1
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|
2
|
Papanikolopoulou A, Gargalianos-Kakolyris P, Stoupis A, Moussas N, Pangalis A, Theodoridou K, Chronopoulou G, Pantazis N, Kantzanou M, Maltezou HC, Tsakris A. Carbapenem-Resistant Pseudomonas aeruginosa Bacteremia, through a Six-Year Infection Control Program in a Hospital. Microorganisms 2023; 11:1315. [PMID: 37317288 DOI: 10.3390/microorganisms11051315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is a life-threatening healthcare-associated infection affecting especially patients with immunosuppression and comorbidities. We investigated the association between the incidence of CRPA bacteremia, antibiotic consumption, and infection control measures in a hospital during 2013-2018. METHODS We prospectively recorded the incidence of CRPA bacteremia, antibiotic consumption, use of hand-hygiene solutions, and isolation rates of multidrug-resistant (MDR) carrier patients. FINDINGS The consumption of colistin, aminoglycosides, and third-generation cephalosporins decreased significantly in the total hospital and its divisions (p-value < 0.001 for all comparisons) while the consumption of carbapenems decreased significantly in the adults ICU (p-value = 0.025). In addition, the incidence of CRPA significantly decreased in the total hospital clinics and departments (p-values = 0.027 and 0.042, respectively) and in adults clinics and departments (p-values = 0.031 and 0.051, respectively), while in the adults ICU, the incidence remained unchanged. Increased isolation rates of MDR carrier patients, even two months before, significantly correlated with decreased incidence of CRPA bacteremia (IRR: 0.20, 95% CI: 0.05-0.73, p-value = 0.015) in the adults ICU. Interestingly, when the use of hand-hygiene solutions (alcohol and/or scrub) increased, the consumption of advanced, nonadvanced, and all antibiotics decreased significantly. CONCLUSION In our hospital, multimodal infection control interventions resulted in a significant reduction of CRPA bacteremia, mostly due to the reduction of all classes of antibiotics.
Collapse
Affiliation(s)
- Amalia Papanikolopoulou
- Clinical Pharmacology Department, Athens Medical Center, 5-7 Distomou Str., 15125 Marousi, Greece
| | | | - Athina Stoupis
- Clinical Infectious Diseases Department, Athens Medical Center, 1 Delfon Str., 15125 Marousi, Greece
| | - Nikos Moussas
- Clinical Infectious Diseases Department, Athens Medical Center, 1 Delfon Str., 15125 Marousi, Greece
| | - Anastasia Pangalis
- Biopathology Department, Athens Medical Center, 5-7 Distomou Str., 15125 Marousi, Greece
| | - Kalliopi Theodoridou
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
- Department of Microbiology, Andreas Syggros Hospital for Skin and Venereal Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Genovefa Chronopoulou
- Biopathology Department, Athens Medical Center, 5-7 Distomou Str., 15125 Marousi, Greece
| | - Nikos Pantazis
- Department of Hygiene, Epidemiology and Medical Statistics, Faculty of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Maria Kantzanou
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Helena C Maltezou
- Directorate of Research, Studies and Documentation, National Public Health Organization, 3-5 Agrafon Str., 15123 Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| |
Collapse
|
3
|
Purushothaman S, Meola M, Egli A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int J Mol Sci 2022; 23:9834. [PMID: 36077231 PMCID: PMC9456280 DOI: 10.3390/ijms23179834] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 12/21/2022] Open
Abstract
Whole genome sequencing (WGS) provides the highest resolution for genome-based species identification and can provide insight into the antimicrobial resistance and virulence potential of a single microbiological isolate during the diagnostic process. In contrast, metagenomic sequencing allows the analysis of DNA segments from multiple microorganisms within a community, either using an amplicon- or shotgun-based approach. However, WGS and shotgun metagenomic data are rarely combined, although such an approach may generate additive or synergistic information, critical for, e.g., patient management, infection control, and pathogen surveillance. To produce a combined workflow with actionable outputs, we need to understand the pre-to-post analytical process of both technologies. This will require specific databases storing interlinked sequencing and metadata, and also involves customized bioinformatic analytical pipelines. This review article will provide an overview of the critical steps and potential clinical application of combining WGS and metagenomics together for microbiological diagnosis.
Collapse
Affiliation(s)
- Srinithi Purushothaman
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
| | - Marco Meola
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Swiss Institute of Bioinformatics, University of Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland
- Clinical Bacteriology and Mycology, University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
4
|
Geng J, Liu H, Chen S, Long J, Jin Y, Yang H, Duan G. Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. FEMS Microbiol Lett 2022; 369:fnac015. [PMID: 35147175 DOI: 10.1093/femsle/fnac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Huiying Liu
- People's Hospital of Henan University of Chinese Medicine, Zhengzhou, 450003, Henan, China
- People's Hospital of Zhengzhou, Zhengzhou, 450003, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| |
Collapse
|