1
|
Wang Z, Chen J, Veiga MC, Kennes C. Scalable propionic acid production using Cutibacterium acnes ZW-1: Insights into substrate and pH-driven carbon flux. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178806. [PMID: 39946891 DOI: 10.1016/j.scitotenv.2025.178806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/21/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
An acid-resistant Cutibacterium acnes ZW-1 was isolated from human skin, and propionic acid (PA) production under different substrate and pH conditions was studied. When the molar ratio of lactic acid (LA) to acetic acid (AA) was 7:1 and the pH was 6.5, the PA concentration could reach 64.84 mM. Meanwhile, the index analysis and enzyme activity revealed that the PA carbon flux was 59 %, the PA electronic efficiency reached 79 %, and the propionyl-CoA carboxylase activity was 1.075 mmol·mg protein-1. Considering the competition between AA/PA production and biomass synthesis, although the slightly acidic pH (<6.5) would promote the flow of carbon to PA, its concentration was severely inhibited due to the limitation of biomass. Further scale-up verification in an automated bioreactor indicated that PA production improved, up to 83.31 mM, and the production rate reached 1.066 g·L-1·d-1. This work may provide support for the industrial application of PA bioproduction.
Collapse
Affiliation(s)
- Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China; Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Jun Chen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Centre of Chemistry and Biology - Centro Interdisciplinar de Química y Biología (CICA), BIOENGIN group, University of La Coruña (UDC), E-15008 La Coruña, Spain.
| |
Collapse
|
2
|
Dishisha T, Jain M, Hatti-Kaul R. High cell density sequential batch fermentation for enhanced propionic acid production from glucose and glycerol/glucose mixture using Acidipropionibacterium acidipropionici. Microb Cell Fact 2024; 23:91. [PMID: 38532467 DOI: 10.1186/s12934-024-02366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Propionic acid fermentation from renewable feedstock suffers from low volumetric productivity and final product concentration, which limits the industrial feasibility of the microbial route. High cell density fermentation techniques overcome these limitations. Here, propionic acid (PA) production from glucose and a crude glycerol/glucose mixture was evaluated using Acidipropionibacterium acidipropionici, in high cell density (HCD) batch fermentations with cell recycle. The agro-industrial by-product, heat-treated potato juice, was used as N-source. RESULTS Using 40 g/L glucose for nine consecutive batches yielded an average of 18.76 ± 1.34 g/L of PA per batch (0.59 gPA/gGlu) at a maximum rate of 1.15 gPA/L.h, and a maximum biomass of 39.89 gCDW/L. Succinic acid (SA) and acetic acid (AA) were obtained as major by-products and the mass ratio of PA:SA:AA was 100:23:25. When a crude glycerol/glucose mixture (60 g/L:30 g/L) was used for 6 consecutive batches with cell recycle, an average of 35.36 ± 2.17 g/L of PA was obtained per batch (0.51 gPA/gC-source) at a maximum rate of 0.35 g/L.h, and reaching a maximum biomass concentration of 12.66 gCDW/L. The PA:SA:AA mass ratio was 100:29:3. Further addition of 0.75 mg/L biotin as a supplement to the culture medium enhanced the cell growth reaching 21.89 gCDW/L, and PA productivity to 0.48 g/L.h, but also doubled AA concentration. CONCLUSION This is the highest reported productivity from glycerol/glucose co-fermentation where majority of the culture medium components comprised industrial by-products (crude glycerol and HTPJ). HCD batch fermentations with cell recycling are promising approaches towards industrialization of the bioprocess.
Collapse
Affiliation(s)
- Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62511, Egypt
| | - Mridul Jain
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00, Lund, Sweden
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, P.O. Box 124, 221 00, Lund, Sweden.
| |
Collapse
|
3
|
Piwowarek K, Lipińska E, Kieliszek M. Reprocessing of side-streams towards obtaining valuable bacterial metabolites. Appl Microbiol Biotechnol 2023; 107:2169-2208. [PMID: 36929188 PMCID: PMC10033485 DOI: 10.1007/s00253-023-12458-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023]
Abstract
Every year, all over the world, the industry generates huge amounts of residues. Side-streams are most often used as feed, landfilled, incinerated, or discharged into sewage. These disposal methods are far from perfect. Taking into account the composition of the side-streams, it seems that they should be used as raw materials for further processing, in accordance with the zero-waste policy and sustainable development. The article describes the latest achievements in biotechnology in the context of bacterial reprocessing of residues with the simultaneous acquisition of their metabolites. The article focuses on four metabolites - bacterial cellulose, propionic acid, vitamin B12 and PHAs. Taking into account global trends (e.g. food, packaging, medicine), it seems that in the near future there will be a sharp increase in demand for this type of compounds. In order for their production to be profitable and commercialised, cheap methods of its obtaining must be developed. The article, in addition to obtaining these bacterial metabolites from side-streams, also discusses e.g. factors affecting their production, metabolic pathways and potential and current applications. The presented chapters provide a complete overview of the current knowledge on above metabolites, which can be helpful for the academic and scientific communities and the several industries. KEY POINTS: • The industry generates millions of tons of organic side-streams each year. • Generated residues burden the natural environment. • A good and cost-effective method of side-streams management seems to be biotechnology - reprocessing with the use of bacteria. • Biotechnological disposal of side-streams gives the opportunity to obtain valuable compounds in cheaper ways: BC, PA, vitmain B12, PHAs.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
4
|
Liu C, Chen T, Chen J, Zhou Y, Deng L, Feng G, Gao J, Liang H. Induced effect of Ca 2+ and Al 3+ on chaetominine synthesis by Aspergillus fumigatus CY018 under submerged fermentation. Biotechnol Appl Biochem 2022; 69:2733-2744. [PMID: 34994979 DOI: 10.1002/bab.2318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022]
Abstract
Chaetominine (CHA), an alkaloid with a biological activity obtained from Aspergillus fumigatus CY018, has strong anticancer activity against the human leukemia cells. However, its physiological and biochemical research is limited by CHA yield in the liquid-state fermentation, which is a problem that urgently needs effective biological solution. In this work, Ca2+ and Al3+ were found to have a strong promoting effect on CHA production after multiple metal ions screening. Then, the addition condition of Ca2+ and Al3+ was, respectively, optimized CHA production and dry cell weight. The intermediate metabolites were increased with coaddition of Ca2+ and Al3+ . The activities of key enzymes of DAHPs, AroAs, and TrpCs in the CHA biosynthesis pathway were improved by 3.58-, 3.60-, and 3.34-fold, respectively. Meanwhile, the transcription level of laeA, dahp, cs, and trpC was upregulated by 3.22-, 12.65-, 5.58-, and 6.99-fold, respectively, by coaddition of Ca2+ and Al3+ . Additionally, the fermentation strategy was successfully scaled up to a 5-L bioreactor, in which CHA production could attain 75.6 mg/L at 336 h. This work demonstrated that Ca2+ and Al3+ coaddition was an effective strategy for increasing CHA production, and the information obtained might be useful in the fermentation of filamentous fungi with the addition of metal ions.
Collapse
Affiliation(s)
- Changqing Liu
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| | - Tianwen Chen
- Economic and Trade Department, Yancheng Polytechnic College, Yancheng, Jiangsu, People's Republic of China
| | - Jijie Chen
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| | - Yuxuan Zhou
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| | - Lina Deng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| | - Gongneng Feng
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| | - Jian Gao
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| | - Huixing Liang
- College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol 2022; 13:933882. [PMID: 36081794 PMCID: PMC9445815 DOI: 10.3389/fmicb.2022.933882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, lignocellulosic biomass has been introduced to the public as the most important raw material for the environmentally and economically sustainable production of high-valued bioproducts by microorganisms. However, due to the strong recalcitrant structure, the lignocellulosic materials have major limitations to obtain fermentable sugars for transformation into value-added products, e.g., bioethanol, biobutanol, biohydrogen, etc. In this review, we analyzed the recent trends in bioenergy production from pretreated lignocellulose, with special attention to the new strategies for overcoming pretreatment barriers. In addition, persistent challenges in developing for low-cost advanced processing technologies are also pointed out, illustrating new approaches to addressing the global energy crisis and climate change caused by the use of fossil fuels. The insights given in this study will enable a better understanding of current processes and facilitate further development on lignocellulosic bioenergy production.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
6
|
Piwowarek K, Lipińska E, Hać-Szymańczuk E, Kolotylo V, Kieliszek M. Use of apple pomace, glycerine, and potato wastewater for the production of propionic acid and vitamin B12. Appl Microbiol Biotechnol 2022; 106:5433-5448. [PMID: 35879434 PMCID: PMC9418287 DOI: 10.1007/s00253-022-12076-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 12/05/2022]
Abstract
Abstract Propionic acid bacteria (PAB) are a source of valuable metabolites, including propionic acid and vitamin B12. Propionic acid, a food preservative, is synthesized from petroleum refining by-products, giving rise to ecological concerns. Due to changing food trends, the demand for vitamin B12 has been expected to increase in the future. Therefore, it is necessary to look for new, alternative methods of obtaining these compounds. This study was conducted with an aim of optimizing the production of PAB metabolites using only residues (apple pomace, waste glycerine, and potato wastewater), without any enzymatic or chemical pretreatment and enrichment. Media consisting of one, two, or three industrial side-streams were used for the production of PAB metabolites. The highest production of propionic acid was observed in the medium containing all three residues (8.15 g/L, yield: 0.48 g/g). In the same medium, the highest production of acetic acid was found — 2.31 g/L (0.13 g/g). The presence of waste glycerine in the media had a positive effect on the efficiency of propionic acid production and P/A ratio. The concentration of vitamin B12 obtained in the wet biomass of Propionibacterium freudenreichii DSM 20271 ranged from 90 to 290 µg/100 g. The highest production of cobalamin was achieved in potato wastewater and apple pomace, which may be a source of the precursors of vitamin B12 — cobalt and riboflavin. The results obtained show both propionic acid and vitamin B12 can be produced in a more sustainable manner through the fermentation of residues which are often not properly managed. Key points • The tested strain has been showed metabolic activity in the analyzed industrial side-streams (apple pomace, waste glycerine, potato wastewater). • All the side-streams were relevant for the production of propinic acid. • The addition of waste glycerine increases the propionic acid production efficiency and P/A ratio. • B12 was produced the most in the media containing potato wastewater and apple pomace as dominant ingredients.
Collapse
Affiliation(s)
- Kamil Piwowarek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland.
| | - Edyta Lipińska
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Elżbieta Hać-Szymańczuk
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Vitaliy Kolotylo
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159C, 02-776, Warsaw, Poland
| |
Collapse
|
7
|
Production and fermentation characteristics of antifungal peptides by synergistic interactions with Lactobacillus paracasei and Propionibacterium freudenii in supplemented whey protein formulations. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Collograi KC, da Costa AC, Ienczak JL. Fermentation strategies to improve propionic acid production with propionibacterium ssp.: a review. Crit Rev Biotechnol 2022; 42:1157-1179. [PMID: 35264026 DOI: 10.1080/07388551.2021.1995695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Propionic acid (PA) is a carboxylic acid applied in a variety of processes, such as food and feed preservative, and as a chemical intermediate in the production of polymers, pesticides and drugs. PA production is predominantly performed by petrochemical routes, but environmental issues are making it necessary to use sustainable processes based on renewable materials. PA production by fermentation with the Propionibacterium genus is a promising option in this scenario, due to the ability of this genus to consume a variety of renewable carbon sources with higher productivity than other native microorganisms. However, Propionibacterium fermentation processes present important challenges that must be faced to make this route competitive, such as: a high fermentation time, product inhibition and low PA final titer, which increase the cost of product recovery. This article summarizes the state of the art regarding strategies to improve PA production by fermentation with the Propionibacterium genus. Firstly, strategies associated with environmental fermentation conditions and nutrition requirements are discussed. Subsequently, advantages and disadvantages of various strategies proposed to improve process performance (high cell concentration by immobilization or recycle, co-culture fermentation, genome shuffling, evolutive and metabolic engineering, and in situ recovery) are evaluated.
Collapse
Affiliation(s)
| | | | - Jaciane Lutz Ienczak
- Chemical Engineering and Food Engineering Department- Santa Catarina, Federal University, Florianópolis, Brazil
| |
Collapse
|
9
|
Fermentative production of propionic acid: prospects and limitations of microorganisms and substrates. Appl Microbiol Biotechnol 2021; 105:6199-6213. [PMID: 34410439 DOI: 10.1007/s00253-021-11499-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Propionic acid is an important organic acid with wide industrial applications, especially in the food industry. It is currently produced from petrochemicals via chemical routes. Increasing concerns about greenhouse gas emissions from fossil fuels and a growing consumer preference for bio-based products have led to interest in fermentative production of propionic acid, but it is not yet competitive with chemical production. To improve the economic feasibility and sustainability of bio-propionic acid, fermentation performance in terms of concentration, yield, and productivity must be improved and the cost of raw materials must be reduced. These goals require robust microbial producers and inexpensive renewable feedstocks, so the present review focuses on bacterial producers of propionic acid and promising sources of substrates as carbon sources. Emphasis is placed on assessing the capacity of propionibacteria and the various approaches pursued in an effort to improve their performance through metabolic engineering. A wide range of substrates employed in propionic acid fermentation is analyzed with particular interest in the prospects of inexpensive renewable feedstocks, such as cellulosic biomass and industrial residues, to produce cost-competitive bio-propionic acid. KEY POINTS: • Fermentative propionic acid production emerges as competitor to chemical synthesis. • Various bacteria synthesize propionic acid, but propionibacteria are the best producers. • Biomass substrates hold promise to reduce propionic acid fermentation cost.
Collapse
|
10
|
Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules 2021; 26:molecules26133965. [PMID: 34209563 PMCID: PMC8271679 DOI: 10.3390/molecules26133965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/15/2023] Open
Abstract
Propionic acid bacteria are the source of many metabolites, e.g., propionic acid and trehalose. Compared to microbiological synthesis, the production of these metabolites by petrochemical means or enzymatic conversion is more profitable. The components of microbiological media account for a large part of the costs associated with propionic fermentation, due to the high nutritional requirements of Propionibacterium. This problem can be overcome by formulating a medium based on the by-products of technological processes, which can act as nutritional sources and at the same time replace expensive laboratory preparations (e.g., peptone and yeast extract). The metabolic activity of P. freudenreichii was investigated in two different breeding environments: in a medium containing peptone, yeast extract, and biotin, and in a waste-based medium consisting of only apple pomace and potato wastewater. The highest production of propionic acid amounting to 14.54 g/L was obtained in the medium containing apple pomace and pure laboratory supplements with a yield of 0.44 g/g. Importantly, the acid production parameters in the waste medium reached almost the same level (12.71 g/L, 0.42 g/g) as the medium containing pure supplements. Acetic acid synthesis was more efficient in the waste medium; it was also characterized by a higher level of accumulated trehalose (59.8 mg/g d.s.). Thus, the obtained results show that P. freudenreichii bacteria exhibited relatively high metabolic activity in an environment with apple pomace used as a carbon source and potato wastewater used as a nitrogen source. This method of propioniate production could be cheaper and more sustainable than the chemical manner.
Collapse
|
11
|
The Prospects of Agricultural and Food Residue Hydrolysates for Sustainable Production of Algal Products. ENERGIES 2020. [DOI: 10.3390/en13236427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The growing demand of microalgal biomass for biofuels, nutraceuticals, cosmetics, animal feed, and other bioproducts has created a strong interest in developing low-cost sustainable cultivation media and methods. Agricultural and food residues represent low-cost abundant and renewable sources of organic carbon that can be valorized for the cultivation of microalgae, while converting them from an environmental liability to an industrial asset. Biochemical treatment of such residues results in the release of various sugars, primarily glucose, sucrose, fructose, arabinose, and xylose along with other nutrients, such as trace elements. These sugars and nutrients can be metabolized in the absence of light (heterotrophic) or the presence of light (mixotrophic) by a variety of microalgae species for biomass and bioproduct production. The present review provides an up-to-date critical assessment of the prospects of various types of agricultural and food residues to serve as algae feedstocks and the microalgae species that can be grown on such residues under a range of cultivation conditions. Utilization of these feedstocks can create potential industrial applications for sustainable production of microalgal biomass and bioproducts.
Collapse
|