by purified RhDyPB were all pH-dependent and the highest one was 94.4% of Malachite green at pH 6.0. ESI-MS analysis of intermediates in the decolorization process of Reactive blue 19 proved the degradation was due to peroxidase catalysis. Molecular docking predicated the interaction of RhDyPB with dyes, and a radical transfer reaction. In addition, we performed decolorization of dyes with whole E. coli cell with and without expressing RhDyPB. It was found that decolorization of dyes by E. coli cell was due to both cell absorption and degradation, and RhDyPB expression improved the degradation rates towards Reactive blue 19, Indigo carmine and Malachite green. The effective decolorization of Malachite green and the successful application of whole DyP-overexpressed cells in dye decolorization is conducive to the bioremediation of dye-containing wastewaters by DyPs.
Collapse
Affiliation(s)
- Xiaoyan Duan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Qian Pi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Lei Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
6
|
Romero EO, Saucedo AT, Hernández-Meléndez JR, Yang D, Chakrabarty S, Narayan ARH. Enabling Broader Adoption of Biocatalysis in Organic Chemistry. JACS AU 2023; 3:2073-2085. [PMID: 37654599 PMCID: PMC10466347 DOI: 10.1021/jacsau.3c00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023]
Abstract
Biocatalysis is becoming an increasingly impactful method in contemporary synthetic chemistry for target molecule synthesis. The selectivity imparted by enzymes has been leveraged to complete previously intractable chemical transformations and improve synthetic routes toward complex molecules. However, the implementation of biocatalysis in mainstream organic chemistry has been gradual to this point. This is partly due to a set of historical and technological barriers that have prevented chemists from using biocatalysis as a synthetic tool with utility that parallels alternative modes of catalysis. In this Perspective, we discuss these barriers and how they have hindered the adoption of enzyme catalysts into synthetic strategies. We also summarize tools and resources that already enable organic chemists to use biocatalysts. Furthermore, we discuss ways to further lower the barriers for the adoption of biocatalysis by the broader synthetic organic chemistry community through the dissemination of resources, demystifying biocatalytic reactions, and increasing collaboration across the field.
Collapse
Affiliation(s)
- Evan O. Romero
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anthony T. Saucedo
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - José R. Hernández-Meléndez
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Di Yang
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Suman Chakrabarty
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alison R. H. Narayan
- Life Sciences Institute & Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Tan Y, Gao C, Song W, Wei W, Liu J, Gao C, Guo L, Chen X, Liu L, Wu J. Rational Design of Meso-Diaminopimelate Dehydrogenase with Enhanced Reductive Amination Activity for Efficient Production of d- p-Hydroxyphenylglycine. Appl Environ Microbiol 2023; 89:e0010923. [PMID: 37070978 PMCID: PMC10231207 DOI: 10.1128/aem.00109-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the pharmaceutical industry. In this study, a tri-enzyme cascade for the production of d-HPG from l-HPG was designed. However, the amination activity of Prevotella timonensis meso-diaminopimelate dehydrogenase (PtDAPDH) toward 4-hydroxyphenylglyoxylate (HPGA) was identified as the rate-limiting step. To overcome this issue, the crystal structure of PtDAPDH was solved, and a "binding pocket and conformation remodeling" strategy was developed to improve the catalytic activity toward HPGA. The best variant obtained, PtDAPDHM4, exhibited a catalytic efficiency (kcat/Km) that was 26.75-fold higher than that of the wild type. This improvement was due to the enlarged substrate-binding pocket and enhanced hydrogen bond networks around the active center; meanwhile, the increased number of interdomain residue interactions drove the conformation distribution toward the closed state. Under optimal transformation conditions, PtDAPDHM4 produced 19.8 g/L d-HPG from 40 g/L racemate DL-HPG in a 3 L fermenter within 10 h, with 49.5% conversion and >99% enantiomeric excess. Our study provides an efficient three-enzyme cascade pathway for the industrial production of d-HPG from racemate DL-HPG. IMPORTANCE d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the synthesis of antimicrobial compounds. d-HPG is mainly produced via chemical and enzymatic approaches, and enzymatic asymmetric amination employing diaminopimelate dehydrogenase (DAPDH) is considered an attractive method. However, the low catalytic activity of DAPDH toward bulky 2-keto acids limits its applications. In this study, we identified a DAPDH from Prevotella timonensis and created a mutant, PtDAPDHM4, which exhibited a catalytic efficiency (kcat/Km) toward 4-hydroxyphenylglyoxylate that was 26.75-fold higher than that of the wild type. The novel strategy developed in this study has practical value for the production of d-HPG from inexpensive racemate DL-HPG.
Collapse
Affiliation(s)
- Yang Tan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Liu Y, Xie N, Yu B. De Novo Biosynthesis of D- p-Hydroxyphenylglycine by a Designed Cofactor Self-Sufficient Route and Co-culture Strategy. ACS Synth Biol 2022; 11:1361-1372. [PMID: 35244401 DOI: 10.1021/acssynbio.2c00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-p-Hydroxyphenylglycine (D-HPG) is an important intermediate for the synthesis of β-lactam antibiotics with an annual market demand of thousands of tons. Currently, the main production processes are via chemical approaches. Although enzymatic conversion has been investigated for D-HPG production, synthesis of the substrate DL-hydroxyphenylhydantoin is still chemically based, which suffers from high pollution and harsh reaction conditions. In this study, one cofactor self-sufficient route for D-HPG production from l-phenylalanine was newly designed and the artificial pathway was functionalized by selecting suitable enzymes and adjusting their expressions in strain Pseudomonas putida KT2440. Notably, a new R-mandelate dehydrogenase from Lactococcus lactis with relatively high activity under pH neutral conditions was successfully mined to demonstrate the biosynthetic pathway in vivo. The performance of the engineered P. putida strain was further increased by enhancing cellular NAD availability and blocking l-phenylalanine consumption. Coupled with the l-phenylalanine producer, Escherichia coli strain ATCC 31884, a stable and interactive co-culture process was also developed by engineering a "cross-link auxotrophic" system to produce D-HPG directly from glucose. Thus, this study is the first approach for the de novo biosynthesis of D-HPG by engineering a non-natural pathway and lays the foundation for further improving the efficiency of D-HPG production via a green and sustainable route.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nengzhong Xie
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Microbial cell surface engineering for high-level synthesis of bio-products. Biotechnol Adv 2022; 55:107912. [PMID: 35041862 DOI: 10.1016/j.biotechadv.2022.107912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 02/08/2023]
Abstract
Microbial cell surface layers, which mainly include the cell membrane, cell wall, periplasmic space, outer membrane, capsules, S-layers, pili, and flagella, control material exchange between the cell and the extracellular environment, and have great impact on production titers and yields of various bio-products synthesized by microbes. Recent research work has made exciting achievements in metabolic engineering using microbial cell surface components as novel regulation targets without direct modifications of the metabolic pathways of the desired products. This review article will summarize the accomplishments obtained in this emerging field, and will describe various engineering strategies that have been adopted in bacteria and yeasts for the enhancement of mass transfer across the cell surface, improvement of protein expression and folding, modulation of cell size and shape, and re-direction of cellular resources, all of which contribute to the construction of more efficient microbial cell factories toward the synthesis of a variety of bio-products. The existing problems and possible future directions will also be discussed.
Collapse
|
10
|
Liu Y, Yasawong M, Yu B. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide. Microb Biotechnol 2021; 14:2581-2591. [PMID: 34310854 PMCID: PMC8601175 DOI: 10.1111/1751-7915.13901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
The β-nicotinamide mononucleotide (NMN) is a key intermediate of an essential coenzyme for cellular redox reactions, NAD. Administration of NMN is reported to improve various symptoms, such as diabetes and age-related physiological decline. Thus, NMN is attracting much attention as a promising nutraceutical. Here, we engineered an Escherichia coli strain to produce NMN from cheap substrate nicotinamide (NAM) and glucose. The supply of in vivo precursor phosphoribosyl pyrophosphate (PRPP) and ATP was enhanced by strengthening the metabolic flux from glucose. A nicotinamide phosphoribosyltransferase with high activity was newly screened, which is the key enzyme for converting NAM to NMN with PRPP as cofactor. Notably, the E. coli endogenous protein YgcS, which function is primarily in the uptake of sugars, was firstly proven to be beneficial for NMN production in this study. Fine-tuning regulation of ygcS gene expression in the engineered E. coli strain increased NMN production. Combined with process optimization of whole-cell biocatalysts reaction, a final NMN titre of 496.2 mg l-1 was obtained.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Montri Yasawong
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- Program on Environmental ToxicologyChulabhorn Graduate InstituteChulabhorn Royal AcademyBangkok10210Thailand
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic EngineeringState Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- China‐Thailand Joint Laboratory on Microbial BiotechnologyBeijingChina
| |
Collapse
|
11
|
Tan X, Zhang S, Song W, Liu J, Gao C, Chen X, Liu L, Wu J. A multi-enzyme cascade for efficient production of D-p-hydroxyphenylglycine from L-tyrosine. BIORESOUR BIOPROCESS 2021; 8:41. [PMID: 38650231 PMCID: PMC10991500 DOI: 10.1186/s40643-021-00394-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
In this study, a four-enzyme cascade pathway was developed and reconstructed in vivo for the production of D-p-hydroxyphenylglycine (D-HPG), a valuable intermediate used to produce β-lactam antibiotics and in fine-chemical synthesis, from L-tyrosine. In this pathway, catalytic conversion of the intermediate 4-hydroxyphenylglyoxalate by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) was identified as the rate-limiting step, followed by application of a mechanism-guided "conformation rotation" strategy to decrease the hydride-transfer distance d(C6HDAP-C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg-1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50-g/L L-tyrosine in 24 h, with 92.5% conversion, 71.5% isolated yield, and > 99% enantiomeric excess in a 3-L fermenter. This four-enzyme cascade provides an efficient enzymatic approach for the industrial production of D-HPG from cheap amino acids.
Collapse
Affiliation(s)
- Xu Tan
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Sheng Zhang
- Zhejiang Tianrui Chemical Co., Ltd, Quzhou, 324400, China
| | - Wei Song
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| |
Collapse
|