1
|
Nakazawa K, Mineo D, Harayama T, Yoshizawa S, Takaichi S, Sugiyama K. Product Speculation from Carotenogenic Gene Cluster of Nonlabens spongiae Genome, and Identification of Myxol and Functional Analysis of Each Gene. Genes (Basel) 2025; 16:202. [PMID: 40004531 PMCID: PMC11855829 DOI: 10.3390/genes16020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Myxol, a monocyclic carotenoid with β- and ψ-end groups, has been identified in only a limited number of bacteria, such as flavobacteria and cyanobacteria. Despite its biological significance, the biosynthetic pathway of myxol is not well understood, and studies on its physiological functions and biological activities are limited because of its rarity. Methods: BLAST homology searches for carotenoid biosynthesis genes in the genome of Nonlabens were performed. The carotenogenesis-related genes in the genome of the marine flavobacteria Nonlabens spongiae were individually cloned and functionally characterized using a heterologous Escherichia coli expression system. Carotenoids from N. spongiae were identified using an LC-MS analysis. Results: We identified a gene cluster involved in carotenoid biosynthesis in the genome of N. spongiae. This cluster includes genes encoding phytoene synthase (CrtB), phytoene desaturase (CrtI), lycopene cyclase (CrtY), carotenoid 1,2-hydratase (CruF), carotenoid 3,4-desaturase (ψ-end group) (CrtD), carotenoid 2-hydroxylase (ψ-end group) (CrtA-OH), and carotene hydro-xylase (CrtZ). Based on the characteristics of these enzymes, the primary products were predicted to be myxol and/or zeaxanthin. A spectroscopic analysis confirmed that myxol was the primary carotenoid. Furthermore, a plasmid containing a reconstructed gene cluster and geranylgeranyl pyrophosphate synthase (CrtE) located outside the cluster was introduced into E. coli. This system predominantly accumulated myxol, indicating that the reconstructed gene cluster enabled efficient myxol production in E. coli. Conclusions: This study highlighted the potential biotechnological applications of the carotenoid biosynthesis gene clusters for myxol production.
Collapse
Affiliation(s)
- Keisuke Nakazawa
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| | - Daiki Mineo
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| | - Takuya Harayama
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| | - Susumu Yoshizawa
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8563, Chiba, Japan;
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa 277-8564, Chiba, Japan
| | - Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Setagaya 156-8502, Tokyo, Japan;
| | - Kenjiro Sugiyama
- Department of Applied Chemistry, School of Advanced Engineering, Kogakuin University, Nakanomachi, Hachioji 192-0015, Tokyo, Japan; (K.N.); (D.M.); (T.H.)
| |
Collapse
|
2
|
Cetnar DP, Hossain A, Vezeau GE, Salis HM. Predicting synthetic mRNA stability using massively parallel kinetic measurements, biophysical modeling, and machine learning. Nat Commun 2024; 15:9601. [PMID: 39505899 PMCID: PMC11541907 DOI: 10.1038/s41467-024-54059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
mRNA degradation is a central process that affects all gene expression levels, though it remains challenging to predict the stability of a mRNA from its sequence, due to the many coupled interactions that control degradation rate. Here, we carried out massively parallel kinetic decay measurements on over 50,000 bacterial mRNAs, using a learn-by-design approach to develop and validate a predictive sequence-to-function model of mRNA stability. mRNAs were designed to systematically vary translation rates, secondary structures, sequence compositions, G-quadruplexes, i-motifs, and RppH activity, resulting in mRNA half-lives from about 20 seconds to 20 minutes. We combined biophysical models and machine learning to develop steady-state and kinetic decay models of mRNA stability with high accuracy and generalizability, utilizing transcription rate models to identify mRNA isoforms and translation rate models to calculate ribosome protection. Overall, the developed model quantifies the key interactions that collectively control mRNA stability in bacterial operons and predicts how changing mRNA sequence alters mRNA stability, which is important when studying and engineering bacterial genetic systems.
Collapse
Affiliation(s)
- Daniel P Cetnar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Ayaan Hossain
- Graduate Program in Bioinformatics and Genomics, The Pennsylvania State University, University Park, PA, USA
| | - Grace E Vezeau
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Howard M Salis
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biological Engineering, The Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Zhao Z, Chen J, Jiang Y, Ci F, Liu T, Li L, Sun Y, Zhang J, Yuwen W. Antheraxanthin: Insights delving from biosynthesis to processing effects. Food Res Int 2024; 194:114879. [PMID: 39232517 DOI: 10.1016/j.foodres.2024.114879] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
Antheraxanthin (C40H56O3) is one of fat-soluble carotenoids belonging to natural pigments. Its chemical structure is based on the unsaturated polyene chain skeleton, with a hydroxy-β-ionone ring and an epoxy-β-ionone ring on each side of the skeleton. It is found in a wide range of plants and photosynthetic bacteria, and external stimuli (high temperature, drought, ozone treatment, etc.) can significantly affect its synthesis. It also, like other carotenoids, exhibits a diverse potential pharmacological profile as well as nutraceutical values. However, it is worth noting that various food processing methods (extrusion, puffing, baking, etc.) and storage conditions for fruits and vegetables have distinct impacts on the bioaccessibility and retention of antheraxanthin. This compilation of antheraxanthin includes sources, biosynthesis, chemical analysis, and processing effects.
Collapse
Affiliation(s)
- Zilong Zhao
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Jing Chen
- College of Environment and Food Engineering, Liuzhou Vocational and Technical University, Liuzhou 545006, China.
| | - Yingxue Jiang
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Fangfang Ci
- Weihai Institute for Food and Drug Control, Weihai 264200, China
| | - Taishan Liu
- College of Chemical Engineering, Northwest University, Xi'an 710000, China
| | - Lei Li
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yingying Sun
- Eastex Industrial Science and Technology Co., Ltd., Langfang 065001, China
| | - Jiangrui Zhang
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| | - Weigang Yuwen
- Xi'an Giant Biotechnology Co., Ltd., Xi'an 710000, China
| |
Collapse
|
4
|
Matsumoto W, Takemura M, Nanaura H, Ami Y, Maoka T, Shindo K, Kurihara S, Misawa N. Carotenoid productivity in human intestinal bacteria Eubacterium limosum and Leuconostoc mesenteroides with functional analysis of their carotenoid biosynthesis genes. ENGINEERING MICROBIOLOGY 2024; 4:100147. [PMID: 39629323 PMCID: PMC11611032 DOI: 10.1016/j.engmic.2024.100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 12/07/2024]
Abstract
The human intestinal microbiota that comprise over 1,000 species thrive in dark and anaerobic environments. They are recognized for the production of diverse low-molecular-weight metabolites crucial to human health and diseases. Carotenoids, low-molecular-weight pigments known for their antioxidative activity, are delivered to humans through oral intake. However, it remains unclear whether human intestinal bacteria biosynthesize carotenoids as part of the in-situ microbiota. In this study, we investigated carotenoid synthesis genes in various human gut and probiotic bacteria. As a result, novel candidates, the crtM and crtN genes, were identified in the carbon monoxide-utilizing gut anaerobe Eubacterium limosum and the lactic acid bacterium Leuconostoc mesenteroides subsp. mesenteroides. These gene candidates were isolated, introduced into Escherichia coli, which synthesized a carotenoid substrate, and cultured aerobically. Structural analysis of the resulting carotenoids revealed that the crtM and crtN gene candidates of E. limosum and L. mesenteroides mediate the production of 4,4'-diaponeurosporene through 15-cis-4,4'-diapophytoene. Evaluation of the crtE-homologous genes in these bacteria indicated their non-functionality for C40-carotenoid production. E. limosum and L. mesenteroides, along with the known carotenogenic lactic acid bacterium Lactiplantibacillus plantarum, were observed to produce no carotenoids under strictly anaerobic conditions. The two lactic acid bacteria synthesized detectable levels of 4,4'-diaponeurosporene under semi-aerobic conditions. The findings highlight that the obligate anaerobe E. limosum retains aerobically functional C30-carotenoid biosynthesis genes, potentially with no immediate self-utility, suggesting an evolutionary direction in carotenoid biosynthesis. (229 words).
Collapse
Affiliation(s)
- Wataru Matsumoto
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Haruka Nanaura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| | - Yuta Ami
- Department of Science and Technology on Food Safety, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Takashi Maoka
- Research Institute for Production Development, Shimogamo-morimotocho, Sakyo-ku, Kyoto 606-0805, Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Shin Kurihara
- Department of Science and Technology on Food Safety, Kinki University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoich-shi 921-8836, Japan
| |
Collapse
|
5
|
Makaranga A, Nesamma AA, Jutur PP. Microbial chassis as the platform for production of dihydroxy xanthophyll-based carotenoids: an overview of recent advances in biomanufacturing. World J Microbiol Biotechnol 2024; 40:197. [PMID: 38722384 DOI: 10.1007/s11274-024-03996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.
Collapse
Affiliation(s)
- Abdalah Makaranga
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Asha Arumugam Nesamma
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Pannaga Pavan Jutur
- Omics of Algae Group, Industrial Biotechnology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
6
|
Wang J, Zhou X, Li K, Wang H, Zhang C, Shi Y, Yao M, Wang Y, Xiao W. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10459-10468. [PMID: 38666490 DOI: 10.1021/acs.jafc.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Xiao Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Kexin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Herong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Chenglong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| |
Collapse
|
7
|
Xinrui D, Bo L, Yihong B, Weifeng L, Yong T. Metabolic engineering of Escherichia coli for high-level production of violaxanthin. Microb Cell Fact 2023; 22:115. [PMID: 37344799 DOI: 10.1186/s12934-023-02098-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Xanthophylls are a large class of carotenoids that are found in a variety of organisms and play particularly important roles in the light-harvesting and photoprotection processes of plants and algae. Violaxanthin is an important plant-derived xanthophyll with wide potential applications in medicines, foods, and cosmetics because of its antioxidant activity and bright yellow color. To date, however, violaxanthins have not been produced using metabolically engineered microbes on a commercial scale. Metabolic engineering for microbial production of violaxanthin is hindered by inefficient synthesis pathway in the heterologous host. We systematically optimized the carotenoid chassis and improved the functional expression of key enzymes of violaxanthin biosynthesis in Escherichia coli. RESULTS Co-overexpression of crtY (encoding lycopene β-cyclase), crtZ (encoding β-carotene 3-hydroxylase), and ZEP (encoding zeaxanthin epoxidase) had a notable impact on their functions, resulting in the accumulation of intermediate products, specifically lycopene and β-carotene. A chassis strain that did not accumulate the intermediate was optimized by several approaches. A promoter library was used to optimize the expression of crtY and crtZ. The resulting strain DZ12 produced zeaxanthin without intermediates. The expression of ZEP was further systematically optimized by using DZ12 as the chassis host. By using a low copy number plasmid and a modified dithiol/disulfide system, and by co-expressing a full electron transport chain, we generated a strain producing violaxanthin at about 25.28 ± 3.94 mg/g dry cell weight with decreased byproduct accumulation. CONCLUSION We developed an efficient metabolically engineered Escherichia coli strain capable of producing a large amount of violaxanthin. This is the first report of a metabolically engineered microbial platform that could be used for the commercial production of violaxanthin.
Collapse
Affiliation(s)
- Dong Xinrui
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang Province, People's Republic of China
- Microcyto Co. Ltd, Beijing, People's Republic of China
| | - Liu Bo
- Microcyto Co. Ltd, Beijing, People's Republic of China.
| | - Bao Yihong
- College of Forestry, Northeast Forestry University, No. 26 Hexing Road, Harbin, 150040, Heilongjiang Province, People's Republic of China.
- Heilongjiang Key Laboratory of Forest Food Resources Utilization, No. 26 Hexing Road, Harbin, 150040, Heilongjiang Province, People's Republic of China.
| | - Liu Weifeng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China.
| | - Tao Yong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing, 100049, People's Republic of China
| |
Collapse
|
8
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Liu M, Ding W, Pan Y, Hu H, Liu J. Zeaxanthin epoxidase is involved in the carotenoid biosynthesis and light-dependent growth of the marine alga Nannochloropsis oceanica. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:74. [PMID: 37138328 PMCID: PMC10157934 DOI: 10.1186/s13068-023-02326-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND The marine alga Nannochloropsis oceanica, an emerging model belonging to Heterokont, is considered as a promising light-driven eukaryotic chassis for transforming carbon dioxide to various compounds including carotenoids. Nevertheless, the carotenogenic genes and their roles in the alga remain less understood and to be further explored. RESULTS Here, two phylogenetically distant zeaxanthin epoxidase (ZEP) genes from N. oceanica (NoZEP1 and NoZEP2) were functionally characterized. Subcellular localization experiment demonstrated that both NoZEP1 and NoZEP2 reside in the chloroplast yet with differential distribution patterns. Overexpression of NoZEP1 or NoZEP2 led to increases of violaxanthin and its downstream carotenoids at the expense of zeaxanthin in N. oceanica, with the extent of changes mediated by NoZEP1 overexpression being greater as compared to NoZEP2 overexpression. Suppression of NoZEP1 or NoZEP2, on the other hand, caused decreases of violaxanthin and its downstream carotenoids as well as increases of zeaxanthin; similarly, the extent of changes mediated by NoZEP1 suppression was larger than that by NoZEP2 suppression. Interestingly, chlorophyll a dropped following violaxanthin decrease in a well-correlated manner in response to NoZEP suppression. The thylakoid membrane lipids including monogalactosyldiacylglycerol also correlated with the violaxanthin decreases. Accordingly, NoZEP1 suppression resulted in more attenuated algal growth than NoZEP2 suppression did under either normal light or high light stage. CONCLUSIONS The results together support that both NoZEP1 and NoZEP2, localized in the chloroplast, have overlapping roles in epoxidating zeaxanthin to violaxanthin for the light-dependent growth, yet with NoZEP1 being more functional than NoZEP2 in N. oceanica. Our study provides implications into the understanding of carotenoid biosynthesis and future manipulation of N. oceanica for carotenoid production.
Collapse
Affiliation(s)
- Meijing Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Wei Ding
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| | - Yufang Pan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Jin Liu
- Laboratory for Algae Biotechnology & Innovation, College of Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
10
|
Xu S, Gao S, An Y. Research progress of engineering microbial cell factories for pigment production. Biotechnol Adv 2023; 65:108150. [PMID: 37044266 DOI: 10.1016/j.biotechadv.2023.108150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023]
Abstract
Pigments are widely used in people's daily life, such as food additives, cosmetics, pharmaceuticals, textiles, etc. In recent years, the natural pigments produced by microorganisms have attracted increased attention because these processes cannot be affected by seasons like the plant extraction methods, and can also avoid the environmental pollution problems caused by chemical synthesis. Synthetic biology and metabolic engineering have been used to construct and optimize metabolic pathways for production of natural pigments in cellular factories. Building microbial cell factories for synthesis of natural pigments has many advantages, including well-defined genetic background of the strains, high-density and rapid culture of cells, etc. Until now, the technical means about engineering microbial cell factories for pigment production and metabolic regulation processes have not been systematically analyzed and summarized. Therefore, the studies about construction, modification and regulation of synthetic pathways for microbial synthesis of pigments in recent years have been reviewed, aiming to provide an up-to-date summary of engineering strategies for microbial synthesis of natural pigments including carotenoids, melanins, riboflavins, azomycetes and quinones. This review should provide new ideas for further improving microbial production of natural pigments in the future.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; College of Food Science, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resources Mining and Molecular Breeding, Shenyang, China; Liaoning Provincial Key Laboratory of Agricultural Biotechnology, Shenyang, China.
| |
Collapse
|
11
|
Higuchi Y, Iha M, Maoka T, Misawa N, Takemura M. Synthetic-biological approach for production of neoxanthin in Escherichia coli. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:15-20. [PMID: 38213917 PMCID: PMC10777127 DOI: 10.5511/plantbiotechnology.22.1130a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2024]
Abstract
Carotenoids are isoprenoid pigments produced typically in plants, algae, and part of bacteria and fungi. Violaxanthin, neoxanthin, and lutein are xanthophylls biosynthesized specifically in land plants and part of algae. Nowadays, it is feasible to produce violaxanthin and lutein in Escherichia coli by pathway engineering, whereas there is no report to synthesize neoxanthin in E. coli. So far, several genes have been reported to code for neoxanthin synthases, e.g., NSY (NXS), ABA4 and VDL, which were assigned to catalyze a reaction for forming neoxanthin from violaxanthin. However, neither gene of these was common in plants or algae that biosynthesize neoxanthin, nor was confirmed by the E. coli complementation system. This study showed that the algal VDL gene (PtVDL1) was functional in recombinant E. coli cells accumulating violaxanthin to produce neoxanthin, whereas the E. coli cells failed to generate neoxanthin, when the NSY or ABA4 gene was introduced there instead of VDL. This result notes that VDL is one of veritable neoxanthin synthase genes.
Collapse
Affiliation(s)
- Yuki Higuchi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Masahiko Iha
- SOUTH PRODUCT Ltd, 5184-71 Katsuren-haebaru, Uruma, Okinawa 904-2311, Japan
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo-morimoto-cho, Sakyo-ku, Kyoto, Kyoto 606-0805, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa 921-8836, Japan
| |
Collapse
|
12
|
Oogo Y, Takemura M, Sakamoto A, Misawa N, Shimada H. Orange protein, phytoene synthase regulator, has protein disulfide reductase activity. PLANT SIGNALING & BEHAVIOR 2022; 17:2072094. [PMID: 35699140 PMCID: PMC9225386 DOI: 10.1080/15592324.2022.2072094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Orange protein (OR) is known to interact with phytoene synthase (PSY) that commits the first step in carotenoid biosynthesis, and functions as a major post-transcriptional regulator on PSY. We here tried to reveal enzymatic characteristics of OR, that is, protein disulfide reductase (PDR) activity of the Arabidopsis thaliana OR protein (AtOR) was analyzed using dieosin glutathione disulfide (Di-E-GSSG) as a substrate. The AtOR part containing only the zinc (Zn)-finger motif was found to show PDR activity, with an apparent Km of 12,632 nM, Kcat of 11.85 min-1, and KcatKm-1 of 15.6 × 103 M-1sec-1. To evaluate the significance of the N-terminal region of AtOR, we examined the kinetic parameters of a fusion protein composed of the N-terminal region and the Zn-finger motif from AtOR. Consequently, the fusion protein had lower values for Km (2,074 nM) and Kcat (3.18 min-1) and higher catalytic efficiency (25.9 × 103 M-1sec-1) than that of only the Zn-finger motif part, suggesting that the N-terminal region of AtOR should be important for substrate affinity and catalytic efficiency of PDR activity. Complementation experiments with E. coli further demonstrated that AtOR containing the N-terminal region and the Zn-finger motif increases phytoene synthase activity of AtPSY especially under reduced circumstances retaining a NADPH- and H+-regeneration system.
Collapse
Affiliation(s)
- Yuto Oogo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Japan
| | - Atsushi Sakamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi-shi, Japan
| | - Hiroshi Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
13
|
Optimal Nitrate Supplementation in Phaeodactylum tricornutum Culture Medium Increases Biomass and Fucoxanthin Production. Foods 2022; 11:foods11040568. [PMID: 35206051 PMCID: PMC8871257 DOI: 10.3390/foods11040568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/31/2022] Open
Abstract
Phaeodactylum tricornutum is a model diatom with numerous potential applications in the industry, including the production of high-value carotenoid pigments such as fucoxanthin. This compound is a potent antioxidant currently extracted mainly from brown macroalgae. Fucoxanthin exhibits several biological properties with well-known beneficial effects in the treatment and prevention of lifestyle-related diseases. P. tricornutum offers a valuable alternative to macroalgae for fucoxanthin production as it has a specific productivity that is 10-fold higher as compared with macroalgae. However, production processes still need to be optimised to become a cost-effective alternative. In this work, we investigated the optimal supplementation of nitrate in a cultivation medium that is currently used for P. tricornutum and how this nitrate concentration affects cell growth and fucoxanthin production. It has previously been shown that the addition of sodium nitrate increases productivity, but optimal conditions were not accurately determined. In this report, we observed that the continuous increase in nitrate concentration did not lead to an increase in biomass and fucoxanthin content, but there was rather a window of optimal values of nitrate that led to maximum growth and pigment production. These results are discussed considering both the scale up for industrial production and the profitability of the process, as well as the implications in the cell’s metabolism and effects in fucoxanthin production.
Collapse
|
14
|
Fordjour E, Mensah EO, Hao Y, Yang Y, Liu X, Li Y, Liu CL, Bai Z. Toward improved terpenoids biosynthesis: strategies to enhance the capabilities of cell factories. BIORESOUR BIOPROCESS 2022; 9:6. [PMID: 38647812 PMCID: PMC10992668 DOI: 10.1186/s40643-022-00493-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/04/2022] [Indexed: 02/22/2023] Open
Abstract
Terpenoids form the most diversified class of natural products, which have gained application in the pharmaceutical, food, transportation, and fine and bulk chemical industries. Extraction from naturally occurring sources does not meet industrial demands, whereas chemical synthesis is often associated with poor enantio-selectivity, harsh working conditions, and environmental pollutions. Microbial cell factories come as a suitable replacement. However, designing efficient microbial platforms for isoprenoid synthesis is often a challenging task. This has to do with the cytotoxic effects of pathway intermediates and some end products, instability of expressed pathways, as well as high enzyme promiscuity. Also, the low enzymatic activity of some terpene synthases and prenyltransferases, and the lack of an efficient throughput system to screen improved high-performing strains are bottlenecks in strain development. Metabolic engineering and synthetic biology seek to overcome these issues through the provision of effective synthetic tools. This review sought to provide an in-depth description of novel strategies for improving cell factory performance. We focused on improving transcriptional and translational efficiencies through static and dynamic regulatory elements, enzyme engineering and high-throughput screening strategies, cellular function enhancement through chromosomal integration, metabolite tolerance, and modularization of pathways.
Collapse
Affiliation(s)
- Eric Fordjour
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Emmanuel Osei Mensah
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yunpeng Hao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Ye Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Chun-Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
- Jiangsu Provincial Research Centre for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China.
| |
Collapse
|
15
|
Misawa N, Maoka T, Takemura M. Carotenoids: Carotenoid and apocarotenoid analysis—Use of E. coli to produce carotenoid standards. Methods Enzymol 2022; 670:87-137. [DOI: 10.1016/bs.mie.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Optimum Parameters for Extracting Three Kinds of Carotenoids from Pepper Leaves by Response Surface Methodology. SEPARATIONS 2021. [DOI: 10.3390/separations8090134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To determine the optimum parameters for extracting three carotenoids including zeaxanthin, lutein epoxide, and violaxanthin from pepper leaves by response surface methodology (RSM), a solvent of acetone and ethyl acetate (1:2) was used to extract carotenoids with four independent factors: ultrasound time (20–60 min); ratio of sample to solvent (1:12–1:4); saponification time (10–50 min); and concentration of saponification solution (KOH–methanol) (10–30%). A second-order polynomial model produced a satisfactory fitting of the experimental data with regard to zeaxanthin (R2 = 75.95%, p < 0.0197), lutein epoxide (R2 = 90.24%, p < 0.0001), and violaxanthin (R2 = 73.84%, p < 0.0809) content. The optimum joint extraction conditions of zeaxanthin, lutein epoxide, and violaxanthin were 40 min, 1:8, 32 min, and 20%, respectively. The optimal predicted contents for zeaxanthin (0.823022 µg/g DW), lutein epoxide (4.03684 µg/g dry; DW—dry weight), and violaxanthin (16.1972 µg/g DW) in extraction had little difference with the actual experimental values obtained under the optimum extraction conditions for each response: zeaxanthin (0.8118 µg/g DW), lutein epoxide (3.9497 µg/g DW), and violaxanthin (16.1590 µg/g DW), which provides a theoretical basis and method for cultivating new varieties at low temperatures and weak light resistance.
Collapse
|
17
|
Takemura M, Sahara T, Misawa N. Violaxanthin: natural function and occurrence, biosynthesis, and heterologous production. Appl Microbiol Biotechnol 2021; 105:6133-6142. [PMID: 34338805 DOI: 10.1007/s00253-021-11452-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022]
Abstract
Violaxanthin is biosynthesized from zeaxanthin with zeaxanthin epoxidase (ZEP) by way of antheraxanthin only in photosynthetic eukaryotes including higher plants and involved in the xanthophyll cycle to eliminate excessive light energy. Violaxanthin and antheraxanthin have commercially been unavailable, in contrast to commercial production of other carotenoids contained in higher plants, e.g., lycopene, β-carotene, lutein, zeaxanthin, β-cryptoxanthin, and capsanthin. One of the reasons is considered that resource plants or other resource organisms do not exist for enabling efficient supply of the epoxy-carotenoids, which are expected to be produced through (metabolic) pathway engineering with heterologous microbial hosts such as Escherichia coli and Saccharomyces cerevisiae. In this Mini-Review, we show heterologous production of violaxanthin with the two microorganisms that have exhibited significant advances these days. We further describe natural function and occurrence, and biosynthesis involving violaxanthin, antheraxanthin, and their derivatives that include auroxanthin and mutatoxanthin. KEY POINTS: • A comprehensive review on epoxy-carotenoids violaxanthin and antheraxanthin. • Pathway engineering for the epoxy-carotenoids in heterologous microbes. • Our new findings on violaxanthin production with the budding yeast.
Collapse
Affiliation(s)
- Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi-shi, 921-8836, Japan
| | - Takehiko Sahara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba-shi, 305-8566, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308, Suematsu, Nonoichi-shi, 921-8836, Japan.
| |
Collapse
|
18
|
Ferraz CA, Leferink NGH, Kosov I, Scrutton NS. Isopentenol Utilization Pathway for the Production of Linalool in Escherichia coli Using an Improved Bacterial Linalool/Nerolidol Synthase. Chembiochem 2021; 22:2325-2334. [PMID: 33938632 PMCID: PMC8362072 DOI: 10.1002/cbic.202100110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/02/2021] [Indexed: 11/24/2022]
Abstract
Linalool is a monoterpenoid used as a fragrance ingredient, and is a promising source for alternative fuels. Synthetic biology offers attractive alternative production methods compared to extraction from natural sources and chemical synthesis. Linalool/nerolidol synthase (bLinS) from Streptomyces clavuligerus is a bifunctional enzyme, producing linalool as well as the sesquiterpenoid nerolidol when expressed in engineered Escherichia coli harbouring a precursor terpenoid pathway such as the mevalonate (MVA) pathway. Here we identified two residues important for substrate selection by bLinS, L72 and V214, where the introduction of bulkier residues results in variants with reduced nerolidol formation. Terpenoid production using canonical precursor pathways is usually limited by numerous and highly regulated enzymatic steps. Here we compared the canonical MVA pathway to the non-canonical isopentenol utilization (IU) pathway to produce linalool using the optimised bLinS variant. The IU pathway uses isoprenol and prenol to produce linalool in only five steps. Adjusting substrate, plasmid system, inducer concentration, and cell strain directs the flux towards monoterpenoids. Our integrated approach, combining enzyme engineering with flux control using the artificial IU pathway, resulted in high purity production of the commercially attractive monoterpenoid linalool, and will guide future efforts towards efficient optimisation of terpenoid production in engineered microbes.
Collapse
Affiliation(s)
- Clara A. Ferraz
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicole G. H. Leferink
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
- Future Biomanufacturing Research HubManchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Iaroslav Kosov
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
- Future Biomanufacturing Research HubManchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
19
|
Takemura M, Maoka T, Koyanagi T, Kawase N, Nishida R, Tsuchida T, Hironaka M, Ueda T, Misawa N. Elucidation of the whole carotenoid biosynthetic pathway of aphids at the gene level and arthropodal food chain involving aphids and the red dragonfly. BMC ZOOL 2021; 6:19. [PMID: 37170139 PMCID: PMC10127341 DOI: 10.1186/s40850-021-00082-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/29/2021] [Indexed: 02/01/2023] Open
Abstract
Abstract
Background
Aphids can be positioned as robust pest insects in farming and as ones of the model organisms for arthropods in molecular biology. Carotenoids are pigments that protect organisms from photooxidative damage caused by excessive light. Aphids were shown to possess genes of fungal origin for carotenoid biosynthesis, whereas a little knowledge was available about the functions of the genes and the biosynthetic pathway. Even carotenoid species contained in aphids were not enough understood. Main purpose of this study is to clarify these insufficient findings.
Results
The whole carotenoid biosynthetic pathway of the pea aphid (Acyrthosiphon pisum) was elucidated at the gene level, through comprehensive functional analysis of its carotenogenic genes, using Escherichia coli that synthesized carotenoid substrates, along with structural and quantitative analysis of carotenoids from various aphid species. Four genes were needed to synthesize all carotenoids accumulated in aphids from geranylgeranyl diphosphate. The tor gene mediated desaturation reaction from phytoene to 3,4-didehydrolycopene. It was revealed that a gene designated ApCrtYB3, which was considered to have functionally evolved in aphids, can convert lycopene into uncommon carotenoids with the γ-ring such as (6′S)-β,γ-carotene and γ,γ-carotene. We further demonstrated that the atypical carotenoids work as ecological indicators for estimating the food chain from aphids to predatory arthropods, and showed that aphids contributed with significant levels to the food chain from insect herbivores to several predatory arthropods, i.e., the red dragonfly (Sympetrum frequens; adults), seven-spotted ladybird (Coccinella septempunctata), and two spiders, Oxyopes sertatus and Nephila clavata. Gut microflora of the dragonfly (mature adults) was also found to include endosymbiotic bacteria such as Serratia symbiotica specific to the black bean aphid (Aphis fabae).
Conclusions
We revealed the whole carotenoid biosynthetic pathway of aphids, including functional identification of the corresponding genes. Subsequently, we showed that arthropodal food chain can be estimated using the uncommon carotenoids of aphids as ecological indicators. This result indicated that aphids made significant contributions to the food chain of several predatory arthropods including the red-dragonfly adults. Aphids are likely to be positioned as an important “phytochemicals” source for some predatory insects and arachnids, which are often active under bright sunlight.
Collapse
|
20
|
Furubayashi M, Kubo A, Takemura M, Otani Y, Maoka T, Terada Y, Yaoi K, Ohdan K, Misawa N, Mitani Y. Capsanthin Production in Escherichia coli by Overexpression of Capsanthin/Capsorubin Synthase from Capsicum annuum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5076-5085. [PMID: 33890772 DOI: 10.1021/acs.jafc.1c00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Capsanthin, a characteristic red carotenoid found in the fruits of red pepper (Capsicum annuum), is widely consumed as a food and a functional coloring additive. An enzyme catalyzing capsanthin synthesis was identified as capsanthin/capsorubin synthase (CCS) in the 1990s, but no microbial production of capsanthin has been reported. We report here the first successful attempt to biosynthesize capsanthin in Escherichia coli by carotenoid-pathway engineering. Our initial attempt to coexpress eight enzyme genes required for capsanthin biosynthesis did not detect the desired product. The dual activity of CCS as a lycopene β-cyclase as well as a capsanthin/capsorubin synthase likely complicated the task. We demonstrated that a particularly high expression level of the CCS gene and the minimization of byproducts by regulating the seven upstream carotenogenic genes were crucial for capsanthin formation in E. coli. Our results provide a platform for further study of CCS activity and capsanthin production in microorganisms.
Collapse
Affiliation(s)
- Maiko Furubayashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido 062-8517, Japan
| | - Akiko Kubo
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka 555-8502, Japan
| | - Miho Takemura
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Yuko Otani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido 062-8517, Japan
| | - Takashi Maoka
- Division of Food Function and Chemistry, Research Institute for Production Development, Kyoto 606-0805, Japan
| | - Yoshinobu Terada
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka 555-8502, Japan
| | - Katsuro Yaoi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Kohji Ohdan
- Institute of Health Sciences, Ezaki Glico Co., Ltd., Osaka 555-8502, Japan
| | - Norihiko Misawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa 921-8836, Japan
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hokkaido 062-8517, Japan
| |
Collapse
|
21
|
When Carotenoid Biosynthesis Genes Met Escherichia coli : The Early Days and These Days. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33783740 DOI: 10.1007/978-981-15-7360-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Nowadays, carotenoid biosynthetic pathways are sufficiently elucidated at gene levels in bacteria, fungi, and higher plants. Also, in pathway engineering for isoprenoid (terpene) production, carotenoids have been one of the most studied targets. However, in 1988 when the author started carotenoid research, almost no carotenoid biosynthesis genes were identified. It was because carotenogenic enzymes are easily inactivated when extracted from their organism sources, indicating that their purification and the subsequent cloning of the corresponding genes were infeasible or difficult. On the other hand, natural product chemistry of carotenoids had advanced a great deal. Thus, those days, carotenoid biosynthetic pathways had been proposed based mainly on the chemical structures of carotenoids without findings on relevant enzymes and genes. This chapter shows what happened on carotenoid research, when carotenoid biosynthesis genes met non-carotenogenic Escherichia coli around 1990, followed by subsequent developments.
Collapse
|
22
|
Cataldo VF, Arenas N, Salgado V, Camilo C, Ibáñez F, Agosin E. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae. Metab Eng 2020; 59:53-63. [PMID: 32001334 DOI: 10.1016/j.ymben.2020.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/16/2019] [Accepted: 01/18/2020] [Indexed: 12/28/2022]
Abstract
Microbial production of carotenoids has mainly focused towards a few products, such as β-carotene, lycopene and astaxanthin. However, other less explored carotenoids, like violaxanthin, have also shown unique properties and promissory applications. Violaxanthin is a plant-derived epoxidated carotenoid with strong antioxidant activity and a key precursor of valuable compounds, such as fucoxanthin and β-damascenone. In this study, we report for the first time the heterologous production of epoxycarotenoids in yeast. We engineered the yeast Saccharomyces cerevisiae following multi-level strategies for the efficient accumulation of violaxanthin. Starting from a β-carotenogenic yeast strain, we first evaluated the performance of several β-carotene hydroxylases (CrtZ), and zeaxanthin epoxidases (ZEP) from different species, together with their respective N-terminal truncated variants. The combined expression of CrtZ from Pantoea ananatis and truncated ZEP of Haematococcus lacustris showed the best performance and led to a yield of 1.6 mg/gDCW of violaxanthin. Further improvement of the epoxidase activity was achieved by promoting the transfer of reducing equivalents to ZEP by expressing several redox partner systems. The co-expression of the plant truncated ferredoxin-3, and truncated root ferredoxin oxidoreductase-1 resulted in a 2.2-fold increase in violaxanthin yield (3.2 mg/gDCW). Finally, increasing gene copy number of carotenogenic genes enabled reaching a final production of 7.3 mg/gDCW in shake flask cultures and batch bioreactors, which is the highest yield of microbially produced violaxanthin reported to date.
Collapse
Affiliation(s)
- Vicente F Cataldo
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Natalia Arenas
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Valeria Salgado
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Conrado Camilo
- Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Francisco Ibáñez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile; Centro de Aromas y Sabores, DICTUC S.A., Santiago, Chile, Postal Address: Av. Vicuña Mackenna 4860, 7820436, Santiago, Chile.
| |
Collapse
|