1
|
Ndochinwa OG, Wang QY, Amadi OC, Nwagu TN, Nnamchi CI, Okeke ES, Moneke AN. Current status and emerging frontiers in enzyme engineering: An industrial perspective. Heliyon 2024; 10:e32673. [PMID: 38912509 PMCID: PMC11193041 DOI: 10.1016/j.heliyon.2024.e32673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024] Open
Abstract
Protein engineering mechanisms can be an efficient approach to enhance the biochemical properties of various biocatalysts. Immobilization of biocatalysts and the introduction of new-to-nature chemical reactivities are also possible through the same mechanism. Discovering new protocols that enhance the catalytic active protein that possesses novelty in terms of being stable, active, and, stereoselectivity with functions could be identified as essential areas in terms of concurrent bioorganic chemistry (synergistic relationship between organic chemistry and biochemistry in the context of enzyme engineering). However, with our current level of knowledge about protein folding and its correlation with protein conformation and activities, it is almost impossible to design proteins with specific biological and physical properties. Hence, contemporary protein engineering typically involves reprogramming existing enzymes by mutagenesis to generate new phenotypes with desired properties. These processes ensure that limitations of naturally occurring enzymes are not encountered. For example, researchers have engineered cellulases and hemicellulases to withstand harsh conditions encountered during biomass pretreatment, such as high temperatures and acidic environments. By enhancing the activity and robustness of these enzymes, biofuel production becomes more economically viable and environmentally sustainable. Recent trends in enzyme engineering have enabled the development of tailored biocatalysts for pharmaceutical applications. For instance, researchers have engineered enzymes such as cytochrome P450s and amine oxidases to catalyze challenging reactions involved in drug synthesis. In addition to conventional methods, there has been an increasing application of machine learning techniques to identify patterns in data. These patterns are then used to predict protein structures, enhance enzyme solubility, stability, and function, forecast substrate specificity, and assist in rational protein design. In this review, we discussed recent trends in enzyme engineering to optimize the biochemical properties of various biocatalysts. Using examples relevant to biotechnology in engineering enzymes, we try to expatiate the significance of enzyme engineering with how these methods could be applied to optimize the biochemical properties of a naturally occurring enzyme.
Collapse
Affiliation(s)
- Obinna Giles Ndochinwa
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Qing-Yan Wang
- State Key Laboratory of Biomass Enzyme Technology, National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Oyetugo Chioma Amadi
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | - Tochukwu Nwamaka Nwagu
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| | | | - Emmanuel Sunday Okeke
- Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013, Zhenjiang, Jiangsu, China
| | - Anene Nwabu Moneke
- Department of Microbiology, Faculty of Biological Science, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
2
|
Chen Q, Gul I, Liu C, Lei Z, Li X, Raheem MA, He Q, Haihui Z, Leeansyah E, Zhang CY, Pandey V, Du K, Qin P. CRISPR-Cas12-based field-deployable system for rapid detection of synthetic DNA sequence of the monkeypox virus genome. J Med Virol 2023; 95:e28385. [PMID: 36478250 DOI: 10.1002/jmv.28385] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
The global outbreak of the monkeypox virus (MPXV) highlights the need for rapid and cost-effective MPXV detection tools to effectively monitor and control the monkeypox disease. Herein, we demonstrated a portable CRISPR-Cas-based system for naked-eye detection of MPXV. The system harnesses the high selectivity of CRISPR-Cas12 and the isothermal nucleic acid amplification potential of recombinase polymerase amplification. It can detect both the current circulating MPXV clade and the original clades. We reached a limit of detection (LoD) of 22.4 aM (13.5 copies/µl) using a microtiter plate reader, while the visual LoD of the system is 75 aM (45 copies/µl) in a two-step assay, which is further reduced to 25 aM (15 copies/µl) in a one-pot system. We compared our results with quantitative polymerase chain reaction and obtained satisfactory consistency. For clinical application, we demonstrated a sensitive and precise visual detection method with attomolar sensitivity and a sample-to-answer time of 35 min.
Collapse
Affiliation(s)
- Qun Chen
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Changyue Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Zhengyang Lei
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Xingyu Li
- Department of Hepatobiliary and Pancreatic Surgery II, The Third Xiangya Hospital, Central South University, Changsha, Hunan, P. R. China
| | - Muhammad A Raheem
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Qian He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Zhang Haihui
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Can Y Zhang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Vijay Pandey
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.,Tsinghua Shenzhen International Graduate School, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, P. R. China
| |
Collapse
|
3
|
Wang Y, Xiang Q, Zhou Q, Xu J, Pei D. Mini Review: Advances in 2-Haloacid Dehalogenases. Front Microbiol 2021; 12:758886. [PMID: 34721367 PMCID: PMC8554231 DOI: 10.3389/fmicb.2021.758886] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The 2-haloacid dehalogenases (EC 3.8.1.X) are industrially important enzymes that catalyze the cleavage of carbon-halogen bonds in 2-haloalkanoic acids, releasing halogen ions and producing corresponding 2-hydroxyl acids. These enzymes are of particular interest in environmental remediation and environmentally friendly synthesis of optically pure chiral compounds due to their ability to degrade a wide range of halogenated compounds with astonishing efficiency for enantiomer resolution. The 2-haloacid dehalogenases have been extensively studied with regard to their biochemical characterization, protein crystal structures, and catalytic mechanisms. This paper comprehensively reviews the source of isolation, classification, protein structures, reaction mechanisms, biochemical properties, and application of 2-haloacid dehalogenases; current trends and avenues for further development have also been included.
Collapse
Affiliation(s)
- Yayue Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qiao Xiang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- Zhengzhou Tuoyang Industrial Co., Ltd., Zhengzhou, China
| | - Dongli Pei
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
4
|
Victorino da Silva Amatto I, Gonsales da Rosa-Garzon N, Antônio de Oliveira Simões F, Santiago F, Pereira da Silva Leite N, Raspante Martins J, Cabral H. Enzyme engineering and its industrial applications. Biotechnol Appl Biochem 2021; 69:389-409. [PMID: 33555054 DOI: 10.1002/bab.2117] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/18/2021] [Indexed: 01/03/2023]
Abstract
Recently, there has been an increase in the demand for enzymes with modified activity, specificity, and stability. Enzyme engineering is an important tool to meet the demand for enzymes adjusted to different industrial processes. Knowledge of the structure and function of enzymes guides the choice of the best strategy for engineering enzymes. Each enzyme engineering strategy, such as rational design, directed evolution, and semi-rational design, has specific applications, as well as limitations, which must be considered when choosing a suitable strategy. Engineered enzymes can be optimized for different industrial applications by choosing the appropriate strategy. This review features engineered enzymes that have been applied in food, animal feed, pharmaceuticals, medical applications, bioremediation, biofuels, and detergents.
Collapse
Affiliation(s)
- Isabela Victorino da Silva Amatto
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathalia Gonsales da Rosa-Garzon
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio Antônio de Oliveira Simões
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Pharmaceutical Sciences Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernanda Santiago
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nathália Pereira da Silva Leite
- Pharmaceutical Sciences Program, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, XUniversity of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júlia Raspante Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Hamilton Cabral
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Biosciences and Biotechnology Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.,Pharmaceutical Sciences Program, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
Gul I, Le W, Jie Z, Ruiqin F, Bilal M, Tang L. Recent advances on engineered enzyme-conjugated biosensing modalities and devices for halogenated compounds. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Pluchinsky AJ, Wackelin DJ, Huang X, Arnold FH, Mrksich M. High Throughput Screening with SAMDI Mass Spectrometry for Directed Evolution. J Am Chem Soc 2020; 142:19804-19808. [PMID: 33174742 DOI: 10.1021/jacs.0c07828] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Advances in directed evolution have led to an exploration of new and important chemical transformations; however, many of these efforts still rely on the use of low-throughput chromatography-based screening methods. We present a high-throughput strategy for screening libraries of enzyme variants for improved activity. Unpurified reaction products are immobilized to a self-assembled monolayer and analyzed by mass spectrometry, allowing for direct evaluation of thousands of variants in under an hour. The method was demonstrated with libraries of randomly mutated cytochrome P411 variants to identify improved catalysts for C-H alkylation. The technique may be tailored to evolve enzymatic activity for a variety of transformations where higher throughput is needed.
Collapse
Affiliation(s)
| | - Daniel J Wackelin
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiongyi Huang
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering MC 210-41, California Institute of Technology, Pasadena, California 91125, United States
| | | |
Collapse
|
7
|
Gul I, Wang Q, Jiang Q, Fang R, Tang L. Enzyme immobilization on glass fiber membrane for detection of halogenated compounds. Anal Biochem 2020; 609:113971. [PMID: 32979368 DOI: 10.1016/j.ab.2020.113971] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/19/2023]
Abstract
Enzyme immobilization using inorganic membranes has enticed increased attention as they not only improve enzyme stability, but also furnish user-friendly biodevices that can be tailored to different applications. Herein, we explored the suitability of the glass fiber membrane for enzyme immobilization and its application for halocarbon detection. For this, halohydrin dehalogenase (HheC) and bovine serum albumin were crosslinked and immobilized on a glass fiber membrane without membrane functionalization. Immobilized HheC exhibited higher storage stability than its free counterpart over 60 days at 4 °C (67% immobilized vs. 8.1% free) and 30 °C (77% immobilized vs. 57% free). Similarly, the thermal endurance of the immobilized HheC was significantly improved. The practical utility of the membrane-immobilized enzyme was demonstrated by colorimetric detection of 1,3-dichloro-2-propanol (1,3-DCP) and 2,3-dibromo-1-propanol (2,3-DBP) as model analytes. Under optimized conditions, the detection limits of 0.06 mM and 0.09 mM were achieved for 1,3-DCP and 2,3-DBP, respectively. The satisfactory recoveries were observed with spiked river and lake water samples, which demonstrate the application potential of immobilized HheC for screening contaminants in water samples. Our results revealed that the proposed frugal and facile approach could be useful for enzyme stabilization, and mitigation of halocarbon pollution.
Collapse
Affiliation(s)
- Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qian Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qifa Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ruiqin Fang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|