1
|
Luo CM, Ke LF, Huang XY, Zhuang XY, Guo ZW, Xiao Q, Chen J, Chen FQ, Yang QM, Ru Y, Weng HF, Xiao AF, Zhang YH. Efficient biosynthesis of prunin in methanol cosolvent system by an organic solvent-tolerant α-L-rhamnosidase from Spirochaeta thermophila. Enzyme Microb Technol 2024; 175:110410. [PMID: 38340378 DOI: 10.1016/j.enzmictec.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Prunin of desirable bioactivity and bioavailability can be transformed from plant-derived naringin by the key enzyme α-L-rhamnosidase. However, the production was limited by unsatisfactory properties of α-L-rhamnosidase such as thermostability and organic solvent tolerance. In this study, biochemical characteristics, and hydrolysis capacity of a novel α-L-rhamnosidase from Spirochaeta thermophila (St-Rha) were investigated, which was the first characterized α-L-rhamnosidase for Spirochaeta genus. St-Rha showed a higher substrate specificity towards naringin and exhibited excellent thermostability and methanol tolerance. The Km of St-Rha in the methanol cosolvent system was decreased 7.2-fold comparing that in the aqueous phase system, while kcat/Km value of St-Rha was enhanced 9.3-fold. Meanwhile, a preliminary conformational study was implemented through comparative molecular dynamics simulation analysis to explore the mechanism underlying the methanol tolerance of St-Rha for the first time. Furthermore, the catalytic ability of St-Rha for prunin preparation in the 20% methanol cosolvent system was explored, and 200 g/L naringin was transformed into 125.5 g/L prunin for 24 h reaction with a corresponding space-time yield of 5.2 g/L/h. These results indicated that St-Rha was a novel α-L-rhamnosidase suitable for hydrolyzing naringin in the methanol cosolvent system and provided a better alternative for improving the efficient production yield of prunin.
Collapse
Affiliation(s)
- Chen-Mu Luo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Li-Fan Ke
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiang-Yu Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Yan Zhuang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Ze-Wang Guo
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiong Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Jun Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Fu-Quan Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Qiu-Ming Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Yi Ru
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - Hui-Fen Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China
| | - An-Feng Xiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| | - Yong-Hui Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China; National R&D Center for Red Alga Processing Technology, Xiamen 361021, China.
| |
Collapse
|
2
|
Ashcroft E, Munoz-Munoz J. A review of the principles and biotechnological applications of glycoside hydrolases from extreme environments. Int J Biol Macromol 2024; 259:129227. [PMID: 38185295 DOI: 10.1016/j.ijbiomac.2024.129227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
It is apparent that Biocatalysts are shaping the future by providing a more sustainable approach to established chemical processes. Industrial processes rely heavily on the use of toxic compounds and high energy or pH reactions, factors that both contributes to the worsening climate crisis. Enzymes found in bacterial systems and other microorganisms, from the glaciers of the Arctic to the sandy deserts of Abu Dhabi, provide key tools and understanding as to how we can progress in the biotechnology sector. These extremophilic bacteria harness the adaptive enzymes capable of withstanding harsh reaction conditions in terms of stability and reactivity. Carbohydrate-active enzymes, including glycoside hydrolases or carbohydrate esterases, are extremely beneficial for the presence and future of biocatalysis. Their involvement in the industry spans from laundry detergents to paper and pulp treatment by degrading oligo/polysaccharides into their monomeric products in almost all detrimental environments. This includes exceedingly high temperatures, pHs or even in the absence of water. In this review, we discuss the structure and function of different glycoside hydrolases from extremophiles, and how they can be applied to industrial-scale reactions to replace the use of harsh chemicals, reduce waste, or decrease energy consumption.
Collapse
Affiliation(s)
- Ellie Ashcroft
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom.
| | - Jose Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Ellison Building A, Northumbria University, Newcastle Upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
3
|
Li Y, Song W, Han X, Wang Y, Rao S, Zhang Q, Zhou J, Li J, Liu S, Du G. Recent progress in key lignocellulosic enzymes: Enzyme discovery, molecular modifications, production, and enzymatic biomass saccharification. BIORESOURCE TECHNOLOGY 2022; 363:127986. [PMID: 36126851 DOI: 10.1016/j.biortech.2022.127986] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Lignocellulose, the most prevalent biomass on earth, can be enzymatically converted into carbohydrates for bioethanol production and other uses. Among lignocellulosic enzymes, endoglucanase, xylanase, and laccase are the key enzymes, owing to their ability to disrupt the main structure of lignocellulose. Recently, new discovery methods have been established to obtain key lignocellulosic enzymes with excellent enzymatic properties. Molecular modification of enzymes to modulate their thermostability, catalytic activity, and substrate specificity has been performed with protein engineering technology. In addition, the enzyme expression has been effectively improved through expression element screening and host modification, as well as fermentation optimization. Immobilization of enzymes, use of surfactants, synergistic degradation, and optimization of reaction conditions have addressed the inefficiency of enzymatic saccharification. In this review, recent advances in key lignocellulosic enzymes are summarized, along with future prospects for the development of super-engineered strains and integrative technologies for enzymatic biomass saccharification.
Collapse
Affiliation(s)
- Yangyang Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weiyan Song
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Xuyue Han
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yachan Wang
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 214122, China
| | - Quan Zhang
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian 116000, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| |
Collapse
|
4
|
Zheng B, Yu S, Chen Z, Huo YX. A consolidated review of commercial-scale high-value products from lignocellulosic biomass. Front Microbiol 2022; 13:933882. [PMID: 36081794 PMCID: PMC9445815 DOI: 10.3389/fmicb.2022.933882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, lignocellulosic biomass has been introduced to the public as the most important raw material for the environmentally and economically sustainable production of high-valued bioproducts by microorganisms. However, due to the strong recalcitrant structure, the lignocellulosic materials have major limitations to obtain fermentable sugars for transformation into value-added products, e.g., bioethanol, biobutanol, biohydrogen, etc. In this review, we analyzed the recent trends in bioenergy production from pretreated lignocellulose, with special attention to the new strategies for overcoming pretreatment barriers. In addition, persistent challenges in developing for low-cost advanced processing technologies are also pointed out, illustrating new approaches to addressing the global energy crisis and climate change caused by the use of fossil fuels. The insights given in this study will enable a better understanding of current processes and facilitate further development on lignocellulosic bioenergy production.
Collapse
Affiliation(s)
- Bo Zheng
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Zhenya Chen
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Fungal cellulases: protein engineering and post-translational modifications. Appl Microbiol Biotechnol 2021; 106:1-24. [PMID: 34889986 DOI: 10.1007/s00253-021-11723-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Enzymatic degradation of lignocelluloses into fermentable sugars to produce biofuels and other biomaterials is critical for environmentally sustainable development and energy resource supply. However, there are problems in enzymatic cellulose hydrolysis, such as the complex cellulase composition, low degradation efficiency, high production cost, and post-translational modifications (PTMs), all of which are closely related to specific characteristics of cellulases that remain unclear. These problems hinder the practical application of cellulases. Due to the rapid development of computer technology in recent years, computer-aided protein engineering is being widely used, which also brings new opportunities for the development of cellulases. Especially in recent years, a large number of studies have reported on the application of computer-aided protein engineering in the development of cellulases; however, these articles have not been systematically reviewed. This article focused on the aspect of protein engineering and PTMs of fungal cellulases. In this manuscript, the latest literatures and the distribution of potential sites of cellulases for engineering have been systematically summarized, which provide reference for further improvement of cellulase properties. KEY POINTS: •Rational design based on virtual mutagenesis can improve cellulase properties. •Modifying protein side chains and glycans helps obtain superior cellulases. •N-terminal glutamine-pyroglutamate conversion stabilizes fungal cellulases.
Collapse
|