1
|
Vishwakarma A, Verma D. 16S rDNA-Based Amplicon Analysis Unveiled a Correlation Between the Bacterial Diversity and Antibiotic Resistance Genes of Bacteriome of Commercial Smokeless Tobacco Products. Appl Biochem Biotechnol 2024; 196:6759-6781. [PMID: 38407781 DOI: 10.1007/s12010-024-04857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
The distribution of bacterial-derived antibiotic resistance genes (ARGs) in smokeless tobacco products is less explored and encourages understanding of the ARG profile of Indian smokeless tobacco products. Therefore, in the present investigation, ten commercial smokeless tobacco products were assessed for their bacterial diversity to understand the correlation between the inhabitant bacteria and predicted ARGs using a 16S rDNA-based metagenome analysis. Overall analysis showed the dominance of two phyla, i.e., Firmicutes (43.07%) and Proteobacteria (8.13%) among the samples, where Bacillus (9.76%), Terribacillus (8.06%), Lysinibacillus (5.8%), Alkalibacterium (5.6%), Oceanobacillus (3.52%), and Dickeya (3.1%) like genera were prevalent among these phyla. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt)-based analysis revealed 217 ARGs which were categorized into nine groups. Cationic antimicrobial polypeptides (CAMP, 33.8%), vancomycin (23.4%), penicillin-binding protein (13.8%), multidrug resistance MDR (10%), and β-lactam (9.3%) were among the top five contributors to ARGs. Staphylococcus, Dickeya, Bacillus, Aerococcus, and Alkalibacterium showed their strong and significant correlation (p value < 0.05) with various antibiotic resistance mechanisms. ARGs of different classes (blaTEM, blaSHV, blaCTX, tetX, vanA, aac3-II, mcr-1, intI-1, and intI2) were also successfully amplified in the metagenomes of SMT samples using their specific primers. The prevalence of ARGs in inhabitant bacteria of smokeless tobacco products suggests making steady policies to regulate the hygiene of commercial smokeless tobacco products.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025
| | - Digvijay Verma
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India, 226025.
| |
Collapse
|
2
|
Sajid M, Sharma U, Srivastava S, Yadav RK, Bharadwaj M. Microbial community and functions involved in smokeless tobacco product: a metagenomic approach. Appl Microbiol Biotechnol 2024; 108:395. [PMID: 38918238 PMCID: PMC11199310 DOI: 10.1007/s00253-024-13156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 06/27/2024]
Abstract
Smokeless tobacco products (STPs) are attributed to oral cancer and oral pathologies in their users. STP-associated cancer induction is driven by carcinogenic compounds including tobacco-specific nitrosamines (TSNAs). The TSNAs synthesis could enhanced due to the metabolic activity (nitrate metabolism) of the microbial populations residing in STPs, but identifying microbial functions linked to the TSNAs synthesis remains unexplored. Here, we rendered the first report of shotgun metagenomic sequencing to comprehensively determine the genes of all microorganisms residing in the Indian STPs belonging to two commercial (Moist-snuff and Qiwam) and three loose (Mainpuri Kapoori, Dohra, and Gudakhu) STPs, specifically consumed in India. Further, the level of nicotine, TSNAs, mycotoxins, and toxic metals were determined to relate their presence with microbial activity. The microbial population majorly belongs to bacteria with three dominant phyla including Actinobacteria, Proteobacteria, and Firmicutes. Furthermore, the STP-linked microbiome displayed several functional genes associated with nitrogen metabolism and antibiotic resistance. The chemical analysis revealed that the Mainpuri Kapoori product contained a high concentration of ochratoxins-A whereas TSNAs and Zink (Zn) quantities were high in the Moist-snuff, Mainpuri Kapoori, and Gudakhu products. Hence, our observations will help in attributing the functional potential of STP-associated microbiome and in the implementation of cessation strategies against STPs. KEY POINTS: •Smokeless tobacco contains microbes that can assist TSNA synthesis. •Antibiotic resistance genes present in smokeless tobacco-associated bacteria. •Pathogens in STPs can cause infections in smokeless tobacco users.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Upma Sharma
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Ravi Kumar Yadav
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
3
|
Peterson LA, Stanfill SB, Hecht SS. An update on the formation in tobacco, toxicity and carcinogenicity of N'-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Carcinogenesis 2024; 45:275-287. [PMID: 38437625 PMCID: PMC11102769 DOI: 10.1093/carcin/bgae018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The tobacco-specific nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) are considered 'carcinogenic to humans' by the International Agency for Research on Cancer (IARC) and are believed to be important in the carcinogenic effects of both smokeless tobacco and combusted tobacco products. This short review focuses on the results of recent studies on the formation of NNN and NNK in tobacco, and their carcinogenicity and toxicity in laboratory animals. New mechanistic insights are presented regarding the role of dissimilatory nitrate reductases in certain microorganisms involved in the conversion of nitrate to nitrite that leads to the formation of NNN and NNK during curing and processing of tobacco. Carcinogenicity studies of the enantiomers of the major NNK metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and the enantiomers of NNN are reviewed. Recent toxicity studies of inhaled NNK and co-administration studies of NNK with formaldehyde, acetaldehyde, acrolein and CO2, all of which occur in high concentrations in cigarette smoke, are discussed.
Collapse
Affiliation(s)
- Lisa A Peterson
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Stanfill SB, Hecht SS, Joerger AC, González PJ, Maia LB, Rivas MG, Moura JJG, Gupta AK, Le Brun NE, Crack JC, Hainaut P, Sparacino-Watkins C, Tyx RE, Pillai SD, Zaatari GS, Henley SJ, Blount BC, Watson CH, Kaina B, Mehrotra R. From cultivation to cancer: formation of N-nitrosamines and other carcinogens in smokeless tobacco and their mutagenic implications. Crit Rev Toxicol 2023; 53:658-701. [PMID: 38050998 DOI: 10.1080/10408444.2023.2264327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 12/07/2023]
Abstract
Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.
Collapse
Affiliation(s)
- Stephen B Stanfill
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Andreas C Joerger
- Structural Genomics Consortium (SGC), Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pablo J González
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - Luisa B Maia
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | - Maria G Rivas
- Department of Physics, Universidad Nacional Litoral, and CONICET, Santa Fe, Argentina
| | - José J G Moura
- Department of Chemistry, LAQV, REQUIMTE, NOVA School of Science and Technology (FCT NOVA), Caparica, Portugal
| | | | - Nick E Le Brun
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Jason C Crack
- School of Chemistry, Centre for Molecular and Structural Biochemistry, University of East Anglia, Norwich, UK
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Courtney Sparacino-Watkins
- University of Pittsburgh, School of Medicine, Division of Pulmonary Allergy and Critical Care Medicine, Vascular Medicine Institute, PA, USA
| | - Robert E Tyx
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Suresh D Pillai
- Department of Food Science & Technology, National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Ghazi S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - S Jane Henley
- Division of Cancer Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin C Blount
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Clifford H Watson
- Tobacco and Volatiles Branch, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Mainz, Germany
| | - Ravi Mehrotra
- Centre for Health, Innovation and Policy Foundation, Noida, India
| |
Collapse
|
5
|
Sajid M, Srivastava S, Yadav RK, Joshi L, Bharadwaj M. Fungal Community Composition and Function Associated with Loose Smokeless Tobacco Products. Curr Microbiol 2023; 80:131. [PMID: 36894760 DOI: 10.1007/s00284-023-03237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Smokeless tobacco products (STPs) contain several microbial communities which are responsible for the formation of carcinogens, like tobacco-specific nitrosamine (TSNAs). A majority of STPs are sold in loose/unpackaged form which can be loaded with a diverse microbial population. Here, the fungal population and mycotoxins level of three popular Indian loose STPs, Dohra, Mainpuri Kapoori (MK), and loose leaf-chewing tobacco (LCT) was examined using metagenomic sequencing of ITS1 DNA segment of the fungal genome and LC-MS/MS, respectively. We observed that Ascomycota was the most abundant phylum and Sterigmatomyces and Pichia were the predominant fungal genera in loose STPs. MK displayed the highest α-diversity being enriched with pathogenic fungi Apiotrichum, Aspergillus, Candida, Fusarium, Trichosporon, and Wallemia. Further, FUNGuild analysis revealed an abundance of saprotrophs in MK, while pathogen-saprotroph-symbiotroph were abundant in Dohra and LCT. The level of a fungal toxin (ochratoxins A) was high in the MK product. This study caution that loose STPs harbor various harmful fungi that can infect their users and deliver fungal toxins or disrupt the oral microbiome of SLT users which can contribute to several oral pathologies.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Ravi K Yadav
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Lata Joshi
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India.
| |
Collapse
|
6
|
Vishwakarma A, Srivastava A, Mishra S, Verma D. Taxonomic and functional profiling of Indian smokeless tobacco bacteriome uncovers several bacterial-derived risks to human health. World J Microbiol Biotechnol 2022; 39:20. [PMID: 36409379 DOI: 10.1007/s11274-022-03461-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Smokeless tobacco (ST) consumption keeps human oral health at high risk which is one of the major reasons for oral tumorigenesis. The chemical constituents of the ST products have been well discussed; however, the inhabitant microbial diversity of the ST products is less explored especially from south Asian regions. Therefore, the present investigation discusses the bacteriome-based analysis of indigenous tobacco products. The study relies on 16S amplicon-based bacteriome analysis of Indian smokeless tobacco (ST) products using a metagenomic approach. A total of 59,15,143 high-quality reads were assigned to 34 phyla, 82 classes, 176 orders, 256 families, 356 genera, and 154 species using the SILVA database. Of the phyla (> 1%), Firmicutes dominate among the Indian smokeless tobacco followed by Proteobacteria, Bacteroidetes, and Actinobacteria (> 1%). Whereas, at the genera level (> 1%), Lysinibacillus, Dickeya, Terribacillus, and Bacillus dominate. The comparative analysis between the loose tobacco (LT) and commercial tobacco (CT) groups showed no significant difference at the phyla level, however, only three genera (Bacillus, Aerococcus, and Halomonas) were identified as significantly different between the groups. It indicates that CT and LT tobacco share similar bacterial diversity and poses equal health risks to human oral health. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt 2.0) based analysis uncovered several genes involved in nitrate/nitrite reduction, biofilm formation, and pro-inflammation that find roles in oral pathogenesis including oral cancer. The strong correlation analysis of these genes with several pathogenic bacteria suggests that tobacco products pose a high bacterial-derived risk to human health. The study paves the way to understand the bacterial diversity of Indian smokeless tobacco products and their putative functions with respect to human oral health. The study grabs attention to the bacterial diversity of the smokeless tobacco products from a country where tobacco consumers are rampantly prevalent however oral health is of least concern.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ankita Srivastava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
7
|
Sajid M, Srivastava S, Yadav RK, Singh H, Singh S, Bharadwaj M. Composition and Ecological Functionality of Fungal Communities Associated with Smokeless Tobacco Products Mainly Consumed in India. Microbiol Spectr 2022; 10:e0227321. [PMID: 35695566 PMCID: PMC9430657 DOI: 10.1128/spectrum.02273-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/13/2022] [Indexed: 01/05/2023] Open
Abstract
The microbial communities present in smokeless tobacco products (STPs) perform critical steps in the synthesis of carcinogens, mainly tobacco-specific nitrosamines (TSNAs). Most studies emphasize the bacterial component, and the mycobiome of STPs has not been well characterized. In this study, we investigated the fungal communities in the different categories of STPs by sequencing the internal transcribed spacer (ITS) rRNA region of the fungal genome. The ecological character of the fungal community associated with STPs was determined by using FUNGuild. Our results indicated that Ascomycota and Basidiomycota were the most abundant fungal phyla across all STPs. The predominant fungal genera in STPs were Pichia, Sterigmatomyces, and Mortierella. The α-diversity varied significantly across the STPs based on observed, Fisher, and Shannon indices. Using SparCC cooccurrence network analysis, significant positive correlations of 58.5% and negative connections of 41.5% were obtained among fungal genera identified in STPs. Furthermore, the functional predictions by FUNGuild determined that STPs possessed high abundances of saprotroph and pathotroph-saprotroph-symbiotroph fungal trophic groups. At the functional guild level, the qiwam samples contained high abundances of soil saprotrophs, while plant pathogens were prevalent in pan-masala samples. These results suggest that various fungal populations reside in STPs and interrelate with each other and can contribute to the synthesis of TSNAs. This study has established the basis for future large-scale investigations of STP-associated mycobiota and the impact of such mycobiota in oral carcinogenesis in STP users via inflammation and carcinogens (TSNAs and mycotoxins). IMPORTANCE Smokeless tobacco products (STPs) contain complex microbial communities that influence the synthesis of carcinogens, such as tobacco-specific nitrosamines (TSNAs). Research on STP-associated bacterial populations revealed connections between bacterial metabolism and TSNA synthesis. The abundance of the fungal population may also have an impact on the production of TSNAs. This study examined STPs popularly used in India, and diverse fungal communities were identified in these STPs. Pichia, Sterigmatomyces, and Mortierella were the predominant fungal genera in the STPs. High abundances of saprotroph and pathotroph-saprotroph-symbiotroph trophic groups in STPs could affect the degradation of tobacco products and the synthesis of TSNAs.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Ravi Kumar Yadav
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Harpreet Singh
- Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Shalini Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
- WHO-FCTC Global Knowledge Hub on Smokeless Tobacco, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Delineating the Bacteriome of Packaged and Loose Smokeless Tobacco Products Available in North India. Appl Microbiol Biotechnol 2022; 106:4129-4144. [PMID: 35604437 DOI: 10.1007/s00253-022-11979-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Smokeless tobacco product (STP) consumption is a significant public health threat across the globe. STPs are not only a storehouse of carcinogens and toxicants but also harbor microbes that aid in the conversion of tobacco alkaloids to carcinogenic tobacco-specific nitrosamines (TSNAs), thereby posing a further threat to the health of its consumers. The present study analyzed the bacterial diversity of popular dry and loose STPs by 16S rRNA gene sequencing. This NGS-based investigation revealed four dominant phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria and identified 549 genera, Prevotella, Bacteroides, and Lactobacillus constituting the core bacteriome of these STPs. The most significantly diverse bacteriome profile was displayed by the loose STP Mainpuri kapoori. The study further predicted the functional attributes of the prevalent genera by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) algorithm. Genes encoding for nitrate and nitrite reduction and transport enzymes, antibiotic resistance, multi-drug transporters and efflux pumps, secretion of endo- and exotoxin, and other pro-inflammatory molecules were identified. The loose STPs showed the highest level of nitrogen metabolism genes which can contribute to the synthesis of TSNAs. This study reveals the bacteriome of Indian domestic loose STPs that stagger behind in manufacturing and storage stringencies. Our results raise an alarm that the consumption of STPs harboring pathogenic genera can potentially lead to the onset of several oral and systemic diseases. Nevertheless, an in-depth correlation analysis of the microbial diversity of STPs and their elicit impact on consumer health is warranted. KEY POINTS: • Smokeless tobacco harbors bacteria that aid in synthesis of carcinogenic nitrosamines. • Most diverse bacteriome profile was displayed by loose smokeless tobacco products. • Pathogenic genera in these products can harm the oral and systemic health of users.
Collapse
|
9
|
Tyx RE, Rivera AJ, Satten GA, Keong LM, Kuklenyik P, Lee GE, Lawler TS, Kimbrell JB, Stanfill SB, Valentin-Blasini L, Watson CH. Associations between microbial communities and key chemical constituents in U.S. domestic moist snuff. PLoS One 2022; 17:e0267104. [PMID: 35507593 PMCID: PMC9067656 DOI: 10.1371/journal.pone.0267104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/01/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Smokeless tobacco (ST) products are widely used throughout the world and contribute to morbidity and mortality in users through an increased risk of cancers and oral diseases. Bacterial populations in ST contribute to taste, but their presence can also create carcinogenic, Tobacco-Specific N-nitrosamines (TSNAs). Previous studies of microbial communities in tobacco products lacked chemistry data (e.g. nicotine, TSNAs) to characterize the products and identify associations between carcinogen levels and taxonomic groups. This study uses statistical analysis to identify potential associations between microbial and chemical constituents in moist snuff products. METHODS We quantitatively analyzed 38 smokeless tobacco products for TSNAs using liquid chromatography with tandem mass spectrometry (LC-MS/MS), and nicotine using gas chromatography with mass spectrometry (GC-MS). Moisture content determinations (by weight loss on drying), and pH measurements were also performed. We used 16S rRNA gene sequencing to characterize the microbial composition, and additionally measured total 16S bacterial counts using a quantitative PCR assay. RESULTS Our findings link chemical constituents to their associated bacterial populations. We found core taxonomic groups often varied between manufacturers. When manufacturer and flavor were controlled for as confounding variables, the genus Lactobacillus was found to be positively associated with TSNAs. while the genera Enteractinococcus and Brevibacterium were negatively associated. Three genera (Corynebacterium, Brachybacterium, and Xanthomonas) were found to be negatively associated with nicotine concentrations. Associations were also investigated separately for products from each manufacturer. Products from one manufacturer had a positive association between TSNAs and bacteria in the genus Marinilactibacillus. Additionally, we found that TSNA levels in many products were lower compared with previously published chemical surveys. Finally, we observed consistent results when either relative or absolute abundance data were analyzed, while results from analyses of log-ratio-transformed abundances were divergent.
Collapse
Affiliation(s)
- Robert E. Tyx
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Angel J. Rivera
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Glen A. Satten
- Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Reproductive Health, Atlanta, Georgia, United States of America
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lisa M. Keong
- Battelle Analytical Services, Atlanta, Georgia, United States of America
| | - Peter Kuklenyik
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Grace E. Lee
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Tameka S. Lawler
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Jacob B. Kimbrell
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Stephen B. Stanfill
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Liza Valentin-Blasini
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Clifford H. Watson
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Tyx RE, Rivera AJ, Stanfill SB, Zaatari GS, Watson CH. Shotgun metagenome sequencing of a Sudanese toombak snuff tobacco: genetic attributes of a high tobacco-specific nitrosamine containing smokeless tobacco product. Lett Appl Microbiol 2022; 74:444-451. [PMID: 34862647 PMCID: PMC9204801 DOI: 10.1111/lam.13623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/28/2022]
Abstract
The most alarming aspect of the Sudanese toombak smokeless tobacco is that it contains high levels of highly toxic tobacco-specific nitrosamines (TSNAs). Understanding the microbiology of toombak is of relevance because TSNAs are an indirect result of microbial-mediated nitrate reductions. We conducted shotgun metagenomic sequencing on a toombak product for which relevant features are presented here. The microbiota was composed of over 99% Bacteria. The most abundant taxa included Actinobacteria, specifically the genera Enteractinococcus and Corynebacterium, while Firmicutes were represented by the family Bacillaceae and the genus Staphylococcus. Selected gene targets were nitrate reduction and transport, antimicrobial resistance, and other genetic transference mechanisms. Canonical nitrate reduction and transport genes (i.e. nar) were found for Enteractinococcus and Corynebacterium while various species of Staphylococcus exhibited a notable number of antimicrobial resistance and genetic transference genes. The nitrate reduction activity of the microbiota in toombak is suspected to be a contributing factor to its high levels of TSNAs. Additionally, the presence of antimicrobial resistance and transference genes could contribute to deleterious effects on oral and gastrointestinal health of the end user. Overall, the high toxicity and increased incidences of cancer and oral disease of toombak users warrants further investigation into the microbiology of toombak.
Collapse
Affiliation(s)
- R E Tyx
- Division of Laboratory Sciences at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - A J Rivera
- Division of Laboratory Sciences at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - S B Stanfill
- Division of Laboratory Sciences at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - G S Zaatari
- Department of Pathology and Laboratory Medicine, American University of Beirut, Beirut, Lebanon
| | - C H Watson
- Division of Laboratory Sciences at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
11
|
Sajid M, Srivastava S, Kumar A, Kumar A, Singh H, Bharadwaj M. Bacteriome of Moist Smokeless Tobacco Products Consumed in India With Emphasis on the Predictive Functional Potential. Front Microbiol 2022; 12:784841. [PMID: 35003015 PMCID: PMC8740325 DOI: 10.3389/fmicb.2021.784841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Smokeless tobacco products (STPs) carry assorted microbial population that contributes to carcinogens synthesis like tobacco-specific nitrosamines (TSNAs). Extensive exploration of microbiota-harboring STPs is required to understand their full carcinogenic potential. Here, we applied 16S rRNA gene sequencing to investigate bacteriome present in moist STPs immensely consumed in India (Khaini, Moist-snuff, Qiwam, and Snus). Further, the functional metagenome was speculated by PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) to assign the abundance of genes related to nitrogen metabolism, bacterial toxins, antibiotic drug resistance and other pro-inflammatory molecules. Highly diverse bacterial communities were observed in all moist STPs. Taxonomic analysis revealed a total of 549 genera belonging to four major phyla Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. Overall, the core bacterial genera Acinetobacter, Bacillus, Prevotella, Acetobacter, Lactobacillus, Paracoccus, Flavobacterium, and Bacteroides were significantly abundant in moist STPs. Elevated moisture-holding products like Moist-snuff and Qiwam harbor rich bacterial species diversity and showed similar bacteriome composition. Furthermore, Qiwam products showed the highest level of genes associated with nitrogen metabolism, antibiotic resistance, toxins, and pro-inflammation (predicted by PICRUSt) which can contribute to the synthesis of TSNAs and induction of oral cancer. The present broad investigation of moist STPs-associated bacteriome prevalence and their detailed metabolic potential will provide novel insight into the oral carcinogenesis induced by STPs.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Amit Kumar
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Anuj Kumar
- Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
12
|
Vishwakarma A, Verma D. Microorganisms: crucial players of smokeless tobacco for several health attributes. Appl Microbiol Biotechnol 2021; 105:6123-6132. [PMID: 34331556 DOI: 10.1007/s00253-021-11460-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/20/2023]
Abstract
Global consumption of smokeless tobacco (SLT) reached 300 million users worldwide majorly from middle-income countries. More than 4000 chemical compounds represent it as one of the noxious consumable products by humans. Besides toxicants/carcinogens, the heavy microbial load on smokeless tobacco further keeps human health at higher risk. Several of these inhabitant microbes participate in biofilm formation and secrete endotoxin/mycotoxins and proinflammatory-like molecules, leading to several oral diseases. Tobacco-associated bacteria exhibit their role in tobacco-specific nitrosamines (TSNAs) formation and acetaldehyde production; both are well-documented carcinogens. Moreover, tobacco exhibits the potential to alter the oral microbiome and induce dysbiotic conditions that lead to the onset of several oral and systemic diseases. Traditional cultivation approaches of microbiology provide partial information of microbial communities of a habitat; therefore, microbiomics has now been employed to study the metagenomes of entire microbial communities. In the past 5 years, few NGS-based investigations have revealed that SLT harbors four dominant phyla (Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes) dominating Bacillus spp. and/or Pseudomonas spp. However, functional characterization of their genetic elements will be a more informative attribute to understand the correlation between inhabitant microbial diversity and their relatedness concerning abundance and diseases. This review provides an update on the microbial diversity of SLT and its associated attributes in human health. KEY POINTS: • Heavy microbial load on smokeless tobacco alarms for poor oral hygiene. • Inhabitant microorganisms of SLT participate in TSNA and biofilm formation. • SLTs alter the oral microbiome and causes oral dysbiosis.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India.
| |
Collapse
|
13
|
Sajid M, Srivastava S, Joshi L, Bharadwaj M. Impact of smokeless tobacco-associated bacteriome in oral carcinogenesis. Anaerobe 2021; 70:102400. [PMID: 34090995 DOI: 10.1016/j.anaerobe.2021.102400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/06/2021] [Accepted: 06/01/2021] [Indexed: 01/20/2023]
Abstract
Smokeless tobacco products possess a complex community of microorganisms. The microbial community ferment compounds present in the smokeless tobacco products and convert them into carcinogens like tobacco-associated nitrosamines. However, the potential of smokeless tobacco products associated bacteriome to manipulate systemic inflammation and other signaling pathways involved in the etiology of oral cancer will be a risk factor for oral cancer. Further, damage to oral epithelial cells causes a leaky oral layer that leads to increased infiltration of bacterial components like lipopolysaccharide, flagellin, and toxins, etc. The consumption of smokeless tobacco products can cause damage to the oral layer and dysbiosis of oral microbiota. Hence, the enrichment of harmful microbes due to dysbiosis in the oral cavity can produce high levels of bacterial metabolites and provoke inflammation as well as carcinogenesis. Understanding the complex and dynamic interrelation between the smokeless tobacco-linked bacteriome and host oral microbiome may help to unravel the mechanism of oral carcinogenesis stimulated by smokeless tobacco products. This review provides an insight into smokeless tobacco product-associated bacteriome and their potential in the progression of oral cancer. In the future, this will guide in the evolution of prevention and treatment strategies against smokeless tobacco products-induced oral cancer. Besides, it will assist the government organizations for better management and cessation policy building for the worldwide problem of smokeless tobacco addiction.
Collapse
Affiliation(s)
- Mohammad Sajid
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India
| | - Sonal Srivastava
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India
| | - Lata Joshi
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India
| | - Mausumi Bharadwaj
- Molecular Genetics and Biochemistry, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Sector-39, Noida, 201301, India.
| |
Collapse
|
14
|
Rivera AJ, Tyx RE. Microbiology of the American Smokeless Tobacco. Appl Microbiol Biotechnol 2021; 105:4843-4853. [PMID: 34110473 PMCID: PMC8190171 DOI: 10.1007/s00253-021-11382-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/23/2022]
Abstract
Smokeless tobacco products (STP) contain diverse microbial communities that contribute to the formation of harmful chemical byproducts. This is concerning since 300 million individuals around the globe are users of smokeless tobacco. Significant evidence has shown that microbial metabolic activities mediate the formation of carcinogens during manufacturing. In recent years, studies have revealed a series of additional health impacts that include lesions and inflammation of the oral mucosa and the gastrointestinal tract, as well as alterations of the endogenous microbiota. These findings are due to recent developments in molecular technologies that allowed researchers to better examine the microbial component of these products. This new information illustrates the scale of the STP microbiota and its diversity in the finished product that is sold for consumption. Additionally, the application of metagenomics and metatranscriptomics has provided the tools to look at phylogenies across bacterial, viral, and eukaryotic groups, their functional capacities, and viability. Here we present key examples of tobacco microbiology research that utilizes newer approaches and strategies to define the microbial component of smokeless tobacco products. We also highlight challenges in these approaches, the knowledge gaps being filled, and those gaps that warrant further study. A better understanding of the microbiology of STP brings vast public health benefits. It will provide important information for the product consumer, impact manufacturing practices, and provide support for the development of attainable and more meaningful regulatory goals. KEY POINTS: Newer technologies allowed quicker and more comprehensive identification of microbes in tobacco samples, encapsulating microorganisms difficult or impossible to culture. Current research in smokeless tobacco microbiology is filling knowledge gaps previously unfilled due to the lack of suitable approaches. The microbial ecology of smokeless tobacco presents a clearer picture of diversity and variability not considered before.
Collapse
Affiliation(s)
- A J Rivera
- Centers for Disease Control and Prevention, 4770 Buford Highway, NE M.S. S110-03, Atlanta, GA, 30341-3717, USA.
| | - R E Tyx
- Centers for Disease Control and Prevention, 4770 Buford Highway, NE M.S. S110-03, Atlanta, GA, 30341-3717, USA
| |
Collapse
|