1
|
Kinoshita I, Tanaka T, Aso Y. A tandem conversion process for the synthesis of polyitaconic acid from glucose in the Aspergillus terreus culture. Bioprocess Biosyst Eng 2025; 48:737-748. [PMID: 40067463 DOI: 10.1007/s00449-025-03139-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
In this study, a bio-based vinylidene monomer, itaconic acid (IA), produced by a fungus Aspergillus terreus NBRC 6123 was polymerized in the culture. The inhibition of IA polymerization by the culture components was eased by extraction with 4-methyltetrahydropyran (4mTHP). The extraction with 4mTHP for 4 days under aerobic condition resulted in IA production at 67.9 g/L (522 mM) in the organic phase from 180 g/L glucose. Interestingly, 4mTHP did not affect to the glucose consumption and respiration of A. terreus. IA polymerization in 4mTHP for 72 h using 400 mM IA and 1 mM 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile) as a radical initiator under anaerobic condition by N2 gas purging resulted in that the IA conversion, and the weight-averaged molecular weight (Mw) and the molecular weight distribution (MWD) of the synthesized polyitaconic acid (polyIA) were 11.5%, 79.8 × 103 g/mol, and 1.26, respectively. The respiration by the IA producer itself was used to remove the residual oxygen in the flask by sealing after the IA production. Colorimetric evaluation with a redox indicator, resazurin, revealed that an anaerobic condition which is suitable for the IA polymerization can be accomplished by just incubation for 1 day after the sealing. The synthesis of polyIA from glucose in the same flask with 4mTHP was demonstrated, resulting in that the IA conversion, and Mw and MWD of the synthesized polyIA were 13.8%, 9.1 × 103 g/mol, and 1.24, respectively, when 47.1 g/L (362 mM) IA was produced by the extraction for 3 days. To our knowledge, this is the first demonstration of radical polymerization of vinylidene monomer in microbial cultures.
Collapse
Affiliation(s)
- Ikumi Kinoshita
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomonari Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuji Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
2
|
Yang J, Duan C, Wang P, Zhang S, Gao Y, Lu S, Ji Y. 4-Octyl Itaconate Alleviates Myocardial Ischemia-Reperfusion Injury Through Promoting Angiogenesis via ERK Signaling Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411554. [PMID: 39836624 PMCID: PMC11904966 DOI: 10.1002/advs.202411554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/13/2024] [Indexed: 01/23/2025]
Abstract
Myocardial ischemia-reperfusion (IR) injury is a critical complication following revascularization therapy for ischemic heart disease. Itaconate, a macrophage-derived metabolite, has been implicated in inflammation and metabolic regulation. This study investigates the protective role of itaconate derivatives against IR injury. Using a mice model of IR injury, the impact of 7-day 4-Octyl itaconate (4-OI) administration on cardiac function is assessed. Exogenous administration of 4-OI significantly reduces myocardial damage, enhances angiogenesis, and alleviates myocardial hypoxia injury during reperfusion. RNA sequencing and molecular docking techniques are used to find the target of itaconate, and changes in cardiac function are observed in Immune-Responsive Gene1 (IRG1) global knockout mice. In cell culture studies, 4-OI promotes endothelial cell proliferation and migration, mediated by Mitogen-Activated Protein Kinases (MAPK) signaling pathway activation, particularly through Extracellular Signal-Regulated Kinase (ERK) signaling. Inhibition of ERK blocks these beneficial effects on endothelial cells. Furthermore, itaconate synthesis inhibition worsens myocardial damage, which is mitigated by 4-OI supplementation. The results indicate that 4-OI promotes angiogenesis by activating MAPK signaling via FMS-like tyrosine kinase 1 (Flt1), highlighting its potential as a therapeutic strategy for myocardial IR injury.
Collapse
Affiliation(s)
- Jiqin Yang
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Chenqi Duan
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Peng Wang
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Sijia Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Harbin Medical UniversityHarbinHeilongjiang150081P. R. China
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Shan Lu
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular MedicineSchool of PharmacyNanjing Medical University101 Longmian Avenue, Jiangning DistrictNanjing211166P. R. China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Harbin Medical UniversityHarbinHeilongjiang150081P. R. China
| |
Collapse
|
3
|
Wen Y, Liang Z. Enhanced itaconic acid secretion from macrophages mediates the protection of mesenchymal stem cell-derived exosomes on lipopolysaccharide-induced acute lung injury mice. Biol Direct 2024; 19:138. [PMID: 39721998 DOI: 10.1186/s13062-024-00586-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Alveolar macrophages (AMs) is critical to exacerbate acute lung injury (ALI) induced by lipopolysaccharide (LPS) via inhibiting inflammation, which could by shifted by mesenchymal stem cell-derived exosomes (MSC-exos). But the underlying rationale is not fully clarified. Our study aimed to analyze the significance of itaconic acid (ITA) in mediating the protective effects of MSC-exos on LPS-induced ALI. METHODS MSC-exos were used to treat pulmonary microvascular endothelial cells (PMVECs) co-cultured with AMs under LPS stimulation. si-IRG1 was transfected to AMs. PMVEC permeability, apoptosis rates, and inflammatory cytokine levels were assessed. In vivo, C57BL/6 wild-type (WT) and Irg1-/- mice were employed to explore the protection of MSC-exos against LPS-induced ALI. The lung injury was determined by histological and biochemical assays. ITA levels were measured using gas chromatography-mass spectrometry. Western blot and flow cytometry analyses were performed to assess M1/M2 polarization. RESULTS Co-culture with AMs significantly increased PMVEC permeability, apoptosis rates, IL-6, TNF-α levels and Claudin-5 and ZO-1 expression induced by LPS treatment, which were attenuated by MSC-exos accompanied by enhanced ITA level. After si-IRG1 transfection, MSC-exos' protective efficacy was reversed, with suppressed M2 polarization. In vivo, MSC-exos alleviated alveolar structure disruption, pulmonary edema, inflammation and increased ITA concentration in WT mice but had reduced effects in Irg1-/- mice, with neglected M2 polarization. CONCLUSIONS ITA secretion facilitated the MSC-exos' protective benefits on LPS-induced PMVEC damage and ALI in mice by promoting AM M2 polarization, highlighting a potential therapeutic strategy for ALI and related inflammatory lung diseases.
Collapse
Affiliation(s)
- Yanmei Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China
- Department of Respiratory and Critical Care Medicine, Chengdu Second People's Hospital, Chengdu, 610000, Sichuan, China
| | - Zong'an Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
4
|
Salvatore MM, Pappalardo C, Suarez EGP, Salvatore F, Andolfi A, Gesuele R, Galdiero E, Libralato G, Guida M, Siciliano A. Ecotoxicological and metabolomic investigation of chronic exposure of Daphnia magna (Straus, 1820) to yttrium environmental concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107117. [PMID: 39388779 DOI: 10.1016/j.aquatox.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
In order to estimate the effects on aquatic organisms of long-term exposure to low doses of yttrium (Y) as a potential emerging contaminant, ecotoxicological and metabolomic data were collected on the model organism Daphnia magna, a keystone species in freshwater ecosystems. Following an initial acute toxicity assessment, a 21-day chronic exposure experiment was conducted using a sublethal concentration of 27 μg L⁻¹ of Y, corresponding to the effective concentrations inducing 10 % effect (EC10) value for mortality endpoint and simulating the environmental Y level in aquatic systems. Results from the 21-day two-factor experiment combining microcrustacean survival, growth and reproduction bioassays and targeted gas chromatography-mass spectrometry (GC-MS) metabolomics indicated significant adverse effects of chronic exposure to Y on D. magna. Daphnids exposed to Y exhibited a significantly lower survival at day 21, delayed the maturity stage, including their first breeding, and decreased clutch size. On the side of metabolomics, a clear and general increase over time of both the number and the level of detected metabolites in the hydroalcoholic extracts of the whole organisms was observed. However, emerging from this broad temporal pattern, several bioactive metabolites were identified (e.g., 2,4-di‑tert‑butylphenol, itaconic acid, 3-hydroxybutyric acid, and trehalose) whose levels in extracts are linked to the presence of Y. These results emphasize the necessity of considering low-dose, long-term exposure scenarios in environmental risk assessments of rare earth elements (REEs), which have often been overlooked in favour of higher concentration studies.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy.
| | - Chiara Pappalardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | | - Francesco Salvatore
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy; BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici (NA), Italy
| | - Renato Gesuele
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Emilia Galdiero
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | | |
Collapse
|
5
|
Li J, Xu H, Li H, Xie Y, Ding K, Xu S, Wang Z, Wang R, Yi C, Ding S. Co-fermentation of Lactiplantibacillus and Streptococcusccus enriches the key-contribution volatile and non-volatile components of jujube juice. Food Res Int 2024; 196:115093. [PMID: 39614506 DOI: 10.1016/j.foodres.2024.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Lactic acid bacteria (LAB) fermentation can enhance the quality and flavor characteristics of fruit juice. Herein, the impact of individual Lactiplantibacillus plantarum subsp. plantarum (L. plantarum) or Streptococcus thermophilus (S. thermophilus) and co-fermentation of them on jujube juice was compared, and their quality characteristics, volatile and non-volatile compounds were investigated. The results showed that the co-fermentation of selected LAB strains effectively improved the quality of fermented jujube juice (FJJ) as expected, and the types and content of volatile organic compounds (VOCs) increased in FJJs. Among them, the co-fermented sample posed relatively high content of aroma-active compounds with OAV ≥1 (nonanal, decanal, etc), benzaldehyde and acids compared with others, contributing to a more attractive and pleasant flavor. Moreover, non-targeted metabolomic analysis identified 114 and 79 differential metabolites (DMs) between co-fermented and L. plantarum fermented or S. thermophilus fermented samples, respectively. Notably, carboxylic acids and their derivative metabolites as well as organic acids were the crucial components affecting the quality of FJJ. Furthermore, metabolic pathways of DMs of different samples were predominantly enriched in "biosynthesis" and "metabolism", such as aline, leucine, and isoleucine biosynthesis pathway. Therefore, co-fermentation could enrich the acids, essential amino acid, and VOCs, thereby improving its quality and flavor characteristics. The correlation analysis revealed that most of key VOCs were positively or negatively correlated with D-galacturonate, indicating the importance of D-galactose pathway. Thus, this study provided a theoretical foundation for enhancing the quality and flavor of jujube juice through LAB co-fermentation, offering valuable insights for improving the juice processing.
Collapse
Affiliation(s)
- Jing Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Huan Li
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ke Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zijun Wang
- DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Cuiping Yi
- School of Food Science and Bioengineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Provincial Key Laboratory for Fruits and Vegetables Storage Processing and Quality Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
6
|
Zhou S, He J, Liu Q, Chen T, Guan X, Gao H, Jiang J, Wang J, Peng X, Wu J. Injectable Hydrogel of Chitosan-Octyl Itaconate Conjugate Modulates Inflammatory Response. ACS Biomater Sci Eng 2024; 10:4823-4838. [PMID: 39056337 DOI: 10.1021/acsbiomaterials.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Itaconic acid and its derivative 4-octyl itaconate (OI) represent a novel anti-inflammatory medication that has demonstrated efficacy in multiple inflammation models because of its minimal side effects. Recently, natural polymers conjugated with small molecule drugs, known as polymer-drug conjugates (PDCs), have emerged as a promising approach to sustained drug release. In this work, we reported an approach to prepare a PDC containing an OI and make it into an injectable hydrogel. Chitosan (CS) was selected for PDC synthesis because of its abundant free amino groups that can be conjugated with molecules containing carboxyl groups by carbodiimide chemistry. We used an ethanol/water cosolvent system to synthesize a CS-OI conjugate via EDC/NHS catalysis. The CS-OI conjugate had improved water solubility and unique anti-inflammatory activity and did not show compromised antibacterial activity compared with unmodified CS. Beta-glycerophosphate (β-GP) cross-linked CS-OI hydrogel exhibited good injectability with sustainable OI release and effectively modulated inflammatory response in a rat model. Therefore, this study provides valuable insights into the design of PDC hydrogels with inflammatory modulatory properties.
Collapse
Affiliation(s)
- Shasha Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jibing He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Quan Liu
- Department of Orthopedics, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, P. R. China
| | - Ting Chen
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiangheng Guan
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Haihan Gao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jia Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jiaxing Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Xiaochun Peng
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
7
|
El Amir D, Sayed AM, El-Hawary SS, Elsakhawy OM, Attia EZ, Abdelmohsen UR, Mohammed R. Metabolomic profiling of Medicago sativa-derived fungal endophytes and evaluation of their biological activities. RSC Adv 2024; 14:14296-14302. [PMID: 38690109 PMCID: PMC11059938 DOI: 10.1039/d4ra00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
This study aimed to discover the potential of Medicago sativa-derived fungal endophytes as a prospective source of bioactive metabolites. In the present study, three different strains of fungal endophyte Aspergillus terreus were isolated from leaves L, roots T and stems St of Medicago sativa to explore their biological and chemical diversity. These isolated fungi were exposed to different fermentation conditions by adding various chemical elicitors to their solid fermentation media. According to LC-HRESIMS-based metabolomics and multivariate analysis, each chemical treatment had a different effect on the chemical profiles of the fungi. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) proposed several compounds with anticancer action against MCF-7 (a human breast cancer cell line) and MDA-MB-231 (a human epithelial breast cancer cell line).
Collapse
Affiliation(s)
- Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University 61014 Basrah Iraq
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11936 Cairo Egypt
| | - Omnia M Elsakhawy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| |
Collapse
|
8
|
Zhao X, Feng R, Chen J, Jiang Q, Hua X, Liang C. 4-Octyl itaconate alleviates experimental autoimmune prostatitis by inhibiting the NLRP3 inflammasome-induced pyroptosis through activating Nrf2/HO-1 pathway. Prostate 2024; 84:329-341. [PMID: 38073004 DOI: 10.1002/pros.24652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Chronic prostatitis demonstrates a prevalence rate of nearly 5%-10% among young and middle-aged individuals, significantly affecting their daily lives. Researchers have obtained significant outcomes investigating the anti-inflammatory properties of itaconic acid (IA) and its derivative, 4-Octyl itaconate (4-OI), against diverse chronic inflammatory disorders, such as osteoarthritis and airway inflammation. Nevertheless, whether IA can also exert anti-inflammatory effects in chronic prostatitis requires extensive research and validation. METHODS Human prostate tissues obtained through transurethral prostate resection (TURP) from individuals were divided into three groups based on different levels of inflammation using hematoxylin and eosin staining (H&E). Subsequently, immunohistochemistry (IHC) was employed to detect the expression of immune-responsive gene 1 (IRG-1) in these different groups. The animal experiment of this study induced experimental autoimmune prostatitis (EAP) in nonobese diabetic mice through intradermal prostate antigen injection and complete Freund's adjuvant. Then, the experimental group received intraperitoneal injections of different doses of 4-OI, while the control group received injections of saline. Western blot (WB), H&E staining, and TUNEL staining helped analyze the prostate tissues, while enzyme-linked immunosorbent assay (ELISA) helped evaluate serum inflammatory factors. Reactive oxygen species, superoxide dismutase (SOD), and malondialdehyde (MDA) were assessed for oxidative stress across experimental groups. RESULTS IHC analysis of human prostate tissue depicts that IRG-1 expression enhances as prostate inflammation worsens, highlighting the critical role of IA in human prostatitis. The application of 4-OI increased Nrf2/HO-1 expression while inhibited NLRP3 expression following the WB results, and its application resulted in a decrease in cell pyroptosis in prostate tissue, demonstrated by the results of TUNEL staining. Administering a Nrf2 inhibitor ML385 1 h before intraperitoneal injection of 50 mg/kg 4-OI reversed the previous conclusion, further confirming the above conclusion from another perspective. Meanwhile, the ELISA results of serum inflammatory factors (IL-1β, IL-6, and TNF-α), as well as the measurements of oxidative stress markers MDA and SOD, further confirmed the specific anti-inflammatory effects of 4-OI in EAP. CONCLUSIONS The present study indicates that 4-OI can alleviates EAP by inhibiting the NLRP3 inflammasome-induced pyroptosis through activating Nrf2/HO-1 pathway, which may facilitate a novel approach toward prostatitis treatment.
Collapse
Affiliation(s)
- Xiaohu Zhao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Ministry of Education Key Laboratory of Laboratory Medical Diagnostics, The College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoliang Hua
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Bhagat NR, Chauhan P, Verma P, Mishra A, Bharti VK. High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity. Sci Rep 2023; 13:20856. [PMID: 38012260 PMCID: PMC10682461 DOI: 10.1038/s41598-023-48147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Recently, there has been considerable interest in the functions of gut microbiota in broiler chickens in relation to their use as feed additives. However, the gut-microbiota of chickens reared at different altitudes are not well documented for their potential role in adapting to prevailing conditions and functional changes. In this context, the present study investigates the functional diversity of gut-microbes in high-altitude (HACh) and low-altitude adapted chickens (LACh), assessing their substrate utilization profile through Biolog Ecoplates technology. This will help in the identification of potential microbes or their synthesized metabolites, which could be beneficial for the host or industrial applications. Results revealed that among the 31 different types of studied substrates, only polymers, carbohydrates, carboxylic acids, and amine-based substrates utilization varied significantly (p < 0.05) among the chickens reared at two different altitudes where gut-microbes of LACh utilized a broad range of substrates than the HACh. Further, diversity indices (Shannon and MacIntosh) analysis in LACh samples showed significant (p < 0.05) higher richness and evenness of microbes as compared to the HACh samples. However, no significant difference was observed in the Simpson diversity index in gut microbes of lowversus high-altitude chickens. In addition, the Principal Component Analysis elucidated variation in substrate preferences of gut-microbes, where 13 and 8 carbon substrates were found to constitute PC1 and PC2, respectively, where γ-aminobutyric acid, D-glucosaminic acid, i-erythritol and tween 40 were the most relevant substrates that had a major effect on PC1, however, alpha-ketobutyric acid and glycyl-L-glutamic acid affected PC2. Hence, this study concludes that the gut-microbes of high and low-altitudes adapted chickens use different carbon substrates so that they could play a vital role in the health and immunity of an animal host based on their geographical location. Consequently, this study substantiates the difference in the substrate utilization and functional diversity of the microbial flora in chickens reared at high and low altitudes due to altitudinal changes.
Collapse
Affiliation(s)
- Neha Rani Bhagat
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- School of Sciences, P. P. Savani University, NH-8, GETCO, Near Biltech, Kosamba, Surat, 394125, India
| | - Pratibha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India.
| |
Collapse
|
10
|
Miętus M, Kolankowski K, Gołofit T, Denis P, Bandzerewicz A, Spychalski M, Mąkosa-Szczygieł M, Pilarek M, Wierzchowski K, Gadomska-Gajadhur A. From Poly(glycerol itaconate) Gels to Novel Nonwoven Materials for Biomedical Applications. Gels 2023; 9:788. [PMID: 37888360 PMCID: PMC10606113 DOI: 10.3390/gels9100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Electrospinning is a process that has attracted significant interest in recent years. It provides the opportunity to produce nanofibers that mimic the extracellular matrix. As a result, it is possible to use the nonwovens as scaffolds characterized by high cellular adhesion. This work focused on the synthesis of poly(glycerol itaconate) (PGItc) and preparation of nonwovens based on PGItc gels and polylactide. PGItc gels were synthesized by a reaction between itaconic anhydride and glycerol. The use of a mixture of PGItc and PLA allowed us to obtain a material with different properties than with stand-alone polymers. In this study, we present the influence of the chosen ratios of polymers and the OH/COOH ratio in the synthesized PGItc on the properties of the obtained materials. The addition of PGItc results in hydrophilization of the nonwovens' surface without disrupting the high porosity of the fibrous structure. Spectral and thermal analyzes are presented, along with SEM imagining. The preliminary cytotoxicity research showed that nonwovens were non-cytotoxic materials. It also helped to pre-determine the potential application of PGItc + PLA nonwovens as subcutaneous tissue fillers or drug delivery systems.
Collapse
Affiliation(s)
- Magdalena Miętus
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Krzysztof Kolankowski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Tomasz Gołofit
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B Street, 02-106 Warsaw, Poland;
| | - Aleksandra Bandzerewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| | - Maciej Spychalski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 Street, 02-507 Warsaw, Poland;
| | - Marcin Mąkosa-Szczygieł
- Department of Chemistry, Faculty of Natural Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway;
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645 Warsaw, Poland; (M.P.); (K.W.)
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645 Warsaw, Poland; (M.P.); (K.W.)
| | - Agnieszka Gadomska-Gajadhur
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (M.M.); (K.K.); (T.G.); (A.B.)
| |
Collapse
|
11
|
Xia N, Madore V, Albalakhi A, Lin S, Stimpson T, Xu Y, Schwarzschild MA, Bakshi R. Microglia-dependent neuroprotective effects of 4-octyl itaconate against rotenone-and MPP+-induced neurotoxicity in Parkinson's disease. Sci Rep 2023; 13:15539. [PMID: 37730914 PMCID: PMC10511514 DOI: 10.1038/s41598-023-42813-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Chronic neuroinflammation is implicated in the pathogenesis of Parkinson's disease (PD), one of the most common neurodegenerative diseases. Itaconate, an endogenous metabolite derived from the tricarboxylic acid cycle via immune-responsive gene 1 activity, may mediate anti-inflammatory responses by activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway. This study investigates the neuroprotective potential of 4-octyl itaconate (OI), a cell-permeable derivative of itaconate, in cellular models of PD. OI not only suppressed lipopolysaccharide-induced proinflammatory cascades of inducible nitric oxide synthase, cyclooxygenase-2, and cytokines release in mouse BV2 microglial cells but also activated the Nrf2 signaling pathway and its downstream targets in these cells. Conditioned medium derived from OI-treated BV2 cells protected against rotenone- and MPP+-induced neurotoxicity in Neuro 2A cells. Overall, our findings support the anti-inflammatory neuroprotective potential of OI in PD.
Collapse
Affiliation(s)
- Ning Xia
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| | - Victoria Madore
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Ali Albalakhi
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Sonia Lin
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Taylor Stimpson
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Yuehang Xu
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Michael A Schwarzschild
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Rachit Bakshi
- Molecular Neurobiology Laboratory, Massachusetts General Hospital, Boston, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
12
|
Aso Y, Tanaka K, Miyazaki C, Kataoka C, Long BHD, Tanaka T. Photoclick reaction for rapid and simple fluorescence detection of itaconic acid and its derivatives in fungal cultures. Anal Bioanal Chem 2023:10.1007/s00216-023-04773-w. [PMID: 37256307 DOI: 10.1007/s00216-023-04773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/01/2023]
Abstract
Itaconic acid (IA) and its derivatives produced by fungi have significant potential as industrial feedstocks. We recently developed a method for the detection of these compounds based on their terminal C-C double bonds. However, the presence of reducing agents, such as glucose and other fungal metabolites, leads to undesirable side reactions, and consequently, deteriorates the detection specificity. Therefore, we developed a fluorescence detection method for IA and its derivatives underpinned by a photoclick reaction. The photoclick reaction between conjugated IA and 5-(4-methoxyphenyl)-2-phenyl-2H-tetrazole under UV irradiation affords a fluorescent product. No fluorescence was detected when succinic acid was subjected to the reaction, indicating that a terminal C-C double bond is required to induce fluorescence. Optimal reaction conditions were determined to be a combination of 80% final dimethyl sulfoxide concentration, 30-s UV irradiation, and a pH of 2. Two weeks after the reaction at 4 °C, 89.0% of the initial intensity was retained, indicating that the reaction product was relatively stable. Glucose and kojic acid did not induce fluorescence after the reaction, indicating that these reducing agents did not affect fluorescence. IA was detected in a culture of Aspergillus terreus, and its quantification using the photoclick reaction was in agreement with the results obtained using high-performance liquid chromatography analysis. Interestingly, the IA derivative avenaciolide present in submillimolar quantities was also detectable in a culture of Aspergillus avenaceus using this method. The established method will enable the development of high-throughput screening methods to identify fungi that produce IA and its derivatives.
Collapse
Affiliation(s)
- Yuji Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan.
| | - Koki Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Chiharu Miyazaki
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Chikara Kataoka
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Bui Hoang Dang Long
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| | - Tomonari Tanaka
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-Cho, Matsugasaki, Sakyo-Ku, Kyoto, 606-8585, Japan
| |
Collapse
|
13
|
Yamaguchi A, Maeshige N, Yan J, Ma X, Uemura M, Matsuda M, Nishimura Y, Hasunuma T, Kondo H, Fujino H, Yuan ZM. Skeletal myotube-derived extracellular vesicles enhance itaconate production and attenuate inflammatory responses of macrophages. Front Immunol 2023; 14:1099799. [PMID: 36936950 PMCID: PMC10018131 DOI: 10.3389/fimmu.2023.1099799] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Macrophages play an important role in the innate immunity. While macrophage inflammation is necessary for biological defense, it must be appropriately controlled. Extracellular vesicles (EVs) are small vesicles released from all types of cells and play a central role in intercellular communication. Skeletal muscle has been suggested to release anti-inflammatory factors, but the effect of myotube-derived EVs on macrophages is unknown. As an anti-inflammatory mechanism of macrophages, the immune responsive gene 1 (IRG1)-itaconate pathway is essential. In this study, we show that skeletal muscle-derived EVs suppress macrophage inflammatory responses, upregulating the IRG1-itaconate pathway. Methods C2C12 myoblasts were differentiated into myotubes and EVs were extracted by ultracentrifugation. Skeletal myotube-derived EVs were administered to mouse bone marrow-derived macrophages, then lipopolysaccharide (LPS) stimulation was performed and inflammatory cytokine expression was measured by RT-qPCR. Metabolite abundance in macrophages after addition of EVs was measured by CE/MS, and IRG1 expression was measured by RT-PCR. Furthermore, RNA-seq analysis was performed on macrophages after EV treatment. Results EVs attenuated the expression of LPS-induced pro-inflammatory factors in macrophages. Itaconate abundance and IRG1 expression were significantly increased in the EV-treated group. RNA-seq analysis revealed activation of the PI3K-Akt and JAK-STAT pathways in macrophages after EV treatment. The most abundant miRNA in myotube EVs was miR-206-3p, followed by miR-378a-3p, miR-30d-5p, and miR-21a-5p. Discussion Skeletal myotube EVs are supposed to increase the production of itaconate via upregulation of IRG1 expression and exhibited an anti-inflammatory effect in macrophages. This anti-inflammatory effect was suggested to involve the PI3K-Akt and JAK-STAT pathways. The miRNA profiles within EVs implied that miR-206-3p, miR-378a-3p, miR-30d-5p, and miR-21a-5p may be responsible for the anti-inflammatory effects of the EVs. In summary, in this study we showed that myotube-derived EVs prevent macrophage inflammatory responses by activating the IRG1-itaconate pathway.
Collapse
Affiliation(s)
- Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- *Correspondence: Noriaki Maeshige, ; Hidemi Fujino,
| | - Jiawei Yan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Yuya Nishimura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women’s University, Nagoya, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- *Correspondence: Noriaki Maeshige, ; Hidemi Fujino,
| | - Zhi-Min Yuan
- Department of Environmental Health, Harvard University T.H Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
14
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
15
|
Saha BC, Kennedy GJ, Bowman MJ, Qureshi N, Nichols NN. Itaconic acid production by Aspergillus terreus from glucose up to pilot scale and from corn stover and wheat straw hydrolysates using new manganese tolerant medium. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Kolankowski K, Miętus M, Ruśkowski P, Gadomska-Gajadhur A. Optimisation of Glycerol and Itaconic Anhydride Polycondensation. Molecules 2022; 27:4627. [PMID: 35889505 PMCID: PMC9324205 DOI: 10.3390/molecules27144627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Glycerol polyesters have recently become objects of interest in tissue engineering. Barely known so far is poly(glycerol itaconate) (PGItc), a biocompatible, biodegradable polyester. Due to the presence of a C=C electron-acceptor moiety, it is possible to post-modify the product by Michael additions to change the properties of PGItc. Thus, using PGItc as one of the elements of cellular scaffold crosslinked in situ for bone tissue regeneration seems to be a very attractive yet unexplored solution. This work aims to optimize the synthesis of PGItc to obtain derivatives with a double bond in the side chain with the highest conversion rates. The experiments were performed with itaconic anhydride and glycerol using mathematical planning of experiments according to the Box-Behnken plan without solvent and catalyst. The input variables of the process were the ratio of the OH/COOH, temperature, and reaction time. The optimised output variables were: the degree of esterification (EDtitr), the degree of esterification calculated from the analysis of 1H NMR spectra (EDNMR), and the degree of itaconic anhydride conversion-calculation based on 13C NMR spectra (%X13CNMR). In each of statistical models, the significance of the changed synthesis parameters was determined. Optimal conditions are when OH/COOH ratio is equal to 1.5, temperature is 140 °C and time of reaction is 5 h. The higher OH/COOH ratio, temperature and longer the experiment time, the higher the value of the degree of esterification and the degree of anhydride conversion.
Collapse
Affiliation(s)
| | | | | | - Agnieszka Gadomska-Gajadhur
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland; (K.K.); (M.M.); (P.R.)
| |
Collapse
|
17
|
Krátký M, Novotná E, Stolaříková J, Švarcová M, Vinšová J. Substituted N-phenylitaconamides as inhibitors of mycobacteria and mycobacterial isocitrate lyase. Eur J Pharm Sci 2022; 176:106252. [DOI: 10.1016/j.ejps.2022.106252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/16/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022]
|
18
|
Yamaguchi A, Maeshige N, Ma X, Uemura M, Noguchi H, Matsuda M, Nishimura Y, Hasunuma T, Kondo H, Fujino H. Pulsed-Ultrasound Irradiation Induces the Production of Itaconate and Attenuates Inflammatory Responses in Macrophages. J Inflamm Res 2022; 15:2387-2395. [PMID: 35444446 PMCID: PMC9013924 DOI: 10.2147/jir.s361609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/07/2022] [Indexed: 12/30/2022] Open
Abstract
Background Itaconate is a key metabolite in the innate immune system and exerts strong anti-inflammatory effects in macrophages. For the production of itaconate in macrophages, immune-responsive gene 1 (IRG1) is an imperative enzyme, and activating the IRG1-itaconate pathway is reported to alleviate inflammatory diseases by upregulating nuclear factor-erythroid 2-related factor 2 (NRF2). However, there are very few reports on strategies to increase itaconate production. Ultrasound therapy is a widely used intervention for anti-inflammatory and soft-tissue regeneration purposes. Here we show the effect of ultrasound irradiation on the production of itaconate in macrophages. Methods Murine bone marrow-derived macrophages (BMDMs) were exposed to pulsed ultrasound (3.0 W/cm2) for 5 minutes. Three hours after irradiation, the intracellular levels of metabolites and mRNA expression levels of Irg1 and Nrf2 were measured using CE/MS and qPCR, respectively. To evaluate macrophage inflammation status, 3 h after irradiation, the cells were stimulated with 100 ng/mL lipopolysaccharide (LPS) for 1.5 h and the mRNA expression levels of pro-inflammatory factors (Il-1β, Il-6, and Tnf-α) were measured. Student’s t-test, one-way ANOVA and Tukey’s multiple comparison test were used for statistical processing, and the significance level was set to less than 5%. Results Ultrasound irradiation significantly increased the intracellular itaconate level and the expression levels of Irg1 and Nrf2 in BMDMs. Upregulation of Il-1β, Il-6, and Tnf-α by LPS was significantly suppressed in BMDMs treated with ultrasound. Ultrasound irradiation did not affect cell viability and apoptosis. Conclusion Ultrasound irradiation induces the production of itaconate by upregulating Irg1 expression and attenuates inflammatory responses in macrophages via Nrf2. These results suggest that ultrasound is a potentially useful method to increase itaconate production in macrophages.
Collapse
Affiliation(s)
- Atomu Yamaguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Correspondence: Noriaki Maeshige, Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka, Kobe, 654-0142, Hyogo, Japan, Tel +81 78 796 4582, Email
| | - Xiaoqi Ma
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mikiko Uemura
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hikari Noguchi
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Yuya Nishimura
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
- Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women’s University, Nagoya, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
19
|
Scheurlen KM, Snook DL, Walter MN, Cook CN, Fiechter CR, Pan J, Beal RJ, Galandiuk S. Itaconate and leptin affecting PPARγ in M2 macrophages: A potential link to early-onset colorectal cancer. Surgery 2022; 171:650-656. [PMID: 34876290 PMCID: PMC8885843 DOI: 10.1016/j.surg.2021.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/28/2021] [Accepted: 10/27/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Along with the rising incidence of obesity, there has been an increase in patients diagnosed with early-onset colorectal cancer (<50 years old). In colorectal cancer, worse patient survival is associated with certain cytokine expression and downregulation of peroxisome proliferator activated receptor gamma expression. The effects of the obesity hormone leptin and macrophage-specific metabolite itaconate on these mechanisms are poorly understood. We investigated their impact on peroxisome proliferator activated receptor gamma and macrophage cytokine expression in vitro. METHODS M2-like macrophages were treated with either leptin, 4-octyl itaconate, or dimethyl itaconate in a dose- and time-dependent manner. Gene expression after treatment with 4 doses (D1-4) of each compound was analyzed at 4 time points (3, 6, 18, and 24 hours). RESULTS Peroxisome proliferator activated receptor gamma was downregulated after 4-octyl itaconate treatment at 18 hours (FC -32.67, P ≤ .001). Interleukin-8 was upregulated after leptin and dimethyl itaconate treatment at 6 hours (FC 26.35 at D4, P ≤ .001, and FC 23.26 at D3, P = .006). Dimethyl itaconate upregulated IL-1β at 24 hours (FC 18.00 at D4, P ≤ .001). Tumor necrosis factor-α showed maximum downregulation after 4-octyl itaconate at 18 hours (FC -103.25 at D4, P ≤ .001). CONCLUSIONS Itaconate downregulates peroxisome proliferator activated receptor gamma as a tumor-suppressing factor and upregulates anti-inflammatory cytokines in M2-like macrophages. Itaconate provides a link between obesity and colorectal cancer and may be a key regulator in early-onset colorectal cancer.
Collapse
Affiliation(s)
- Katharina M Scheurlen
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Dylan L Snook
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Mary N Walter
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Cheyenne N Cook
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Casey R Fiechter
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Jianmin Pan
- Biostatistics Shared Facility, James Graham Brown Cancer Center, University of Louisville, Louisville, KY
| | - Robert J Beal
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY
| | - Susan Galandiuk
- Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, KY.
| |
Collapse
|
20
|
Krause BM, Bauer B, Neudörfl JM, Wieder T, Schmalz HG. ItaCORMs: conjugation with a CO-releasing unit greatly enhances the anti-inflammatory activity of itaconates. RSC Med Chem 2021; 12:2053-2059. [PMID: 35024614 PMCID: PMC8672850 DOI: 10.1039/d1md00163a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Endogenous itaconate as well as the gasotransmitter CO have recently been described as powerful anti-inflammatory and immunomodulating agents. However, each of the two agents comes along with a major drawback: Whereas itaconates only exert beneficial effects at high concentrations above 100 μM, the uncontrolled application of CO has strong toxic effects. To solve these problems, we designed hybrid prodrugs, i.e. itaconates that are conjugated with an esterase-triggered CO-releasing acyloxycyclohexadiene-Fe(CO)3 unit (ItaCORMs). Here, we describe the synthesis of different ItaCORMs and demonstrate their anti-inflammatory potency in cellular assays of primary murine immune cells in the low μmolar range (<10 μM). Thus, ItaCORMs represent a promising new class of hybrid compounds with high clinical potential as anti-inflammatory agents.
Collapse
Affiliation(s)
- Bernhard M Krause
- University of Cologne, Department of Chemistry Greinstr. 4 5939 Köln Germany
| | - Britta Bauer
- University Medical Center Tübingen, Department of Dermatology Liebermeisterstr. 25 72076 Tübingen Germany
| | | | - Thomas Wieder
- University Medical Center Tübingen, Department of Dermatology Liebermeisterstr. 25 72076 Tübingen Germany.,Physiologisches Institut, Abteilung für Vegetative und Klinische Physiologie, Eberhard-Karls-Universität Tübingen Wilhelmstr. 56 72074 Tübingen Germany
| | | |
Collapse
|
21
|
Teleky BE, Vodnar DC. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers (Basel) 2021; 13:3574. [PMID: 34685333 PMCID: PMC8539575 DOI: 10.3390/polym13203574] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
Intense research has been conducted to produce environmentally friendly biopolymers obtained from renewable feedstock to substitute fossil-based materials. This is an essential aspect for implementing the circular bioeconomy strategy, expressly declared by the European Commission in 2018 in terms of "repair, reuse, and recycling". Competent carbon-neutral alternatives are renewable biomass waste for chemical element production, with proficient recyclability properties. Itaconic acid (IA) is a valuable platform chemical integrated into the first 12 building block compounds the achievement of which is feasible from renewable biomass or bio-wastes (agricultural, food by-products, or municipal organic waste) in conformity with the US Department of Energy. IA is primarily obtained through fermentation with Aspergillus terreus, but nowadays several microorganisms are genetically engineered to produce this organic acid in high quantities and on different substrates. Given its trifunctional structure, IA allows the synthesis of various novel biopolymers, such as drug carriers, intelligent food packaging, antimicrobial biopolymers, hydrogels in water treatment and analysis, and superabsorbent polymers binding agents. In addition, IA shows antimicrobial, anti-inflammatory, and antitumor activity. Moreover, this biopolymer retains qualities like environmental effectiveness, biocompatibility, and sustainability. This manuscript aims to address the production of IA from renewable sources to create a sustainable circular economy in the future. Moreover, being an essential monomer in polymer synthesis it possesses a continuous provocation in the biopolymer chemistry domain and technologies, as defined in the present review.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăstur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Yang S, Zhang X, Zhang H, Lin X, Chen X, Zhang Y, Lin X, Huang L, Zhuge Q. Dimethyl itaconate inhibits LPS‑induced microglia inflammation and inflammasome‑mediated pyroptosis via inducing autophagy and regulating the Nrf‑2/HO‑1 signaling pathway. Mol Med Rep 2021; 24:672. [PMID: 34296312 PMCID: PMC8335742 DOI: 10.3892/mmr.2021.12311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/10/2021] [Indexed: 12/20/2022] Open
Abstract
The endogenous metabolite itaconate and its cell‑permeable derivative dimethyl itaconate (DI) have been identified as anti‑inflammatory regulators of macrophages; however, their contribution to inflammasome‑mediated pyroptosis remains unknown. The present study examined the molecular mechanism of DI on NLR family pyrin domain‑containing 3 (NLRP3) inflammasome assembly and NLRP3 inflammasome‑dependent pyroptosis in microglia. Lipopolysaccharide (LPS) and ATP were used to induce microglia pyroptosis in vitro; this process was confirmed by TUNEL assay, lactate dehydrogenase (LDH) detection and gasdermin D (GSDMD) expression analysis. The regulation of microglia polarization and inflammatory cytokine expression was assessed by immunofluorescence assays and ELISA. To investigate the associated mechanism of action, the expression levels of the nuclear factor erythroid 2‑related factor 2 (Nrf‑2)/heme oxygenase‑1 (HO‑1) pathway proteins were analyzed by western blotting. Finally, the regulatory effect of DI on autophagy and its association with inflammation was determined by western blotting. The present study demonstrated that DI administration inhibited NLRP3 assembly, LDH release and GSDMD cleavage. Cotreatment of DI with LPS and ATP facilitated the transition from M1 to M2, reduced inflammatory mediator expression and impeded NF‑κB phosphorylation. In addition, DI effectively reduced reactive oxygen species production through the Nrf‑2/HO‑1 pathway. Moreover, DI induced cellular autophagy, whereas inhibition of autophagy with 3‑methyladenine markedly reversed its inhibitory effect on NLRP3‑dependent pyroptosis. Taken together, the present study suggested that DI participated in the Nrf‑2/HO‑1 pathway and served a key role in microglia inflammation and NLRP3 inflammasome‑mediated pyroptosis via induction of autophagy.
Collapse
Affiliation(s)
- Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xingxing Zhang
- Department of Operation Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hengli Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiangxiang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xijun Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
23
|
Gopaliya D, Kumar V, Khare SK. Recent advances in itaconic acid production from microbial cell factories. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Mousa M, Bergenudd H, Kron AL, Malmström E. Biobased Lactones—Exploring Their Free-Radical Polymerization and Polymer Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maryam Mousa
- KTH Royal Institute of Technology, School of Engineering Science in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
| | - Helena Bergenudd
- Nouryon Pulp and Performance Chemicals AB, Box
13000, Sundsvall SE-850 13, Sweden
| | - Anna Larsson Kron
- Nouryon Pulp and Performance Chemicals AB, Box
13000, Sundsvall SE-850 13, Sweden
| | - Eva Malmström
- KTH Royal Institute of Technology, School of Engineering Science in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, Division of Coating Technology, Teknikringen 56-58, SE-100 44 Stockholm, Sweden
- Wallenberg Wood Science Center, Teknikringen 56-58, Stockholm SE-100 44, Sweden
| |
Collapse
|
25
|
Lin J, Ren J, Gao DS, Dai Y, Yu L. The Emerging Application of Itaconate: Promising Molecular Targets and Therapeutic Opportunities. Front Chem 2021; 9:669308. [PMID: 34055739 PMCID: PMC8149739 DOI: 10.3389/fchem.2021.669308] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 01/16/2023] Open
Abstract
Metabolites have recently been found to be involved in significant biological regulation and changes. Itaconate, an important intermediate metabolite isolated from the tricarboxylic acid cycle, is derived from cis-aconitate decarboxylation mediated by immune response gene 1 in mitochondrial matrix. Itaconate has emerged as a key autocrine regulatory component involved in the development and progression of inflammation and immunity. It could directly modify cysteine sites on functional substrate proteins which related to inflammasome, signal transduction, transcription, and cell death. Itaconate can be a connector among immunity, metabolism, and inflammation, which is of great significance for further understanding the mechanism of cellular immune metabolism. And it could be the potential choice for the treatment of inflammation and immune-related diseases. This study is a systematic review of the potential mechanisms of metabolite associated with different pathology conditions. We briefly summarize the structural characteristics and classical pathways of itaconate and its derivatives, with special emphasis on its promising role in future clinical application, in order to provide theoretical basis for future research and treatment intervention.
Collapse
Affiliation(s)
| | | | | | | | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|