1
|
Zhou G, Zhou Z, Feng D, Fan W, Luo Q, Lu X. Rich analytic toolbox for the exploration, characterization, screening, and application studies of ω-transaminases. Biotechnol Adv 2025; 82:108597. [PMID: 40349807 DOI: 10.1016/j.biotechadv.2025.108597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/18/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Omega-transaminases (ωTAs) constitute an important class of biocatalysts in the pharmaceutical, agrochemical, and fine chemical industries, because of their generally good performance in the efficient, enantiospecific, and environment-friendly synthesis of chiral amines that possess diverse chemical structures and biological activities. However, their practical applications are often hindered by unfavorable reaction equilibria, product inhibition, limited robustness, and relatively small accommodation for substrates. Many efforts, including the exploration of novel enzymes from various environments and the targeted engineering of identified enzymes, have been made to develop more specific and efficient ωTA catalysts. A simple, rapid, and accurate evaluation of enzyme activity is important. In addition to the classic chromatography-based methods, to date, at least 18 analytic methods, which are based on cell growth or colorimetry/spectrophotometry, pH, fluorescence and conductivity changes, have been developed and applied in both qualitative and quantitative analyses of ωTAs. These methods differ in terms of their principles, accuracy, throughput, simplicity, and cost-effectiveness. Here, we present a detailed examination of the advantages and drawbacks of these methods. Guidance for method selection from the perspective of practical applications is proposed to assist investigators in choosing appropriate methods according to different research purposes and existing conditions.
Collapse
Affiliation(s)
- Guan Zhou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Zewei Zhou
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; School of Biological Science and Technology, University of Jinan, Nanxinzhuang West Road 336, Ji'nan 250022, China
| | - Dandan Feng
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China
| | - Wenrui Fan
- National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
| | - Quan Luo
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Wenhai Middle Rd 168, Qingdao 266237, China.
| |
Collapse
|
2
|
Ouyang B, Wang G, Hu Z, Liu Q, Zhao W, Zhao X. A novel directed evolution approach for co-evolution of β-glucosidase activity and organic acid tolerance. J Biotechnol 2025; 401:1-10. [PMID: 39983995 DOI: 10.1016/j.jbiotec.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/04/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
Directed evolution is a potent tool for protein engineering; however, Error-prone PCR and DNA Shuffling often lead to a high frequency of negative and reverse mutations, especially in the case of large genes. This study introduces two innovative techniques to tackle these challenges: Segmental error-prone PCR (SEP) and Directed DNA shuffling (DDS). SEP involves averagely dividing large genes into small fragments, independently and randomly mutagenizing them in vitro, and reassembling them as well as other unmutated fragments in Saccharomyces cerevisiae. DDS selectively amplifies mutated fragments of positive variants from SEP and reassembles them in S. cerevisiae to produce complete genes with cumulative positive mutations. We have used these two techniques to simultaneously improve the activity of β-glucosidase and its tolerance to organic acids, which validates the effectiveness and feasibility of the approach.
Collapse
Affiliation(s)
- Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China; Shenzhen Longgang Buji High School, Shenzhen 518123, China
| | - Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Wenwen Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
3
|
Li G, Facchini PJ. New frontiers in the biosynthesis of psychoactive specialized metabolites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102626. [PMID: 39288539 DOI: 10.1016/j.pbi.2024.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
The recent relaxation of psychedelic drug regulations has prompted extensive clinical investigation into their potential use to treat diverse mental health conditions including anxiety, depression, post-traumatic stress, and substance-abuse disorders. Most clinical trials have relied on a small number of known molecules found in nature, such as psilocybin, or long-known synthetic analogs of natural metabolites, including lysergic acid diethylamide (LSD). Elucidation of biosynthetic pathways leading to several psychedelic compounds has established an opportunity to use synthetic biology as a complement to synthetic chemistry for the preparation of novel derivatives with potentially superior pharmacological properties compared with known drugs. Herein we review the metabolic biochemistry of pathways from plants, fungi and animals that yield the medicinally important hallucinogenic specialized metabolites ibogaine, mescaline, psilocybin, lysergic acid, and N,N-dimethyltryptamine (DMT). We also summarize the reconstitution of these pathways in microorganisms and comment on the integration of native and non-native enzymes to prepare novel derivatives.
Collapse
Affiliation(s)
- Ginny Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Peter J Facchini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
4
|
Krug L, Bjarnesen D, Lanza L, Lindemann L, Fessner ND, Müller M. Identification of Kibdelomycin and Related Biosynthetic Gene Clusters and Characterization of the C-Branching of Amycolose. Angew Chem Int Ed Engl 2024; 63:e202403535. [PMID: 38951114 DOI: 10.1002/anie.202403535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Many bacterial natural products contain C-branched sugars, including components from the outer cell wall or antibiotically active metabolites. The enzymatic C-branching of keto sugars leading to longer side chains (≥C2) is catalyzed by thiamine diphosphate (ThDP)-dependent enzymes. Chiral tertiary α-hydroxy ketones are formed in this process. The ThDP-dependent enzymes that catalyze C-branching reactions belong to one of three enzymatic superfamilies: decarboxylases, transketolases, and α-ketoacid dehydrogenases 2, but branching of keto sugars has only been demonstrated for decarboxylases. In this study, we showed that an α-ketoacid dehydrogenase is responsible for C-branching of the deoxyketo sugar amycolose in the biosynthesis of kibdelomycin in Kibdelosporangium sp. MA7385. In addition, we characterized an amino transferase in the same biosynthetic gene cluster (BGC) that accepts a sterically demanding tertiary α-hydroxy ketone in a downstream reaction. Subsequently, we identified approximately 400 similar BGCs in silico, suggesting that there is a large diversity of possible ThDP-dependent enzymes catalyzing the C-branching of keto sugars and subsequent modifications.
Collapse
Affiliation(s)
- Leonhard Krug
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Daniela Bjarnesen
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lucrezia Lanza
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lucia Lindemann
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Nico D Fessner
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
5
|
Luo Q, Zhou G, Li Z, Dong J, Zhao H, Xu H, Lu X. ω-transaminase-catalyzed synthesis of (R)-2-(1-aminoethyl)-4-fluorophenol, a chiral intermediate of novel anti-tumor drugs. Enzyme Microb Technol 2024; 175:110406. [PMID: 38330706 DOI: 10.1016/j.enzmictec.2024.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
The chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol has attracted increasing attentions in recent years in the field of pharmaceuticals because of its important use as a building block in the synthesis of novel anti-tumor drugs targeting tropomyosin receptor kinases. In the present study, a ω-transaminase (ωTA) library consisting of 21 (R)-enantioselective enzymes was constructed and screened for the asymmetric biosynthesis of (R)-2-(1-aminoethyl)-4-fluorophenol from its prochiral ketone. Using (R)-α-methylbenzylamine, D-alanine, or isopropylamine as amino donor, 18 ωTAs were identified with target activity and the enzyme AbTA, which was originally identified from Arthrobacter sp. KNK168, was found to be a potent candidate. The E. coli whole cells expressing AbTA could be used as catalysts. The optimal temperature and pH for the activity were 35-40 °C and pH8.0, respectively. Simple alcohols (such as ethanol, isopropanol, and methanol) and dimethyl sulfoxide were shown to be good cosolvents. High activities were detected when using ethanol and dimethyl sulfoxide at the concentrations of 5-20%. In the scaled-up reaction of 1-liter containing 13 mM ketone substrate, about 50% conversion was achieved in 24 h. 6.4 mM (R)-2-(1-aminoethyl)-4-fluorophenol was generated. After a simple and efficient process of product isolation and purification (with 98.8% recovery), 0.986 g yellowish powder of the product (R)-2-(1-aminoethyl)-4-fluorophenol with high (R)-enantiopurity (up to 100% enantiomeric excess) was obtained. This study established an overall process for the biosynthesis of the high value pharmaceutical chiral amine (R)-2-(1-aminoethyl)-4-fluorophenol by ωTA. Its applicable potential was exemplified by gram-scale production.
Collapse
Affiliation(s)
- Quan Luo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China
| | - Guan Zhou
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Zhongxia Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; College of Life Science and Technology, Harbin Normal University, Shida Rd 1, Harbin 150025, China
| | - Jiangpeng Dong
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Hang Zhao
- Sphinx Scientific Laboratory (Tianjin) Co., Ltd., No. 80 Haiyun Street, Tianjin 300457, China
| | - Huifang Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China.
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Rd 189, Qingdao 266101, China; Shandong Energy Institute, Songling Rd 189, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Songling Rd 189, Qingdao 266101, China; Marine Biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 168, Qingdao 266237, China.
| |
Collapse
|
6
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
7
|
Liu HL, Yi PH, Wu JM, Cheng F, Liu ZQ, Jin LQ, Xue YP, Zheng YG. Identification of a novel thermostable transaminase and its application in L-phosphinothricin biosynthesis. Appl Microbiol Biotechnol 2024; 108:184. [PMID: 38289384 PMCID: PMC10827958 DOI: 10.1007/s00253-024-13023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.
Collapse
Affiliation(s)
- Han-Lin Liu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu-Hong Yi
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Min Wu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Cheng
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Li-Qun Jin
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Ya-Ping Xue
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Guo Zheng
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
8
|
Verma S, Paliwal S. Recent Developments and Applications of Biocatalytic and Chemoenzymatic Synthesis for the Generation of Diverse Classes of Drugs. Curr Pharm Biotechnol 2024; 25:448-467. [PMID: 37885105 DOI: 10.2174/0113892010238984231019085154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Biocatalytic and chemoenzymatic biosynthesis are powerful methods of organic chemistry that use enzymes to execute selective reactions and allow the efficient production of organic compounds. The advantages of these approaches include high selectivity, mild reaction conditions, and the ability to work with complex substrates. The utilization of chemoenzymatic techniques for the synthesis of complicated compounds has lately increased dramatically in the area of organic chemistry. Biocatalytic technologies and modern synthetic methods are utilized synergistically in a multi-step approach to a target molecule under this paradigm. Chemoenzymatic techniques are promising for simplifying access to essential bioactive compounds because of the remarkable regio- and stereoselectivity of enzymatic transformations and the reaction diversity of modern organic chemistry. Enzyme kits may include ready-to-use, reproducible biocatalysts. Its use opens up new avenues for the synthesis of active therapeutic compounds and aids in drug development by synthesizing active components to construct scaffolds in a targeted and preparative manner. This study summarizes current breakthroughs as well as notable instances of biocatalytic and chemoenzymatic synthesis. To assist organic chemists in the use of enzymes for synthetic applications, it also provides some basic guidelines for selecting the most appropriate enzyme for a targeted reaction while keeping aspects like cofactor requirement, solvent tolerance, use of whole cell or isolated enzymes, and commercial availability in mind.
Collapse
Affiliation(s)
- Swati Verma
- Department of Pharmacy, ITS College of Pharmacy, Muradnagar, Ghaziabad, India
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| |
Collapse
|
9
|
Zhu FY, Huang MY, Zheng K, Zhang XJ, Cai X, Huang LG, Liu ZQ, Zheng YG. Designing a novel (R)-ω-transaminase for asymmetric synthesis of sitagliptin intermediate via motif swapping and semi-rational design. Int J Biol Macromol 2023; 253:127348. [PMID: 37820904 DOI: 10.1016/j.ijbiomac.2023.127348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The application of (R)-ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by inadequate stereoselectivity and narrow substrate spectrum. Herein, an effective evolution strategy for (R)-ω-transaminase designing for the asymmetric synthesis of sitagliptin intermediate is presented. Since natural transaminases lack activity toward bulky prositagliptin ketone, transaminase scaffolds with catalytic machinery and activity toward the truncated prositagliptin ketone were firstly screened based on substrate walking principle. A transaminase chimera was established synchronously conferring catalytic activity and (R)-selectivity toward prositagliptin ketone through motif swapping, followed by stepwise evolution. The process resulted in a "best" engineered variant MwTAM8, which exhibited 79.2-fold higher activity than the chimeric scaffold MwTAMc. Structural analysis revealed that the heightened activity is mainly due to the enlarged and adaptive substrate pocket and tunnel. The novel (R)-transaminase exhibited unsatisfied industrial operation stability, which is expected to further modify the protein to enhance its tolerance to temperature, pH, and organic solvents to meet sustainable industrial demands. This study underscores a useful evolution strategy of engineering biocatalysts to confer new properties and functions on enzymes for synthesizing high-value drug intermediates.
Collapse
Affiliation(s)
- Fang-Ying Zhu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Meng-Yu Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ken Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao-Jian Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
10
|
Li G, Jia L, Wang K, Sun T, Huang J. Prediction of Thermostability of Enzymes Based on the Amino Acid Index (AAindex) Database and Machine Learning. Molecules 2023; 28:8097. [PMID: 38138586 PMCID: PMC10746113 DOI: 10.3390/molecules28248097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The combination of wet-lab experimental data on multi-site combinatorial mutations and machine learning is an innovative method in protein engineering. In this study, we used an innovative sequence-activity relationship (innov'SAR) methodology based on novel descriptors and digital signal processing (DSP) to construct a predictive model. In this paper, 21 experimental (R)-selective amine transaminases from Aspergillus terreus (AT-ATA) were used as an input to predict higher thermostability mutants than those predicted using the existing data. We successfully improved the coefficient of determination (R2) of the model from 0.66 to 0.92. In addition, root-mean-squared deviation (RMSD), root-mean-squared fluctuation (RMSF), solvent accessible surface area (SASA), hydrogen bonds, and the radius of gyration were estimated based on molecular dynamics simulations, and the differences between the predicted mutants and the wild-type (WT) were analyzed. The successful application of the innov'SAR algorithm in improving the thermostability of AT-ATA may help in directed evolutionary screening and open up new avenues for protein engineering.
Collapse
Affiliation(s)
- Gaolin Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Lili Jia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| |
Collapse
|
11
|
Burkhardt C, Baruth L, Neele Meyer-Heydecke, Klippel B, Margaryan A, Paloyan A, Panosyan HH, Antranikian G. Mining thermophiles for biotechnologically relevant enzymes: evaluating the potential of European and Caucasian hot springs. Extremophiles 2023; 28:5. [PMID: 37991546 PMCID: PMC10665251 DOI: 10.1007/s00792-023-01321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 11/23/2023]
Abstract
The development of sustainable and environmentally friendly industrial processes is becoming very crucial and demanding for the rapid implementation of innovative bio-based technologies. Natural extreme environments harbor the potential for discovering and utilizing highly specific and efficient biocatalysts that are adapted to harsh conditions. This review focuses on extremophilic microorganisms and their enzymes (extremozymes) from various hot springs, shallow marine vents, and other geothermal habitats in Europe and the Caucasus region. These hot environments have been partially investigated and analyzed for microbial diversity and enzymology. Hotspots like Iceland, Italy, and the Azores harbor unique microorganisms, including bacteria and archaea. The latest results demonstrate a great potential for the discovery of new microbial species and unique enzymes that can be explored for the development of Circular Bioeconomy.Different screening approaches have been used to discover enzymes that are active at extremes of temperature (up 120 °C), pH (0.1 to 11), high salt concentration (up to 30%) as well as activity in the presence of solvents (up to 99%). The majority of published enzymes were revealed from bacterial or archaeal isolates by traditional activity-based screening techniques. However, the latest developments in molecular biology, bioinformatics, and genomics have revolutionized life science technologies. Post-genomic era has contributed to the discovery of millions of sequences coding for a huge number of biocatalysts. Both strategies, activity- and sequence-based screening approaches, are complementary and contribute to the discovery of unique enzymes that have not been extensively utilized so far.
Collapse
Affiliation(s)
- Christin Burkhardt
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Leon Baruth
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Neele Meyer-Heydecke
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Barbara Klippel
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany
| | - Armine Margaryan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Ani Paloyan
- Scientific and Production Center, "Armbiotechnology" NAS RA, 14 Gyurjyan Str. 0056, Yerevan, Armenia
| | - Hovik H Panosyan
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
- Research Institute of Biology, Yerevan State University, Alex Manoogian 1, 0025, Yerevan, Armenia
| | - Garabed Antranikian
- Institute of Technical Biocatalysis, Center for Biobased Solutions, Hamburg University of Technology, Am Schwarzenberg-Campus 4, 21073, Hamburg, Germany.
| |
Collapse
|
12
|
Wang H, Masuku MV, Tao Y, Yang J, Kuang Y, Lyu C, Huang J, Yang S. Improved Stability and Catalytic Efficiency of ω-Transaminase in Aqueous Mixture of Deep Eutectic Solvents. Molecules 2023; 28:molecules28093895. [PMID: 37175305 PMCID: PMC10180074 DOI: 10.3390/molecules28093895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The efficient biosynthesis of chiral amines at an industrial scale to meet the high demand from industries that require chiral amines as precursors is challenging due to the poor stability and low catalytic efficiency of ω-transaminases (ω-TAs). Herein, this study adopted a green and efficient solvent engineering method to explore the effects of various aqueous solutions of deep eutectic solvents (DESs) as cosolvents on the catalytic efficiency and stability of ω-TA. Binary- and ternary-based DESs were used as cosolvents in enhancing the catalytic activity and stability of a ω-TA variant from Aspergillus terreus (E133A). The enzyme exhibited a higher catalytic activity in a ternary-based DES that was 2.4-fold higher than in conventional buffer. Moreover, the thermal stability was enhanced by a magnitude of 2.7, with an improvement in storage stability. Molecular docking studies illustrated that the most potent DES established strong hydrogen bond interactions with the enzyme's amino acid, which enhanced the catalytic efficiency and improved the stability of the ω-TA. Molecular docking is essential in designing DESs for a specific enzyme.
Collapse
Affiliation(s)
- Hongpeng Wang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Mercy Vimbai Masuku
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yachen Tao
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiayao Yang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Yi Kuang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| | - Changjiang Lyu
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jun Huang
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shengxiang Yang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
13
|
Tang K, Dong J, Zheng Z, Zhang T, Pan H, Jia H, Li Y, Wei P. The rapid high-throughput screening of ω-transaminases via a colorimetric method using aliphatic α-diketones as amino acceptors. Anal Bioanal Chem 2023; 415:1733-1740. [PMID: 36840810 DOI: 10.1007/s00216-023-04573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/26/2023]
Abstract
ω-Transaminases (ω-TAs) are widely available for the production of chiral amines and unnatural amino acids. Herein, a rapid spectrophotometric method was developed for screening ω-TAs based on the colored products that can be generated from transamination reactions between aliphatic α-diketones and amino donors catalyzed by ω-TAs. The possible mechanism of the formation of the colored product was investigated according to LC-Q-TOF-MS analysis. Among seven diketones, 2,3-butanedione was selected as the most suitable amino acceptor for colorimetric screening of ω-TAs with high efficiency, high sensitivity, and low background interference. Meanwhile, the absorbance of the colored product generated by 2,3-butanedione catalyzed by ω-TAs in this method was linearly correlated with the results by HPLC analysis. This method was also confirmed to effectively screen ω-TA mutants with high activity towards isopropylamine.
Collapse
Affiliation(s)
- Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jiacheng Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Zhengheng Zheng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
14
|
Fan F, Liu C, Cao J, Lyu C, Qiu S, Hu S, Sun T, Mei J, Wang H, Li Y, Zhao W, Mei L, Huang J. Turning thermostability of Aspergillus terreus (R)-selective transaminase At-ATA by synthetic shuffling. J Biotechnol 2023; 364:66-74. [PMID: 36708998 DOI: 10.1016/j.jbiotec.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
As versatile and green biocatalysts for the asymmetric amination of ketones, the insufficient thermostability of transaminases always limits its broad application in the pharmaceutical and fine chemical industries. Here, synthetic shuffling technology was used to enhance stability of (R)-selective transaminase from Aspergillus terreus. The results showed that 30 out of 5000 mutants had improved thermostability by color-based screening method, among which mutants with residual enzyme activity higher than 50% at 45 °C for 10 min were selected for further analysis. Especially, the half-inactivation temperature (T5010), half-life (t1/2), and melting temperature (Tm) of the best mutant M14 (M280C-H210N-M150C-F115L) were 13.7 °C, 165.8 min, and 13.9 °C higher than that of the wild type (WT), respectively. M14 also exhibited a significant biocatalytic efficiency toward acetophenone and 1-acetylnaphthalene, the yield of which were 265.6% and 117.5% higher than WT, respectively. Based on molecular dynamics simulation, improved catalytic efficiency of M14 could be attributed to its increased hydrogen bonds interaction around the mutation sites. Additionally, the introduction of disulfide bond combined with above mutations has a synergistic effect on the improved protein thermostability.
Collapse
Affiliation(s)
- Fangfang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunyan Liu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaren Cao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Changjiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaqi Mei
- Hangzhou Huadong Medicine Group Co. Ltd, Hangzhou 310011, China
| | - Hongpeng Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ye Li
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Lehe Mei
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China; Jinhua Advanced Research Institute, Jinhua 321019, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
15
|
Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess Biosyst Eng 2023; 46:207-225. [PMID: 36463332 DOI: 10.1007/s00449-022-02824-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.
Collapse
|
16
|
de Raad M, Koper K, Deng K, Bowen BP, Maeda HA, Northen TR. Mass spectrometry imaging-based assays for aminotransferase activity reveal a broad substrate spectrum for a previously uncharacterized enzyme. J Biol Chem 2023; 299:102939. [PMID: 36702250 PMCID: PMC9957770 DOI: 10.1016/j.jbc.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Aminotransferases (ATs) catalyze pyridoxal 5'-phosphate-dependent transamination reactions between amino donor and keto acceptor substrates and play central roles in nitrogen metabolism of all organisms. ATs are involved in the biosynthesis and degradation of both proteinogenic and nonproteinogenic amino acids and also carry out a wide variety of functions in photorespiration, detoxification, and secondary metabolism. Despite the importance of ATs, their functionality is poorly understood as only a small fraction of putative ATs, predicted from DNA sequences, are associated with experimental data. Even for characterized ATs, the full spectrum of substrate specificity, among many potential substrates, has not been explored in most cases. This is largely due to the lack of suitable high-throughput assays that can screen for AT activity and specificity at scale. Here we present a new high-throughput platform for screening AT activity using bioconjugate chemistry and mass spectrometry imaging-based analysis. Detection of AT reaction products is achieved by forming an oxime linkage between the ketone groups of transaminated amino donors and a probe molecule that facilitates mass spectrometry-based analysis using nanostructure-initiator mass spectrometry or MALDI-mass spectrometry. As a proof-of-principle, we applied the newly established method and found that a previously uncharacterized Arabidopsis thaliana tryptophan AT-related protein 1 is a highly promiscuous enzyme that can utilize 13 amino acid donors and three keto acid acceptors. These results demonstrate that this oxime-mass spectrometry imaging AT assay enables high-throughput discovery and comprehensive characterization of AT enzymes, leading to an accurate understanding of the nitrogen metabolic network.
Collapse
Affiliation(s)
- Markus de Raad
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | - Kaan Koper
- Department of Botany, University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Kai Deng
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA; Sandia National Laboratories, Livermore, California, USA
| | - Benjamin P Bowen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison; Madison, Wisconsin, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA; Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA; Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
17
|
Su Y, Michimori Y, Atomi H. Biochemical and genetic examination of two aminotransferases from the hyperthermophilic archaeon Thermococcus kodakarensis. Front Microbiol 2023; 14:1126218. [PMID: 36891395 PMCID: PMC9986279 DOI: 10.3389/fmicb.2023.1126218] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
The hyperthermophilic archaeon Thermococcus kodakarensis utilizes amino acids as a carbon and energy source. Multiple aminotransferases, along with glutamate dehydrogenase, are presumed to be involved in the catabolic conversion of amino acids. T. kodakarensis harbors seven Class I aminotransferase homologs on its genome. Here we examined the biochemical properties and physiological roles of two Class I aminotransferases. The TK0548 protein was produced in Escherichia coli and the TK2268 protein in T. kodakarensis. Purified TK0548 protein preferred Phe, Trp, Tyr, and His, and to a lower extent, Leu, Met and Glu. The TK2268 protein preferred Glu and Asp, with lower activities toward Cys, Leu, Ala, Met and Tyr. Both proteins recognized 2-oxoglutarate as the amino acceptor. The TK0548 protein exhibited the highest k cat/K m value toward Phe, followed by Trp, Tyr, and His. The TK2268 protein exhibited highest k cat/K m values for Glu and Asp. The TK0548 and TK2268 genes were individually disrupted, and both disruption strains displayed a retardation in growth on a minimal amino acid medium, suggesting their involvement in amino acid metabolism. Activities in the cell-free extracts of the disruption strains and the host strain were examined. The results suggested that the TK0548 protein contributes to the conversion of Trp, Tyr and His, and the TK2268 protein to that of Asp and His. Although other aminotransferases seem to contribute to the transamination of Phe, Trp, Tyr, Asp, and Glu, our results suggest that the TK0548 protein is responsible for the majority of aminotransferase activity toward His in T. kodakarensis. The genetic examination carried out in this study provides insight into the contributions of the two aminotransferases toward specific amino acids in vivo, an aspect which had not been thoroughly considered thus far.
Collapse
Affiliation(s)
- Yu Su
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Michimori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Lu Y, Wang J, Xu H, Zhang C, Cheng P, Du L, Tang L, Li J, Ou Z. Efficient Synthesis of Key Chiral Intermediate in Painkillers (R)-1-[3,5-Bis(trifluoromethyl)phenyl]ethanamine by Bienzyme Cascade System with R-ω-Transaminase and Alcohol Dehydrogenase Functions. Molecules 2022; 27:molecules27217331. [PMID: 36364166 PMCID: PMC9655816 DOI: 10.3390/molecules27217331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
(R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine, a key chiral intermediate of selective tetrodotoxin-sensitive blockers, was efficiently synthesized by a bienzyme cascade system formed by with R-ω-transaminase (ATA117) and an alcohol dehydrogenase (ADH) co-expression system. Herein, we report that the use of ATA117 as the biocatalyst for the amination of 3,5-bistrifluoromethylacetophenone led to the highest efficiency in product performance (enantiomeric excess > 99.9%). Moreover, to further improve the product yield, ADH was introduced into the reaction system to promote an equilibrium shift. Additionally, bienzyme cascade system was constructed by five different expression systems, including two tandem expression recombinant plasmids (pETDuet-ATA117-ADH and pACYCDuet-ATA117-ADH) and three co-expressed dual-plasmids (pETDuet-ATA117/pET28a-ADH, pACYCDuet-ATA117/pET28a-ADH, and pACYCDuet-ATA117/pETDuet-ADH), utilizing recombinant engineered bacteria. Subsequent studies revealed that as compared with ATA117 single enzyme, the substrate handling capacity of BL21(DE3)/pETDuet-ATA117-ADH (0.25 g wet weight) developed for bienzyme cascade system was increased by 1.50 folds under the condition of 40 °C, 180 rpm, 0.1 M pH9 Tris-HCl for 24 h. To the best of our knowledge, ours is the first report demonstrating the production of (R)-1-[3,5-bis(trifluoromethyl)phenyl]ethanamine using a bienzyme cascade system, thus providing valuable insights into the biosynthesis of chiral amines.
Collapse
Affiliation(s)
- Yuan Lu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinmei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haobo Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chuyue Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pengpeng Cheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lihua Du
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lan Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jinghua Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.L.); (Z.O.); Tel./Fax: +86-571-88320320 (Z.O.)
| | - Zhimin Ou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.L.); (Z.O.); Tel./Fax: +86-571-88320320 (Z.O.)
| |
Collapse
|
19
|
Cui L, Cui A, Li Q, Yang L, Liu H, Shao W, Feng Y. Molecular Evolution of an Aminotransferase Based on Substrate–Enzyme Binding Energy Analysis for Efficient Valienamine Synthesis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anqi Cui
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qitong Li
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lezhou Yang
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, and Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Gal CA, Barabás LE, Varga A, Csuka P, Bencze LC, Toșa MI, Poppe L, Paizs C. How to identify and characterize novel transaminases? Two novel transaminases with opposite enantioselectivity for the synthesis of optically active amines. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
de Gonzalo G, Alcántara AR, Domínguez de María P, Sánchez-Montero JM. Biocatalysis for the asymmetric synthesis of Active Pharmaceutical Ingredients (APIs): this time is for real. Expert Opin Drug Discov 2022; 17:1159-1171. [PMID: 36045591 DOI: 10.1080/17460441.2022.2114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Biocatalysis has emerged as a powerful and useful strategy for the synthesis of active pharmaceutical ingredients (APIs). The outstanding developments in molecular biology techniques allow nowadays the screening, large-scale production, and designing of biocatalysts, adapting them to desired reactions. Many enzymes can perform reactions both in aqueous and non-aqueous media, broadening even further the opportunities to integrate them in complex pharmaceutical multi-step syntheses. AREAS COVERED This paper showcases several examples of biocatalysis in the pharmaceutical industry, covering examples of different enzymes, such as lipases, oxidoreductases, and transaminases, to deliver active drugs through complex synthetic routes. Examples are critically discussed in terms of reaction conditions, motivation for using an enzyme, and how biocatalysts can be integrated in multi-step syntheses. When possible, biocatalytic routes are benchmarked with chemical reactions. EXPERT OPINION The reported enzymatic examples are performed with high substrate loadings (>100 g L-1) and with excellent selectivity, making them inspiring strategies for present and future industrial applications. The combination of powerful molecular biology techniques with the needs of the pharmaceutical industry can be aligned, creating promising platforms for synthesis under more sustainable conditions.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla, Sevilla, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | - José María Sánchez-Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
22
|
Ducrot L, Bennett M, André-Leroux G, Elisée E, Marynberg S, Fossey-Jouenne A, Zaparucha A, Grogan G, Vergne-Vaxelaire C. Expanding the Substrate Scope of Native Amine Dehydrogenases through In Silico Structural Exploration and Targeted Protein Engineering. ChemCatChem 2022. [DOI: 10.1002/cctc.202200880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laurine Ducrot
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope 2 rue Gaston Cremieux 91000 EVRY FRANCE
| | | | - Gwenaëlle André-Leroux
- Paris-Saclay University: Universite Paris-Saclay MaIAGE: Mathematiques et Informatique Appliquees du Genome a l'Environnement FRANCE
| | - Eddy Elisée
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope 2 rue Gaston Cremieux 91000 EVRY FRANCE
| | - Sacha Marynberg
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope FRANCE
| | - Aurélie Fossey-Jouenne
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope FRANCE
| | - Anne Zaparucha
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope FRANCE
| | | | - Carine Vergne-Vaxelaire
- Commissariat a l'energie atomique et aux energies alternatives Institut de biologie Francois Jacob Genoscope 2 rue Gaston Cremieux 91000 EVRY FRANCE
| |
Collapse
|
23
|
Kollipara M, Matzel P, Bornscheuer U, Höhne M. Activity Levels of Amine Transaminases Correlate with Active Site Hydrophobicity. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manideep Kollipara
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Philipp Matzel
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Uwe Bornscheuer
- University of Greifswald Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| | - Matthias Höhne
- University of Greifswald Institute of Biochemistry, Protein Biochemistry Felix-Hausdorff-Straße 4 17489 Greifswald Germany
| |
Collapse
|
24
|
Ding Y, Perez-Ortiz G, Peate J, Barry SM. Redesigning Enzymes for Biocatalysis: Exploiting Structural Understanding for Improved Selectivity. Front Mol Biosci 2022; 9:908285. [PMID: 35936784 PMCID: PMC9355150 DOI: 10.3389/fmolb.2022.908285] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The discovery of new enzymes, alongside the push to make chemical processes more sustainable, has resulted in increased industrial interest in the use of biocatalytic processes to produce high-value and chiral precursor chemicals. Huge strides in protein engineering methodology and in silico tools have facilitated significant progress in the discovery and production of enzymes for biocatalytic processes. However, there are significant gaps in our knowledge of the relationship between enzyme structure and function. This has demonstrated the need for improved computational methods to model mechanisms and understand structure dynamics. Here, we explore efforts to rationally modify enzymes toward changing aspects of their catalyzed chemistry. We highlight examples of enzymes where links between enzyme function and structure have been made, thus enabling rational changes to the enzyme structure to give predictable chemical outcomes. We look at future directions the field could take and the technologies that will enable it.
Collapse
|
25
|
Sheludko YV, Slagman S, Gittings S, Charnock SJ, Land H, Berglund P, Fessner WD. Enantioselective Synthesis of Pharmaceutically Relevant Bulky Arylbutylamines Using Engineered Transaminases. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - Samantha Gittings
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Simon J. Charnock
- Prozomix Limited UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | | | | | | |
Collapse
|
26
|
Karaiyan P, Chang CCH, Chan ES, Tey BT, Ramanan RN, Ooi CW. In silico screening and heterologous expression of soluble dimethyl sulfide monooxygenases of microbial origin in Escherichia coli. Appl Microbiol Biotechnol 2022; 106:4523-4537. [PMID: 35713659 PMCID: PMC9259527 DOI: 10.1007/s00253-022-12008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022]
Abstract
Abstract Sequence-based screening has been widely applied in the discovery of novel microbial enzymes. However, majority of the sequences in the genomic databases were annotated using computational approaches and lacks experimental characterization. Hence, the success in obtaining the functional biocatalysts with improved characteristics requires an efficient screening method that considers a wide array of factors. Recombinant expression of microbial enzymes is often hampered by the undesirable formation of inclusion body. Here, we present a systematic in silico screening method to identify the proteins expressible in soluble form and with the desired biological properties. The screening approach was adopted in the recombinant expression of dimethyl sulfide (DMS) monooxygenase in Escherichia coli. DMS monooxygenase, a two-component enzyme consisting of DmoA and DmoB subunits, was used as a model protein. The success rate of producing soluble and active DmoA is 71% (5 out of 7 genes). Interestingly, the soluble recombinant DmoA enzymes exhibited the NADH:FMN oxidoreductase activity in the absence of DmoB (second subunit), and the cofactor FMN, suggesting that DmoA is also an oxidoreductase. DmoA originated from Janthinobacterium sp. AD80 showed the maximum NADH oxidation activity (maximum reaction rate: 6.6 µM/min; specific activity: 133 µM/min/mg). This novel finding may allow DmoA to be used as an oxidoreductase biocatalyst for various industrial applications. The in silico gene screening methodology established from this study can increase the success rate of producing soluble and functional enzymes while avoiding the laborious trial and error involved in the screening of a large pool of genes available. Key points • A systematic gene screening method was demonstrated. • DmoA is also an oxidoreductase capable of oxidizing NADH and reducing FMN. • DmoA oxidizes NADH in the absence of external FMN. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12008-8.
Collapse
Affiliation(s)
- Prasanth Karaiyan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Catherine Ching Han Chang
- Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng-Seng Chan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Arkema Thiochemicals Sdn. Bhd., Jalan PJU 1A/7A OASIS Ara Damansara, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia. .,Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
27
|
Benítez-Mateos AI, Roura Padrosa D, Paradisi F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat Chem 2022; 14:489-499. [PMID: 35513571 DOI: 10.1038/s41557-022-00931-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
Enzyme cascades are a powerful technology to develop environmentally friendly and cost-effective synthetic processes to manufacture drugs, as they couple different biotransformations in sequential reactions to synthesize the product. These biocatalytic tools can address two key parameters for the pharmaceutical industry: an improved selectivity of synthetic reactions and a reduction of potential hazards by using biocompatible catalysts, which can be produced from sustainable sources, which are biodegradable and, generally, non-toxic. Here we outline a broad variety of enzyme cascades used either in vivo (whole cells) or in vitro (purified enzymes) to specifically target pharmaceutically relevant molecules, from simple building blocks to complex drugs. We also discuss the advantages and requirements of multistep enzyme cascades and their combination with chemical catalysts through a series of reported examples. Finally, we examine the efficiency of enzyme cascades and how they can be further improved by enzyme engineering, process intensification in flow reactors and/or enzyme immobilization to meet all the industrial requirements.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - David Roura Padrosa
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
Romero‐Fernandez M, Paradisi F. Stereo-Divergent Enzyme Cascades to Convert Racemic 4-Phenyl-2-Butanol into either (S)- or (R)-Corresponding Chiral Amine. Chembiochem 2022; 23:e202200108. [PMID: 35189014 PMCID: PMC9313814 DOI: 10.1002/cbic.202200108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/07/2022]
Abstract
The synthesis of enantiopure chiral amines from racemic alcohols is a key transformation in the chemical industry, e. g., in the production of active pharmaceutical ingredients (APIs). However, this reaction remains challenging. In this work, we propose a one-pot enzymatic cascade for the direct conversion of a racemic alcohol into either (S)- or (R)-enantiomers of the corresponding amine, with in-situ cofactor recycling. This enzymatic cascade consists of two enantio-complementary alcohol dehydrogenases, both NADH and NADPH oxidase for in-situ recycling of NAD(P)+ cofactors, and either (S)- or (R)-enantioselective transaminase. This cell-free biocatalytic system has been successfully applied to the conversion of racemic 4-phenyl-2-butanol into the high value (S)- or (R)-enantiomers of the amine reaching good (73 % (S)) and excellent (>99 % (R)) enantioselectivities.
Collapse
Affiliation(s)
| | - Francesca Paradisi
- School of ChemistryUniversity of NottinghamUniversity ParkNG7 2RDNottinghamUK
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
29
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
30
|
Jiang D, Min Z, Leng J, Niu H, Chen Y, Liu D, Zhu C, Li M, Zhuang W, Ying H. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Espina G, Muñoz-Ibacache SA, Cáceres-Moreno P, Amenabar MJ, Blamey JM. From the Discovery of Extremozymes to an Enzymatic Product: Roadmap Based on Their Applications. Front Bioeng Biotechnol 2022; 9:752281. [PMID: 35096788 PMCID: PMC8790482 DOI: 10.3389/fbioe.2021.752281] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/22/2021] [Indexed: 11/20/2022] Open
Abstract
With the advent of the industrial revolution, the use of toxic compounds has grown exponentially, leading to a considerable pollution of the environment. Consequently, the development of more environmentally conscious technologies is an urgent need. Industrial biocatalysis appears as one potential solution, where a higher demand for more robust enzymes aims to replace toxic chemical catalysts. To date, most of the commercially available enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of temperature and pH (i.e., between 20°C and 45°C, neutral pH), limiting their actual application under industrial reaction settings, where they usually underperform, requiring larger quantities to compensate loss of activity. In order to obtain novel biocatalysts better suited for industrial conditions, an efficient solution is to take advantage of nature by searching and discovering enzymes from extremophiles. These microorganisms and their macromolecules have already adapted to thrive in environments that present extreme physicochemical conditions. Hence, extremophilic enzymes stand out for showing higher activity, stability, and robustness than their mesophilic counterparts, being able to carry out reactions at nonstandard conditions. In this brief research report we describe three examples to illustrate a stepwise strategy for the development and production of commercial extremozymes, including a catalase from an Antarctic psychrotolerant microorganism, a laccase from a thermoalkaliphilic bacterium isolated from a hot spring and an amine-transaminase from a thermophilic bacterium isolated from a geothermal site in Antarctica. We will also explore some of their interesting biotechnological applications and comparisons with commercial enzymes.
Collapse
Affiliation(s)
- Giannina Espina
- Fundación Biociencia, Santiago, Chile
- *Correspondence: Giannina Espina, ; Jenny M. Blamey,
| | | | | | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- *Correspondence: Giannina Espina, ; Jenny M. Blamey,
| |
Collapse
|
32
|
Konia E, Chatzicharalampous K, Drakonaki A, Muenke C, Ermler U, Tsiotis G, Pavlidis IV. Rational engineering of Luminiphilus syltensis ( R)-selective amine transaminase for the acceptance of bulky substrates. Chem Commun (Camb) 2021; 57:12948-12951. [PMID: 34806715 DOI: 10.1039/d1cc04664k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Despite the plethora of information on (S)-selective amine transaminases, the (R)-selective ones are still not well-studied; only a few structures are known to date, and their substrate scope is limited, apart from a few stellar works in the field. Herein, the structure of Luminiphilus syltensis (R)-selective amine transaminase is elucidated to facilitate engineering towards variants active on bulkier substrates. The V37A variant exhibited increased activity towards 1-phenylpropylamine and to activity against 1-butylamine. In contrast, the S248 and T249 positions, located on the β-turn in the P-pocket, seem crucial for maintaining the activity of the enzyme.
Collapse
Affiliation(s)
- Eleni Konia
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| | | | - Athina Drakonaki
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| | - Cornelia Muenke
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Ulrich Ermler
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Georgios Tsiotis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece.
| |
Collapse
|
33
|
Juma WP, Nyoni D, Brady D, Bode ML. The Application of Biocatalysis in the Preparation and Resolution of Morita-Baylis-Hillman Adducts and Their Derivatives. Chembiochem 2021; 23:e202100527. [PMID: 34822736 DOI: 10.1002/cbic.202100527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Indexed: 12/16/2022]
Abstract
The Morita-Baylis-Hillman (MBH) reaction affords highly functionalised allylic alcohols containing a new stereogenic centre. These MBH adducts are very versatile and have been transformed into a large range of products, some of which have medicinal potential. Several examples of asymmetric syntheses of MBH adducts have been reported, although a generally applicable method remains to be developed. Biocatalytic approaches for the synthesis and enzymatic kinetic resolution of MBH adducts have been reported, and are discussed in detail in this review. Enzymes able to catalyse the asymmetric MBH reaction have been identified, but selectivity and efficiency have generally been low. Lipases, esterases and nitrile-converting enzymes have all been successfully applied in the resolution of MBH adducts, with excellent selectivity being realised in most cases.
Collapse
Affiliation(s)
- Wanyama Peter Juma
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dubekile Nyoni
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Dean Brady
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| | - Moira L Bode
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO WITS, 2050, Johannesburg, South Africa
| |
Collapse
|
34
|
Cárdenas-Fernández M, Sinclair O, Ward JM. Novel transaminases from thermophiles: from discovery to application. Microb Biotechnol 2021; 15:305-317. [PMID: 34713952 PMCID: PMC8719814 DOI: 10.1111/1751-7915.13940] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/26/2023] Open
Abstract
Transaminases (TAs) are promising biocatalysts for chiral amine synthesis; however, only few thermophilic TAs have been described to date. In this work, a genome mining approach was taken to seek novel TAs from nine thermophilic microorganisms. TA sequences were identified from their respective genome sequences and their Pfam were predicted confirming that TAs class I–II are the most abundant (50%), followed by class III (26%), V (16%), IV (8%) and VI (1%). The percentage of open reading frames (ORFs) that are TAs ranges from 0.689% in Thermococcus litoralis to 0.424% in Sulfolobus solfataricus. A total of 94 putative TAs were successfully cloned and expressed into E. coli, showing mostly good expression levels when using a chemical chaperone media containing d‐sorbitol. Kinetic and end‐point colorimetric assays with different amino donors–acceptors confirmed TAs activity allowing for initial exploration of the substrate scope. Stereoselective and non‐stereoselective serine‐TAs were selected for the synthesis of hydroxypyruvate (HPA). Low HPA reaction yields were observed with four non‐stereoselective serine‐TAs, whilst two stereoselective serine‐TAs showed significantly higher yields. Coupling serine‐TA reactions to a transketolase to yield l‐erythrulose (Ery) substantially increased serine conversion into HPA. Combining both stereoselective serine‐TAs and transketolase using the inexpensive racemic D/L‐serine led to high Ery yield (82%). Thermal characterization of stereoselective serine‐TAs confirmed they have excellent thermostability up to 60°C and high optimum temperatures.
Collapse
Affiliation(s)
- Max Cárdenas-Fernández
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK.,School of Biosciences, University of Kent, CT2 7NJ, Kent, UK
| | - Oliver Sinclair
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower St, WC1E 6BT, London, UK
| |
Collapse
|
35
|
Pandey RP, Casini A, Voigt CA, Gordon DB. Four-Step Pathway from Phenylpyruvate to Benzylamine, an Intermediate to the High-Energy Propellant CL-20. ACS Synth Biol 2021; 10:2187-2196. [PMID: 34491727 DOI: 10.1021/acssynbio.1c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzylamine is a commodity chemical used in the synthesis of motion-sickness treatments and anticonvulsants, in dyeing textiles, and as a precursor to the high-energy propellant CL-20. Because chemical production generates toxic waste streams, biosynthetic alternatives have been explored, recently resulting in a functional nine-step pathway from central metabolism (phenylalanine) in E. coli. We report a novel four-step pathway for benzylamine production, which generates the product from cellular phenylpyruvate using enzymes from different sources: a mandelate synthase (Amycolatopsis orientalis), a mandelate oxidase (Streptomyces coelicolor), a benzoylformate decarboxylase (Pseudomonas putida), and an aminotransferase (Salicibacter pomeroyi). This pathway produces benzylamine at 24 mg/L in 15 h (4.5% yield) in cultures of unoptimized cells supplemented with phenylpyruvate. Because the yield is low, supplementation with pathway intermediates is used to troubleshoot the design. This identifies conversion inefficiencies in the mandelate synthase-mediated synthesis of (S)-mandelic acid, and subsequent genome mining identifies a new mandelate synthase (Streptomyces sp. 1114.5) with improved yield. Supplementation experiments also reveal native redirection of ambient phenylpyruvate away from the pathway to phenylalanine. Overall, this work illustrates how retrosynthetic design can dramatically reduce the number of enzymes in a pathway, potentially reducing its draw on cellular resources. However, it also shows that such benefits can be abrogated by inefficiencies of individual conversions. Addressing these barriers can provide an alternative approach to green production of benzylamine, eliminating upstream dependence on chlorination chemistry.
Collapse
Affiliation(s)
- Ramesh Prasad Pandey
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Arturo Casini
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Christopher A. Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - D. Benjamin Gordon
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
36
|
Cigan E, Eggbauer B, Schrittwieser JH, Kroutil W. The role of biocatalysis in the asymmetric synthesis of alkaloids - an update. RSC Adv 2021; 11:28223-28270. [PMID: 35480754 PMCID: PMC9038100 DOI: 10.1039/d1ra04181a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/30/2021] [Indexed: 12/19/2022] Open
Abstract
Alkaloids are a group of natural products with interesting pharmacological properties and a long history of medicinal application. Their complex molecular structures have fascinated chemists for decades, and their total synthesis still poses a considerable challenge. In a previous review, we have illustrated how biocatalysis can make valuable contributions to the asymmetric synthesis of alkaloids. The chemo-enzymatic strategies discussed therein have been further explored and improved in recent years, and advances in amine biocatalysis have vastly expanded the opportunities for incorporating enzymes into synthetic routes towards these important natural products. The present review summarises modern developments in chemo-enzymatic alkaloid synthesis since 2013, in which the biocatalytic transformations continue to take an increasingly 'central' role.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Eggbauer
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Joerg H Schrittwieser
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz, BioHealth Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
37
|
Mattey AP, Ford GJ, Citoler J, Baldwin C, Marshall JR, Palmer RB, Thompson M, Turner NJ, Cosgrove SC, Flitsch SL. Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades*. Angew Chem Int Ed Engl 2021; 60:18660-18665. [PMID: 33856106 PMCID: PMC8453870 DOI: 10.1002/anie.202103805] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Indexed: 01/14/2023]
Abstract
A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.
Collapse
Affiliation(s)
- Ashley P. Mattey
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Grayson J. Ford
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Joan Citoler
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Christopher Baldwin
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ryan B. Palmer
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | | | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sebastian C. Cosgrove
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Lennard-Jones LaboratorySchool of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireST5 5BGUK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
38
|
Mattey AP, Ford GJ, Citoler J, Baldwin C, Marshall JR, Palmer RB, Thompson M, Turner NJ, Cosgrove SC, Flitsch SL. Development of Continuous Flow Systems to Access Secondary Amines Through Previously Incompatible Biocatalytic Cascades. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:18808-18813. [PMID: 38505092 PMCID: PMC10947180 DOI: 10.1002/ange.202103805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Indexed: 12/20/2022]
Abstract
A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.
Collapse
Affiliation(s)
- Ashley P. Mattey
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Grayson J. Ford
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Joan Citoler
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Christopher Baldwin
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Ryan B. Palmer
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | | | - Nicholas J. Turner
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Sebastian C. Cosgrove
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
- Lennard-Jones LaboratorySchool of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireST5 5BGUK
| | - Sabine L. Flitsch
- Manchester Institute of Biotechnology (MIB) &, School of ChemistryThe University of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|
39
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|
40
|
Pyser J, Chakrabarty S, Romero EO, Narayan ARH. State-of-the-Art Biocatalysis. ACS CENTRAL SCIENCE 2021; 7:1105-1116. [PMID: 34345663 PMCID: PMC8323117 DOI: 10.1021/acscentsci.1c00273] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 05/03/2023]
Abstract
The use of enzyme-mediated reactions has transcended ancient food production to the laboratory synthesis of complex molecules. This evolution has been accelerated by developments in sequencing and DNA synthesis technology, bioinformatic and protein engineering tools, and the increasingly interdisciplinary nature of scientific research. Biocatalysis has become an indispensable tool applied in academic and industrial spheres, enabling synthetic strategies that leverage the exquisite selectivity of enzymes to access target molecules. In this Outlook, we outline the technological advances that have led to the field's current state. Integration of biocatalysis into mainstream synthetic chemistry hinges on increased access to well-characterized enzymes and the permeation of biocatalysis into retrosynthetic logic. Ultimately, we anticipate that biocatalysis is poised to enable the synthesis of increasingly complex molecules at new levels of efficiency and throughput.
Collapse
Affiliation(s)
- Joshua
B. Pyser
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Suman Chakrabarty
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Evan O. Romero
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| | - Alison R. H. Narayan
- Department
of Chemistry, Life Sciences Institute, and Program in Chemical Biology, University of Michigan, , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109, United
States
| |
Collapse
|
41
|
Liu CY, Cecylia Severin L, Lyu CJ, Zhu WL, Wang HP, Jiang CJ, Mei LH, Liu HG, Huang J. Improving thermostability of (R)-selective amine transaminase from Aspergillus terreus by evolutionary coupling saturation mutagenesis. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Schwarz M, Murphy EJ, Foley AM, Woods DF, Castilla IA, Reen FJ, Collins SG, O'Gara F, Maguire AR. Exploring the synthetic potential of a marine transaminase including discrimination at a remote stereocentre. Org Biomol Chem 2021; 19:188-198. [PMID: 33119023 DOI: 10.1039/d0ob01848a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The marine transaminase, P-ω-TA, can be employed for the transamination from 1-aminotetralins and 1-aminoindanes with differentiation of stereochemistry at both the site of reaction and at a remote stereocentre resulting in formation of ketone products with up to 93% ee. While 4-substituents are tolerated on the tetralin core, the presence of 3- or 8-substituents is not tolerated by the transaminase. In general P-ω-TA shows capacity for remote diastereoselectivity, although both the stereoselectivity and efficiency are dependent on the specific substrate structure. Optimum efficiency and selectivity are seen with 4-haloaryl-1-aminotetralins and 3-haloaryl-1-aminoindanes, which may be associated with the marine origin of this enzyme.
Collapse
Affiliation(s)
- Maria Schwarz
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, T12 K8AF, Cork, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ferrandi EE, Bassanini I, Sechi B, Vanoni M, Tessaro D, Guðbergsdóttir SR, Riva S, Peng X, Monti D. Discovery and Characterization of a Novel Thermostable β-Amino Acid Transaminase from a Meiothermus Strain Isolated in an Icelandic Hot Spring. Biotechnol J 2020; 15:e2000125. [PMID: 32893504 DOI: 10.1002/biot.202000125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Indexed: 02/02/2023]
Abstract
A Meiothermus strain capable of using β-phenylalanine for growth is isolated by culture enrichment of samples collected in hot environments and the genome is sequenced showing the presence of 22 putative transaminase (TA) sequences. On the basis of phylogenetic and sequence analysis, a TA termed Ms-TA2 is selected for further studies. The enzyme is successfully produced in Escherichia coli Rosetta(DE3) cells, with 70 mg of pure protein obtained from 1 L culture after purification by affinity chromatography. Ms-TA2 shows high activity toward (S)-β-phenylalanine and other (S)-β-amino acids, as well as a preference for α-ketoglutarate and aromatic aldehydes as amino acceptors. Moreover, Ms-TA2 is shown to be a thermostable enzyme by maintaining about 60% of the starting activity after 3 h incubation at 50 °C and showing a melting temperature of about 73 °C. Finally, a homology-based structural model of Ms-TA2 is built and key active site interactions for substrate and cofactor binding are analyzed.
Collapse
Affiliation(s)
- Erica E Ferrandi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy.,Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Ivan Bassanini
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy.,Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli 25, Milan, 20133, Italy
| | - Barbara Sechi
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| | - Marta Vanoni
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| | - Davide Tessaro
- Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Via Mancinelli 7, Milan, 20131, Italy
| | | | - Sergio Riva
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| | - Xu Peng
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen, 2200, Denmark
| | - Daniela Monti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC), CNR, Via Mario Bianco 9, Milan, 20131, Italy
| |
Collapse
|