1
|
da Silva TFO, Ferrarezi AA, da Silva Santos É, Ribeiro STC, de Oliveira AJB, Gonçalves RAC. Bioactivities and biotechnological tools for obtaining bioactive metabolites from Stevia rebaudiana. Food Sci Biotechnol 2025; 34:1679-1697. [PMID: 40151612 PMCID: PMC11936867 DOI: 10.1007/s10068-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 03/29/2025] Open
Abstract
Several natural compounds have already been isolated from the leaves of the Stevia rebaudiana, the main ones are stevioside and rebaudiosides, which are used commercially in the food and pharmaceutical industries because they are considered a low-calorie alternative for sweetening. Thus, the development of different strategies to increase the production of steviol glycosides, as well as the health benefits of these compounds with a sweet characteristic, are well-documented in the literature. However, there is a limited number of published works on the other bioactive metabolites present in S. rebaudiana. The objective of this review is to report the main basal and specialized metabolites present in the plant, their biological activities, and the different biotechnological tools used to obtain these metabolites from S. rebaudiana. The use of new natural sources of bioactive compounds with functional properties, such as S. rebaudiana, is highly relevant to the food and pharmaceutical industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01776-w.
Collapse
Affiliation(s)
- Thaila Fernanda Oliveira da Silva
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arthur Antunes Ferrarezi
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Éverton da Silva Santos
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Susana Tavares Cotrim Ribeiro
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arildo José Braz de Oliveira
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Regina Aparecida Correia Gonçalves
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| |
Collapse
|
2
|
Makowski W, Królicka A, Hinc K, Szopa A, Kubica P, Sroka J, Tokarz B, Tokarz KM. Reynoutria japonica Houtt. Transformed Hairy Root Cultures as an Effective Platform for Producing Phenolic Compounds with Strong Bactericidal Properties. Int J Mol Sci 2025; 26:362. [PMID: 39796217 PMCID: PMC11720400 DOI: 10.3390/ijms26010362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Reynoutria japonica Houtt. is the source of various phenolic compounds: phenolic acids, flawan-3-ols, and stilbenes, with a broad range of biological activity. The rhizome (underground organ of these plants) is abundant in secondary metabolites but, in natural conditions, may accumulate various toxic substances (such as heavy metals) from the soil. The principal objective of this research was to produce transformed cultures of R. japonica hairy roots that would serve as a valuable source of phenolic compounds, independent of environmental resources. The transformation was performed using a variety of wild strains of Rhizobium rhizogenes bacteria, of which only strain A4 (ATCC 31798) proved effective. The molecular characterization of transformed clones was performed using PCR. The biometric parameters (growth index and dry weight content), phenolic compounds accumulation (DAD-HPLC), antioxidant capacity (DPPH, CUPRAC), and bactericidal properties against Staphylococcus aureus with various sensitivity to antibiotics were evaluated. Two obtained transformed clones (RJ 9 and 30) exhibited the incorporation of the entire bacterial T-DNA into genomic DNA, while clones RJ 10 and 11 demonstrated only the presence of the LT-DNA sequence. The results demonstrated an increase in flawan-3-ols (catechins) accumulation in hairy root tissue relative to non-transformed (NT) plants. Moreover, hairy roots exhibited enhanced antioxidant activity and bactericidal properties compared with NT roots and NT shoots, respectively.
Collapse
Affiliation(s)
- Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (B.T.); (K.M.T.)
| | - Aleksandra Królicka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.K.); (J.S.)
| | - Krzysztof Hinc
- Division of Molecular Bacteriology, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland;
| | - Agnieszka Szopa
- Department of Medicinal Plant and Mushroom Biotechnology, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (P.K.)
| | - Paweł Kubica
- Department of Medicinal Plant and Mushroom Biotechnology, Collegium Medicum, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland; (A.S.); (P.K.)
| | - Julia Sroka
- Laboratory of Biologically Active Compounds, Intercollegiate Faculty of Biotechnology UG and MUG, University of Gdańsk, Abrahama 58, 80-307 Gdańsk, Poland; (A.K.); (J.S.)
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (B.T.); (K.M.T.)
| | - Krzysztof Michał Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland; (B.T.); (K.M.T.)
| |
Collapse
|
3
|
Biswas P, Kumari A, Modi A, Kumar N. Improvement and regulation of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni. Gene 2024; 891:147809. [PMID: 37722610 DOI: 10.1016/j.gene.2023.147809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Stevia rebaudiana Bertoni is a natural sweetener plant that is progressively used not only for its sweetening properties but also for its medicinal properties. The plant contains steviol glycoside (SG) which is reported to be up to 300 times sweeter than sucrose. The plant is said to have no side effects on human health and has been approved by FDA. On the basis of previous studies and available databases, this review discusses the extensive understanding of the different approaches for enhancements of SG in S. rebaudiana. To improve the SG biosynthesis, application of different stress, elicitors, induction of polyploidy, cell culture, genetic engineering, and transcriptomic approaches have been addressed. A brief discussion about the cloning and characterization of important genes of the metabolic pathway of SG biosynthesis is also discussed along with various metabolic engineering pathways viz. methylerythritol 4- phosphate (MEP) and mevalonate (MVA) pathways. This review paper also discusses the different aspects as well as the effects of various nanoparticles on S. rebaudiana growth and development, as well as SG biosynthesis.
Collapse
Affiliation(s)
- Pritom Biswas
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India
| | - Ankita Kumari
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India
| | - Arpan Modi
- Institute of Plant Science, Volcani Center, ARO, Rishon LeZion, Israel
| | - Nitish Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, Bihar, India.
| |
Collapse
|
4
|
Ptak A, Szewczyk A, Simlat M, Błażejczak A, Warchoł M. Meta-Topolin-induced mass shoot multiplication and biosynthesis of valuable secondary metabolites in Stevia rebaudiana Bertoni bioreactor culture. Sci Rep 2023; 13:15520. [PMID: 37726319 PMCID: PMC10509197 DOI: 10.1038/s41598-023-42619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Stevia rebaudiana Bertoni possesses various medicinal and food industrial applications. This study is the first to explore the effect of the cytokinins meta-Topolin (mT; 6-(3-hydroxybenzylamino) purine), zeatin, kinetin, and BAP (6-benzylaminopurine) at concentrations of 0 (control), 5, 10, and 15 µM on shoot multiplication, as well as stevioside, rebaudioside A, phenolic acid, and flavonoid content in bioreactor cultures. The highest number of shoots (23.4 per explant) was obtained in the medium containing 5 μM of mT. However, 15 μM of mT was superior for fresh biomass production and dry biomass accumulation. Reversed-phase (RP)-HPLC analysis showed a beneficial effect of 5 μM mT on stevioside (11.43 mg/g dry weight [DW]) and rebaudioside A (10.74 mg/g DW) biosynthesis. In all conditions, the ratio of rebaudioside A/stevioside ranged from 0.75 to 1.12. The phenolic acids chlorogenic, neochlorogenic, isochlorogenic A, and rosmarinic were confirmed in the stevia extracts, as were the flavonoids isoquercetin, and quercitrin. The highest accumulations of chlorogenic and neochlorogenic acids and flavonoids were observed in shoot tissues derived from 5 µM mT, whereas 5 µM of BAP stimulated biosynthesis of chlorogenic, isochlorogenic A, and rosmarinic acids. This is the first report on the use of mT-cytokinin showing high potential in stevia cultures.
Collapse
Affiliation(s)
- Agata Ptak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland.
| | - Agnieszka Szewczyk
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Magdalena Simlat
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland
| | - Alicja Błażejczak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
5
|
Srivastava V, Chaturvedi R. An interdisciplinary approach towards sustainable and higher steviol glycoside production from in vitro cultures of Stevia rebaudiana. J Biotechnol 2022; 358:76-91. [PMID: 36075450 DOI: 10.1016/j.jbiotec.2022.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Stevia rebaudiana is one of the vastly acclaimed commercial plant in the world and belongs to Asteraceae family. The exclusive advantage of Stevia over artificial sweeteners is impeccable and targets its potentiality to the presence of diterpene glycosides. Moreover, the flaunting sweetness of steviol glycosides with associated medicinal benefits, turns the plant to be one of the most economic assets, globally. As compared to vegetative propagation through stem-cuttings, plant tissue culture is the most suitable approach in obtaining true-to-type plants of superior quality. During last few decades, significant in vitro propagation methods have been developed and still the research is ongoing. The present review discusses the tissue culture perspectives of S. rebaudiana, primarily focusing on the mineral nutrition, growth regulators and other accessory factors, motioning the optimum growth and development of the plant. Another crucial aspect is the generation of sweeter varieties in order to reduce the bitter-off taste, which is noticed after the consumption of the leaves. The in vitro cultures pose an efficient alternative system for production of steviol glycosides, with higher rebaudioside(s) content. Moreover, the review also covers the recent approaches pertaining to scale-up studies and genome editing perspectives.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Rakhi Chaturvedi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
6
|
Wang Y, Sun X, Jia X, Zhu L, Yin H. Comparative transcriptomic of Stevia rebaudiana provides insight into rebaudioside D and rebaudioside M biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:541-549. [PMID: 34425398 DOI: 10.1016/j.plaphy.2021.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Rebaudioside D (Reb D) and rebaudioside M (Reb M) are commercially important low/no-calorie natural sweeteners. However, they are present in a minor proportion of all steviol glycosides (SGs) in Stevia rebaudiana Bertoni (S. rebaudiana). Strain-dependent deviation in Reb D and Reb M biosynthesis is one key breach for breeding of S. rebaudiana, which has not been studied at the transcriptional level. Herein, five different S. rebaudiana varieties with distinct SGs contents, one cultivar having high stevioside content (HST), one cultivar having high Reb A content (HRA) and three cultivars having high Reb D and Reb M content (HDM1, HDM2, HDM3), were selected for RNA-seq analysis. In total, 131,655 de novo assembled unigenes were found in the RNA-seq data. According to Reb D and Reb M content divergence of S. rebaudiana accessions, 2186 differentially expressed genes (DEGs) were selected as potential genes related to Reb D and Reb M biosynthesis. Weighted Gene Co-expression Network Analysis (WGCNA) was used to explore the genes associated with the Reb D and Reb M biosynthesis. The unigenes from the positively associated turquoise module formed a layered co-expression network. There are 7 UDP-dependent glycosyltransferases (UGT) and 76 transcription factors (TFs) distributing at different regions which represented varying coherence of Reb D and Reb M biosynthesis. Particularly, two TFs having a strong correlation with two UGTs in the network were also discovered. The present study provided a comprehensive insight into networks for regulation of Reb D and Reb M contents in S. rebaudiana.
Collapse
Affiliation(s)
- Yu Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xue Sun
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Liping Zhu
- Zhucheng Haotian Pharm Co., Ltd, Shandong, 262200, China; Dongtai Hirye Biotechnology Co., Ltd, Jiangsu, 224200, China.
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Libik-Konieczny M, Capecka E, Tuleja M, Konieczny R. Synthesis and production of steviol glycosides: recent research trends and perspectives. Appl Microbiol Biotechnol 2021; 105:3883-3900. [PMID: 33914136 PMCID: PMC8140977 DOI: 10.1007/s00253-021-11306-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 04/18/2021] [Indexed: 01/13/2023]
Abstract
Abstract Steviol glycosides (SvGls) are plant secondary metabolites belonging to a class of chemical compounds known as diterpenes. SvGls have been discovered only in a few plant species, including in the leaves of Stevia rebaudiana Bertoni. Over the last few decades, SvGls have been extensively researched for their extraordinary sweetness. As a result, the nutritional and pharmacological benefits of these secondary metabolites have grown increasingly apparent. In the near future, SvGls may become a basic, low-calorie, and potent sweetener in the growing natural foods market, and a natural anti-diabetic remedy, a highly competitive alternative to commercially available synthetic drugs. Commercial cultivation of stevia plants and the technologies of SvGls extraction and purification from plant material have already been introduced in many countries. However, new conventional and biotechnological solutions are still being sought to increase the level of SvGls in plants. Since many aspects related to the biochemistry and metabolism of SvGls in vivo, as well as their relationship to the overall physiology of S. rebaudiana are not yet understood, there is also a great need for in-depth scientific research on this topic. Such research may have positive impact on optimization of the profile and SvGls concentration in plants and thus lead to obtaining desired yield. This research summarizes the latest approaches and developments in SvGls production. Key points • Steviol glycosides (SvGls) are found in nature in S. rebaudiana plants. • They exhibit nutraceutical properties. • This review provides an insight on different approaches to produce SvGls. • The areas of research that still need to be explored have been identified.
Collapse
Affiliation(s)
- Marta Libik-Konieczny
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239, Krakow, Poland.
| | - Ewa Capecka
- Department of Horticulture, Faculty of Biotechnology and Agriculture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Monika Tuleja
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| | - Robert Konieczny
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, ul. Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
8
|
Makowski W, Królicka A, Nowicka A, Zwyrtková J, Tokarz B, Pecinka A, Banasiuk R, Tokarz KM. Transformed tissue of Dionaea muscipula J. Ellis as a source of biologically active phenolic compounds with bactericidal properties. Appl Microbiol Biotechnol 2021; 105:1215-1226. [PMID: 33447868 PMCID: PMC7843487 DOI: 10.1007/s00253-021-11101-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 01/27/2023]
Abstract
Abstract The Venus flytrap (Dionaea muscipula J. Ellis) is a carnivorous plant able to synthesize large amounts of phenolic compounds, such as phenylpropanoids, flavonoids, phenolic acids, and 1,4-naphtoquinones. In this study, the first genetic transformation of D. muscipula tissues is presented. Two wild-type Rhizobium rhizogenes strains (LBA 9402 and ATCC 15834) were suitable vector organisms in the transformation process. Transformation led to the formation of teratoma (transformed shoot) cultures with the bacterial rolB gene incorporated into the plant genome in a single copy. Using high-pressure liquid chromatography, we demonstrated that transgenic plants were characterized by an increased quantity of phenolic compounds, including 1,4-naphtoquinone derivative, plumbagin (up to 106.63 mg × g−1 DW), and phenolic acids (including salicylic, caffeic, and ellagic acid), in comparison to non-transformed plants. Moreover, Rhizobium-mediated transformation highly increased the bactericidal properties of teratoma-derived extracts. The antibacterial properties of transformed plants were increased up to 33% against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli and up to 7% against Pseudomonas aeruginosa. For the first time, we prove the possibility of D. muscipula transformation. Moreover, we propose that transformation may be a valuable tool for enhancing secondary metabolite production in D. muscipula tissue and to increase bactericidal properties against human antibiotic-resistant bacteria. Key points • Rhizobium-mediated transformation created Dionaea muscipula teratomas. • Transformed plants had highly increased synthesis of phenolic compounds. • The MBC value was connected with plumbagin and phenolic acid concentrations.
Collapse
Affiliation(s)
- Wojciech Makowski
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland.
| | - Aleksandra Królicka
- Intercollegiate Faculty of Biotechnology UG and MUG, Laboratory of Biologically Active Compounds, University of Gdansk, Gdansk, Poland.
| | - Anna Nowicka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.,The Franciszek Górski Institute of Plant Physiology, The Polish Academy of Sciences, Krakow, Poland
| | - Jana Zwyrtková
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Rafał Banasiuk
- Institute of Biotechnology and Molecular Medicine, Gdansk, Poland
| | - Krzysztof Michał Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|