1
|
Fazio NA, Albertin W, Masneuf-Pomarede I, Randazzo CL, Caggia C. Structure of culturable indigenous yeast population and genetic diversity of Saccharomyces cerevisiae and non-Saccharomyces yeasts during spontaneous fermentation of Etna vineyards grapes. Int J Food Microbiol 2025; 440:111282. [PMID: 40435560 DOI: 10.1016/j.ijfoodmicro.2025.111282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/24/2025] [Accepted: 05/24/2025] [Indexed: 06/11/2025]
Abstract
The microbial diversity of indigenous yeasts plays a fundamental role in the spontaneous fermentation of wines, contributing to the concept of microbial terroir and potentially influencing the sensory profile of the final product. This study explores the yeast ecology and genetic diversity of Saccharomyces cerevisiae and non-Saccharomyces yeasts in four wineries located on two different sides of Mount Etna, a region of unique viticultural significance due to its volcanic soils and diverse microclimatic conditions. A total of 454 yeast isolates were obtained from spontaneous fermentations of different grape varieties, and identified as belonging to 18 distinct species. The spontaneous fermentation was characterized by an initial dominance of non-Saccharomyces yeasts, especially Hanseniaspora uvarum and Metschnikowia pulcherrima, followed by a gradual dominance of S. cerevisiae at later stages. Microsatellite genotyping revealed significant genetic diversity among S. cerevisiae strains, with some distinct genetic patterns associated with Italian winery environments. Additionally, H. uvarum exhibited significant genetic variation but lacked clear geographic clustering, suggesting complex ecological and enological interactions. Statistical analyses of microbial diversity indices indicated that vineyard-specific factors, including altitude, soil composition, and agronomic practices, may influence yeast community structure among the four wineries. These findings provide new insights into the microbial ecology of Etna wines and highlight the potential of indigenous yeast populations for maintaining and enhancing regional wine identity.
Collapse
Affiliation(s)
- Nunzio Alberto Fazio
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Warren Albertin
- Univ. Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarede
- Univ. Bordeaux, Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy.
| |
Collapse
|
2
|
Belda I, Izquierdo‐Gea S, Benitez‐Dominguez B, Ruiz J, Vila JCC. Wine Fermentation as a Model System for Microbial Ecology and Evolution. Environ Microbiol 2025; 27:e70092. [PMID: 40222749 PMCID: PMC12117253 DOI: 10.1111/1462-2920.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
In vitro microbial communities have proven to be invaluable model systems for studying ecological and evolutionary processes experimentally. However, it remains unclear whether quantitative insights obtained from these laboratory systems can be applied to complex communities assembling and evolving in their natural ecological context. To bridge the gap between the lab and the 'real-world', there is a need for laboratory model systems that better approximate natural and semi-natural ecosystems. Wine fermentation presents an ideal system for this purpose, balancing experimental tractability with rich ecological and evolutionary dynamics. In this perspective piece we outline the key features that make wine fermentation a fruitful model system for ecologists and evolutionary biologists. We highlight the diversity of environmentally mediated interactions that shape community dynamics during fermentation, the complex evolutionary history of wine microbial populations, and the opportunity to study the impact of complex ecologies on evolutionary dynamics. By integrating knowledge from both wine research and microbial ecology and evolution we aim to enhance understanding and foster collaboration between these fields.
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Sergio Izquierdo‐Gea
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Belen Benitez‐Dominguez
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
- Institute of Functional Biology & Genomics, IBFG ‐ CSIC, Universidad de SalamancaSalamancaSpain
| | - Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | | |
Collapse
|
3
|
Fu Q, Wang F, Tang T, Liu Z, Wang L, Wang Q, Shi X, Wang B. A Snapshot of Microbial Succession and Volatile Component Dynamics of Marselan Wine in Xinjiang During Spontaneous Fermentation. Foods 2025; 14:994. [PMID: 40232002 PMCID: PMC11941887 DOI: 10.3390/foods14060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
Marselan wine is characterized by distinctive flavors of blackcurrant, cranberry, and spice, which are significantly influenced by environmental factors such as region and climate. In this study, we analyzed the dynamic changes in the microbial community, physicochemical indices, and flavor compounds during the spontaneous fermentation of Marselan wine in Xinjiang using high-throughput sequencing (HTS), high-performance liquid chromatography (HPLC), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results indicated that the sugar content decreased from 259.12 g/L to 22.45 g/L, while the ethanol content increased to 13.63 ± 0.15% vol after 12 days of fermentation. The predominant aromatic components identified in Marselan grapes include isophorone, 2,3-pentanedione, 2-hexenal, and melonal. After fermentation, ethanol, phenethyl alcohol, isoamyl acetate, ethyl acetate, and ethyl hexanoate were produced, imparting rose, cream, and fruit flavors to wine. The key microorganisms involved in the spontaneous fermentation of Marselan wine include Saccharomyces, Starmerella, Pichia, Pseudomonas, Sphingomonas, and Aspergillus. These microorganisms contributed substantially to the main physicochemical indices and flavor profiles. Saccharomyces and Pichia enhanced the formation of most alcohols and esters, whereas Aspergillus, Acremonium, and Fusarium inhibited the synthesis of numerous volatile compounds. These findings provide valuable theoretical references for improving the quality of Marselan wines in Xinjiang.
Collapse
Affiliation(s)
- Qingquan Fu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Fangfang Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Tiantian Tang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Zimen Liu
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Lilin Wang
- Production & Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang, College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Qingling Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Xuewei Shi
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| | - Bin Wang
- Food College, Shihezi University, Shihezi 832000, China; (Q.F.); (F.W.); (T.T.); (Z.L.); (Q.W.); (X.S.)
- Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
- Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi 832000, China
| |
Collapse
|
4
|
Sumerta IN, Ruan X, Howell K. The forgotten wine: Understanding palm wine fermentation and composition. Int J Food Microbiol 2025; 429:111022. [PMID: 39689568 DOI: 10.1016/j.ijfoodmicro.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Palm wine is an alcoholic beverage that has existed for centuries and has important economic and socio-culture values in many tropical and sub-tropical countries. Lesser known than other types of wines, palm wine is made by spontaneous fermentation of palm sap by naturally occurring microbial communities. The palm sap ecosystem has unique microbial composition and diversity, which determines the composition of the eventual wine and is likely affected by geographical distinctiveness. While these features are well understood in grape and rice wine, these features have not been understood in palm wine. Here, we gather information of microbial communities and metabolite profiles from published studies, covering a wide range of methodologies and regions to better understand the causal links between the principal microbial species and major metabolites of palm wine. We assessed palm wine quality across production regions and local practices to provide general characteristics of palm wine and identify specific regional information. These will provide better understandings to the function of microbial communities and metabolite diversity, the contribution of regional variations and to ensure product quality in this unique, yet overlooked, fermented beverage.
Collapse
Affiliation(s)
- I Nyoman Sumerta
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia; National Research and Innovation Agency (BRIN), Jakarta 10340, Indonesia
| | - Xinwei Ruan
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia
| | - Kate Howell
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
5
|
Nikoloudaki O, Aheto F, Di Cagno R, Gobbetti M. Synthetic microbial communities: A gateway to understanding resistance, resilience, and functionality in spontaneously fermented food microbiomes. Food Res Int 2024; 192:114780. [PMID: 39147468 DOI: 10.1016/j.foodres.2024.114780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/25/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024]
Abstract
This review delves into the intricate traits of microbial communities encountered in spontaneously fermented foods (SFF), contributing to resistance, resilience, and functionality drivers. Traits of SFF microbiomes comprise of fluctuations in community composition, genetic stability, and condition-specific phenotypes. Synthetic microbial communities (SMCs) serve as a portal for mechanistic insights and strategic re-programming of microbial communities. Current literature underscores the pivotal role of microbiomes in SFF in shaping quality attributes and preserving the cultural heritage of their origin. In contrast to starter driven fermentations that tend to be more controlled but lacking the capacity to maintain or reproduce the complex flavors and intricacies found in SFF. SMCs, therefore, become indispensable tools, providing a nuanced understanding and control over fermented food microbiomes. They empower the prediction and engineering of microbial interactions and metabolic pathways with the aim of optimizing outcomes in food processing. Summarizing the current application of SMCs in fermented foods, there is still space for improvement. Challenges in achieving stability and reproducibility in SMCs are identified, stemming from non-standardized approaches. The future direction should involve embracing standardized protocols, advanced monitoring tools, and synthetic biology applications. A holistic, multi-disciplinary approach is paramount to unleashing the full potential of SMCs and fostering sustainable and innovative applications in fermented food systems.
Collapse
Affiliation(s)
- Olga Nikoloudaki
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy.
| | - Francis Aheto
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| |
Collapse
|
6
|
Agarbati A, Comitini F, Ciani M, Canonico L. Occurrence and Persistence of Saccharomyces cerevisiae Population in Spontaneous Fermentation and the Relation with "Winery Effect". Microorganisms 2024; 12:1494. [PMID: 39065262 PMCID: PMC11278986 DOI: 10.3390/microorganisms12071494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The yeast Saccharomyces cerevisiae ensures successful fermentation in winemaking, although the persistent use of commercial strains lead to the loss of aroma complexity of wines. Hence, the research of indigenous S. cerevisiae with proper oenological features and well adapted to specific wine-growing areas become of great interest for winemakers. Here, 206 pure cultures of S. cerevisiae were isolated from two wineries during a two-year sampling campaign and bio-typed through interdelta sequences analyses with the aim to evaluate the occurrence and persistence of the S. cerevisiae wild population linked to each winery. Both wineries belong to the same Verdicchio DOC wine area (Castelli di Jesi), and never used commercial yeasts during fermentation. Results showed 19 different biotypes with a specific population of S. cerevisiae in each winery, without cross-contamination with each other and with commercial starter strains. Moreover, inside each winery a persistence of some dominant biotypes was observed over time (three biotypes in winery 1; 95% of isolates in the two years and one biotype in winery 2; 20% of isolates in the two years), indicating a sort of "winery-effect". The evaluation of S. cerevisiae populations for the oenological characters by microfermentations showed a proper and well distinct aromatic imprinting on the resulted wines supporting the concept of "winery effect".
Collapse
Affiliation(s)
| | | | - Maurizio Ciani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (A.A.); (F.C.); (L.C.)
| | | |
Collapse
|
7
|
Conacher CG, Watson BW, Bauer FF. Gradient boosted regression as a tool to reveal key drivers of temporal dynamics in a synthetic yeast community. FEMS Microbiol Ecol 2024; 100:fiae080. [PMID: 38777744 PMCID: PMC11212668 DOI: 10.1093/femsec/fiae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Microbial communities are vital to our lives, yet their ecological functioning and dynamics remain poorly understood. This understanding is crucial for assessing threats to these systems and leveraging their biotechnological applications. Given that temporal dynamics are linked to community functioning, this study investigated the drivers of community succession in the wine yeast community. We experimentally generated population dynamics data and used it to create an interpretable model with a gradient boosted regression tree approach. The model was trained on temporal data of viable species populations in various combinations, including pairs, triplets, and quadruplets, and was evaluated for predictive accuracy and input feature importance. Key findings revealed that the inoculation dosage of non-Saccharomyces species significantly influences their performance in mixed cultures, while Saccharomyces cerevisiae consistently dominates regardless of initial abundance. Additionally, we observed multispecies interactions where the dynamics of Wickerhamomyces anomalus were influenced by Torulaspora delbrueckii in pairwise cultures, but this interaction was altered by the inclusion of S. cerevisiae. This study provides insights into yeast community succession and offers valuable machine learning-based analysis techniques applicable to other microbial communities, opening new avenues for harnessing microbial communities.
Collapse
Affiliation(s)
- Cleo Gertrud Conacher
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bruce William Watson
- Centre for Artificial Intelligence Research (CAIR), School for Data-Science & Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Florian Franz Bauer
- Department of Viticulture and Oenology, South African Grape and Wine Research Institute, Private Bag X1, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
8
|
Daval C, Tran T, Verdier F, Martin A, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Identification of Key Parameters Inducing Microbial Modulation during Backslopped Kombucha Fermentation. Foods 2024; 13:1181. [PMID: 38672854 PMCID: PMC11049054 DOI: 10.3390/foods13081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the impact of production parameters on the reproducibility of kombucha fermentation over several production cycles based on backslopping. Six conditions with varying oxygen accessibility (specific interface surface) and initial acidity (through the inoculation rate) of the cultures were carried out and compared to an original kombucha consortium and a synthetic consortium assembled from yeasts and bacteria isolated from the original culture. Output parameters monitored were microbial populations, biofilm weight, key physico-chemical parameters and metabolites. Results highlighted the existence of phases in microbial dynamics as backslopping cycles progressed. The transitions between phases occurred faster for the synthetic consortium compared to the original kombucha. This led to microbial dynamics and fermentative kinetics that were reproducible over several cycles but that could also deviate and shift abruptly to different behaviors. These changes were mainly induced by an increase in the Saccharomyces cerevisiae population, associated with an intensification of sucrose hydrolysis, sugar consumption and an increase in ethanol content, without any significant acceleration in the rate of acidification. The study suggests that the reproducibility of kombucha fermentations relies on high biodiversity to slow down the modulations of microbial dynamics induced by the sustained rhythm of backslopping cycles.
Collapse
Affiliation(s)
- Claire Daval
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Thierry Tran
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | | | - Antoine Martin
- Biomère, 10B Rue du Nouveau Bêle, 44470 Carquefou, France
| | - Hervé Alexandre
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Cosette Grandvalet
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Raphaëlle Tourdot-Maréchal
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| |
Collapse
|
9
|
Englezos V, Di Gianvito P, Serafino G, Giacosa S, Cocolin L, Rantsiou K. Strain specific Starmerella bacillaris and Saccharomyces cerevisiae interactions in mixed fermentations. J Appl Microbiol 2024; 135:lxae085. [PMID: 38549426 DOI: 10.1093/jambio/lxae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
AIMS Yeast interactions have a key role in the definition of the chemical profile of the wines. For this reason, winemakers are increasingly interested in mixed fermentations, employing Saccharomyces cerevisiae and non-Saccharomyces strains. However, the outcome of mixed fermentations is often contradictory because there is a great variability among strains within species. Previously, it was demonstrated that the loss of culturability of Starmerella bacillaris in mixed fermentations with S. cerevisiae was due to the physical contact between cells. Therefore, to further explore previous observations, the interaction mechanisms among different strains of Starm. bacillaris and S. cerevisiae during mixed fermentations were investigated. METHODS AND RESULTS Fermentations were conducted under conditions that allow physical contact between cells (flasks) but also using a double-compartment fermentation system in which cells of both species were kept separate. The role of competition for nutrients and antimicrobial compounds production on yeast-yeast interaction mechanisms was also investigated. Three Starm. bacillaris and three S. cerevisiae strains were used to investigate if interaction mechanisms are modulated in a strain-specific way. Both species populations were affected by physical contact, particularly Starm. bacillaris that lost its culturability during fermentation. In addition, loss of culturability of Starm. bacillaris strains was observed earlier in flasks than in the double-compartment system. The phenomena observed occurred in a strain couple-dependent way. Starm. bacillaris disappearance seemed to be independent of nutrient depletion or the presence of inhibitory compounds (which were not measured in this study). CONCLUSION Overall, the results of the present study reveal that cell-to-cell contact plays a role in the early death of non-Saccharomyces but the extent to which it is observed depends greatly on the Starm. bacillaris/S. cerevisiae strains tested.
Collapse
Affiliation(s)
- Vasileios Englezos
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Paola Di Gianvito
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Gabriele Serafino
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Luca Cocolin
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Kalliopi Rantsiou
- Dipartimento di Scienze Agrarie, Università degli Studi di Torino, Forestali e Alimentari, Largo Braccini 2, 10095 Grugliasco, Italy
| |
Collapse
|
10
|
Ohwofasa A, Dhami M, Zhang J, Tian B, Winefield C, On SLW. Influence of climatic variation on microbial communities during organic Pinot noir wine production. PLoS One 2024; 19:e0296859. [PMID: 38416719 PMCID: PMC10901304 DOI: 10.1371/journal.pone.0296859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/20/2023] [Indexed: 03/01/2024] Open
Abstract
To assess the possible impact of climatic variation on microbial community composition in organic winemaking, we employed a metabarcoding approach to scrutinize the microbiome in a commercial, organic, Pinot noir wine production system that utilizes autochthonous fermentation. We assessed microbial composition across two vintages (2018 and 2021) using biological replicates co-located at the same winery. Microbial dynamics were monitored over four important fermentation time points and correlated with contemporaneous climate data. Bacterial (RANOSIM = 0.4743, p = 0.0001) and fungal (RANOSIM = 0.4738, p = 0.0001) compositions were different in both vintages. For bacteria, Lactococcus dominated the diversity associated with the 2018 vintage, while Tatumella dominated the 2021 vintage. For fungal populations, while Saccharomyces were abundant in both vintages, key differences included Starmerella, copious in the 2018 vintage; and Metschnikowia, substantive in the 2021 vintage. Ordination plots correlated the climatic variables with microbial population differences, indicating temperature as a particularly important influence; humidity values also differed significantly between these vintages. Our data illustrates how climatic conditions may influence microbial diversity during winemaking, and further highlights the effect climate change could have on wine production.
Collapse
Affiliation(s)
- Aghogho Ohwofasa
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln, New Zealand
| | | | - Junwen Zhang
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Bin Tian
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Christopher Winefield
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Stephen L. W. On
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
- Centre of Foods for Future Consumers, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
11
|
Dixon TA, Walker RSK, Pretorius IS. Visioning synthetic futures for yeast research within the context of current global techno-political trends. Yeast 2023; 40:443-456. [PMID: 37653687 DOI: 10.1002/yea.3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
Yeast research is entering into a new period of scholarship, with new scientific tools, new questions to ask and new issues to consider. The politics of emerging and critical technology can no longer be separated from the pursuit of basic science in fields, such as synthetic biology and engineering biology. Given the intensifying race for technological leadership, yeast research is likely to attract significant investment from government, and that it offers huge opportunities to the curious minded from a basic research standpoint. This article provides an overview of new directions in yeast research with a focus on Saccharomyces cerevisiae, and places these trends in their geopolitical context. At the highest level, yeast research is situated within the ongoing convergence of the life sciences with the information sciences. This convergent effect is most strongly pronounced in areas of AI-enabled tools for the life sciences, and the creation of synthetic genomes, minimal genomes, pan-genomes, neochromosomes and metagenomes using computer-assisted design tools and methodologies. Synthetic yeast futures encompass basic and applied science questions that will be of intense interest to government and nongovernment funding sources. It is essential for the yeast research community to map and understand the context of their research to ensure their collaborations turn global challenges into research opportunities.
Collapse
Affiliation(s)
- Thomas A Dixon
- School of Social Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Roy S K Walker
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Leale A, Auxier B, Smid EJ, Schoustra S. Influence of metabolic guilds on a temporal scale in an experimental fermented food derived microbial community. FEMS Microbiol Ecol 2023; 99:fiad112. [PMID: 37771082 PMCID: PMC10550249 DOI: 10.1093/femsec/fiad112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
The influence of community diversity, which can be measured at the level of metabolic guilds, on community function is a central question in ecology. Particularly, the long-term temporal dynamic between a community's function and its diversity remains unclear. We investigated the influence of metabolic guild diversity on associated community function by propagating natural microbial communities from a traditionally fermented milk beverage diluted to various levels. Specifically, we assessed the influence of less abundant microbial types, such as yeast, on community functionality and bacterial community compositions over repeated propagation cycles amounting to ∼100 generations. The starting richness of metabolic guilds had a repeatable effect on bacterial community compositions, metabolic profiles, and acidity. The influence of a single metabolic guild, yeast in our study, played a dramatic role on function, but interestingly not on long-term species sorting trajectories of the remaining bacterial community. Our results together suggest an unexpected niche division between yeast and bacterial communities and evidence ecological selection on the microbial communities in our system.
Collapse
Affiliation(s)
- Alanna Leale
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Sijmen Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
13
|
Alonso VPP, Lemos JG, Nascimento MDSD. Yeast biofilms on abiotic surfaces: Adhesion factors and control methods. Int J Food Microbiol 2023; 400:110265. [PMID: 37267839 DOI: 10.1016/j.ijfoodmicro.2023.110265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Biofilms are highly resistant to antimicrobials and are a common problem in many industries, including pharmaceutical, food and beverage. Yeast biofilms can be formed by various yeast species, including Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans. Yeast biofilm formation is a complex process that involves several stages, including reversible adhesion, followed by irreversible adhesion, colonization, exopolysaccharide matrix formation, maturation and dispersion. Intercellular communication in yeast biofilms (quorum-sensing mechanism), environmental factors (pH, temperature, composition of the culture medium), and physicochemical factors (hydrophobicity, Lifshitz-van der Waals and Lewis acid-base properties, and electrostatic interactions) are essential to the adhesion process. Studies on the adhesion of yeast to abiotic surfaces such as stainless steel, wood, plastic polymers, and glass are still scarce, representing a gap in the field. The biofilm control formation can be a challenging task for food industry. However, some strategies can help to reduce biofilm formation, such as good hygiene practices, including regular cleaning and disinfection of surfaces. The use of antimicrobials and alternative methods to remove the yeast biofilms may also be helpful to ensure food safety. Furthermore, physical control measures such as biosensors and advanced identification techniques are promising for yeast biofilms control. However, there is a gap in understanding why some yeast strains are more tolerant or resistant to sanitization methods. A better understanding of tolerance and resistance mechanisms can help researchers and industry professionals to develop more effective and targeted sanitization strategies to prevent bacterial contamination and ensure product quality. This review aimed to identify the most important information about yeast biofilms in the food industry, followed by the removal of these biofilms by antimicrobial agents. In addition, the review summarizes the alternative sanitizing methods and future perspectives for controlling yeast biofilm formation by biosensors.
Collapse
Affiliation(s)
| | - Jéssica Gonçalves Lemos
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Rua Monteiro Lobato n° 80, Campinas, São Paulo 13083-862, Brazil
| | - Maristela da Silva do Nascimento
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Rua Monteiro Lobato n° 80, Campinas, São Paulo 13083-862, Brazil.
| |
Collapse
|
14
|
Fazio NA, Russo N, Foti P, Pino A, Caggia C, Randazzo CL. Inside Current Winemaking Challenges: Exploiting the Potential of Conventional and Unconventional Yeasts. Microorganisms 2023; 11:1338. [PMID: 37317312 DOI: 10.3390/microorganisms11051338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023] Open
Abstract
Wine represents a complex matrix in which microbial interactions can strongly impact the quality of the final product. Numerous studies have focused on optimizing microbial approaches for addressing new challenges to enhance quality, typicity, and food safety. However, few studies have investigated yeasts of different genera as resources for obtaining wines with new, specific traits. Currently, based on the continuous changes in consumer demand, yeast selection within conventional Saccharomyces cerevisiae and unconventional non-Saccharomyces yeasts represents a suitable opportunity. Wine fermentation driven by indigenous yeasts, in the various stages, has achieved promising results in producing wines with desired characteristics, such as a reduced content of ethanol, SO2, and toxins, as well as an increased aromatic complexity. Therefore, the increasing interest in organic, biodynamic, natural, or clean wine represents a new challenge for the wine sector. This review aims at exploring the main features of different oenological yeasts to obtain wines reflecting the needs of current consumers in a sustainability context, providing an overview, and pointing out the role of microorganisms as valuable sources and biological approaches to explore potential and future research opportunities.
Collapse
Affiliation(s)
- Nunzio A Fazio
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Paola Foti
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
| | - Alessandra Pino
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| | - Cinzia L Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via S. Sofia, 100, 95123 Catania, Italy
- ProBioEtna Srl, Spin off University of Catania, Via S. Sofia 100, 95123 Catania, Italy
| |
Collapse
|
15
|
Unveiling the Microbial Ecology behind Mezcal: A Spirit Drink with a Growing Global Demand. FERMENTATION 2022. [DOI: 10.3390/fermentation8110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The advent of omics has expanded our knowledge of microbial ecology behind Mezcal, a fermented spirit made from the juices of cooked Agave plants (Agave spp., Asparagaceae). Mezcal has been produced in Mexico for over 200 years, however, has been in high demand since its discovery by international markets in the last decade. Mezcal is appreciated for its diverse and complex sensory profile, which is tied to the geographic and environmental diversity of the different Mezcal-producing regions. This regional typicity is brought about by spontaneous fermentation consortia that act in loosely controlled artisanal fermentation processes. Previous works have mainly concentrated on microorganisms involved in the biosynthesis of alcohol and other volatile compounds, or from a different perspective, on culturable microorganisms (mainly yeasts) influencing the taste profile. Attention has been aimed at the richness of microbial populations in point events or under laboratory conditions, which leaves much of the biological richness out of account. Omics techniques have become powerful tools for characterizing the composition of autochthonous fermentation microbiota, regional or endemic features, and ecological processes that determine the dynamics of Mezcal fermentation. The analyses of genetic material, proteins, and metabolites allow disentangling the biological complexity of Mezcal production. This review presents the reader with an up-to-date overview of publications that discuss microbial communities in Mezcal fermentation, metabolic pathways regulated by microbial interactions, and the application of omics to characterize the spontaneous fermenting microbiota conformation and dynamics considering the subjacent ecological processes.
Collapse
|
16
|
Tan Y, Du H, Zhang H, Fang C, Jin G, Chen S, Wu Q, Zhang Y, Zhang M, Xu Y. Geographically Associated Fungus-Bacterium Interactions Contribute to the Formation of Geography-Dependent Flavor during High-Complexity Spontaneous Fermentation. Microbiol Spectr 2022; 10:e0184422. [PMID: 36135710 PMCID: PMC9603688 DOI: 10.1128/spectrum.01844-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022] Open
Abstract
Fermented foods often have attractive flavor characteristics to meet various human demands. An ever-challenging target is the production of fermented foods with equal flavor profiles outside the product's origin. However, the formation of geography-dependent flavor in high-complexity fermentations remains poorly understood. Here, taking Chinese liquor (baijiu) fermentation as an example, we collected 403 samples from 9 different locations in China across a latitude range of 27°N to 37°N. We revealed and validated the geography-dependent flavor formation patterns by using culture-independent (metabolomics, metagenomics, and metatranscriptomics) and culture-dependent tools. We found that the baijiu microbiomes along with their metabolites were flavor related and geography dependent. The geographical characteristics were determined mainly by 20 to 40 differentiated chemical markers in metabolites and the latitude-dependent fungal structure of the microbiome. About 48 to 156 core microbiota members out of 735 bacterial genera and 290 fungal genera contributed to the chemical markers. The contributions of both fungi and bacteria were greater than those from either bacteria or fungi alone. Representatively, we revealed that dynamic interdependent interactions between yeasts and Lactobacillus facilitated the metabolism of heterocyclic flavor chemicals such as 2-acetylpyrrole, 2,3,5-trimethylpyrazine, and 2-acetylfuran. Moreover, we found that the intraspecific genomic diversity and microbial structure were two biotic factors that contributed to dynamic microbiome assembly. Based on the assembly pattern, adjusting the composition and distribution of initial species was one option to regulate the formation of diverse flavor characteristics. Our study provided a rationale for developing a microbiome design to achieve a defined flavor goal. IMPORTANCE People consume many spontaneously fermented foods and beverages with different flavors on a daily basis. One crucial and hotly discussed question is how to reproduce fermented food flavor without geographical limitations to meet diverse human demands. The constantly enriched knowledge of the microbial contribution to fermented flavor offers valuable insights into flavor biotechnological development. However, we still have a poor understanding of what factors limit the reproduction of fermented flavor outside the product's origin in high-complexity spontaneous fermentations. Here, taking baijiu fermentation as an example, we revealed that geography-dependent flavor was contributed mainly by fungus-bacterium cooperative metabolism. The distinct initial microbial composition, distribution, and intraspecific genomic diversity limited reproducible microbial interactions and metabolism in different geographical areas. The abundant microbial resources and predicted fungus-bacterium interactions found in baijiu fermentation enable us to design a synthetic microbial community to reproduce desired flavor profiles in the future.
Collapse
Affiliation(s)
- Yuwei Tan
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Hai Du
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Hongxia Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen Fang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Guangyuan Jin
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Qun Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Rapaport A, David R, Dochain D, Harmand J, Nidelet T. Consideration of Maintenance in Wine Fermentation Modeling. Foods 2022; 11:foods11121682. [PMID: 35741882 PMCID: PMC9223200 DOI: 10.3390/foods11121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022] Open
Abstract
We show that a simple model with a maintenance term can satisfactorily reproduce the simulations of several existing models of wine fermentation from the literature, as well as experimental data. The maintenance describes a consumption of the nitrogen that is not entirely converted into biomass. We show also that considering a maintenance term in the model is equivalent to writing a model with a variable yield that can be estimated from data.
Collapse
Affiliation(s)
- Alain Rapaport
- MISTEA, Université Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
- Correspondence:
| | | | - Denis Dochain
- ICTEAM, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium;
| | - Jérôme Harmand
- LBE, Université Montpellier, INRAE, 11100 Narbonne, France;
| | - Thibault Nidelet
- SPO, Université Montpellier, INRAE, Institut Agro, 34060 Montpellier, France;
| |
Collapse
|
18
|
Walker RSK, Pretorius IS. Synthetic biology for the engineering of complex wine yeast communities. NATURE FOOD 2022; 3:249-254. [PMID: 37118192 DOI: 10.1038/s43016-022-00487-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/11/2022] [Indexed: 04/30/2023]
Abstract
Wine fermentation is a representation of complex higher-order microbial interactions. Despite the beneficial properties that these communities bring to wine, their complexity poses challenges in predicting the nature and outcome of fermentation. Technological developments in synthetic biology enable the potential to engineer synthetic microbial communities for new purposes. Here we present the challenges and applications of engineered yeast communities in the context of a wine fermentation vessel, how this represents a model system to enable novel solutions for winemaking and introduce the concept of a 'synthetic' terroir. Furthermore, we introduce our vision for the application of control engineering.
Collapse
Affiliation(s)
- Roy S K Walker
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
19
|
Pretorius IS. Visualizing the next frontiers in wine yeast research. FEMS Yeast Res 2022; 22:foac010. [PMID: 35175339 PMCID: PMC8916113 DOI: 10.1093/femsyr/foac010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
A range of game-changing biodigital and biodesign technologies are coming of age all around us, transforming our world in complex ways that are hard to predict. Not a day goes by without news of how data-centric engineering, algorithm-driven modelling, and biocyber technologies-including the convergence of artificial intelligence, machine learning, automated robotics, quantum computing, and genome editing-will change our world. If we are to be better at expecting the unexpected in the world of wine, we need to gain deeper insights into the potential and limitations of these technological developments and advances along with their promise and perils. This article anticipates how these fast-expanding bioinformational and biodesign toolkits might lead to the creation of synthetic organisms and model systems, and ultimately new understandings of biological complexities could be achieved. A total of four future frontiers in wine yeast research are discussed in this article: the construction of fully synthetic yeast genomes, including minimal genomes; supernumerary pan-genome neochromosomes; synthetic metagenomes; and synthetic yeast communities. These four concepts are at varying stages of development with plenty of technological pitfalls to overcome before such model chromosomes, genomes, strains, and yeast communities could illuminate some of the ill-understood aspects of yeast resilience, fermentation performance, flavour biosynthesis, and ecological interactions in vineyard and winery settings. From a winemaker's perspective, some of these ideas might be considered as far-fetched and, as such, tempting to ignore. However, synthetic biologists know that by exploring these futuristic concepts in the laboratory could well forge new research frontiers to deepen our understanding of the complexities of consistently producing fine wines with different fermentation processes from distinctive viticultural terroirs. As the saying goes in the disruptive technology industry, it take years to create an overnight success. The purpose of this article is neither to glorify any of these concepts as a panacea to all ills nor to crucify them as a danger to winemaking traditions. Rather, this article suggests that these proposed research endeavours deserve due consideration because they are likely to cast new light on the genetic blind spots of wine yeasts, and how they interact as communities in vineyards and wineries. Future-focussed research is, of course, designed to be subject to revision as new data and technologies become available. Successful dislodging of old paradigms with transformative innovations will require open-mindedness and pragmatism, not dogmatism-and this can make for a catch-22 situation in an archetypal traditional industry, such as the wine industry, with its rich territorial and socio-cultural connotations.
Collapse
Affiliation(s)
- I S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
20
|
Windholtz S, Vinsonneau E, Farris L, Thibon C, Masneuf-Pomarède I. Yeast and Filamentous Fungi Microbial Communities in Organic Red Grape Juice: Effect of Vintage, Maturity Stage, SO 2, and Bioprotection. Front Microbiol 2022; 12:748416. [PMID: 35002998 PMCID: PMC8740202 DOI: 10.3389/fmicb.2021.748416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023] Open
Abstract
Changes are currently being made to winemaking processes to reduce chemical inputs [particularly sulfur dioxide (SO2)] and adapt to consumer demand. In this study, yeast growth and fungal diversity were investigated in merlot during the prefermentary stages of a winemaking process without addition of SO2. Different factors were considered, in a two-year study: vintage, maturity level and bioprotection by the adding yeast as an alternative to SO2. The population of the target species was monitored by quantitative-PCR, and yeast and filamentous fungi diversity was determined by 18S rDNA metabarcoding. A gradual decrease of the α-diversity during the maceration process was highlighted. Maturity level played a significant role in yeast and fungal abundance, which was lower at advanced maturity, while vintage had a strong impact on Hanseniaspora spp. population level and abundance. The presence of SO2 altered the abundance of yeast and filamentous fungi, but not their nature. The absence of sulfiting led to an unexpected reduction in diversity compared to the presence of SO2, which might result from the occupation of the niche by certain dominant species, namely Hanseniaspora spp. Inoculation of the grape juice with non-Saccharomyces yeast resulted in a decrease in the abundance of filamentous fungi generally associated with a decline in grape must quality. Lower abundance and niche occupation by bioprotection agents were observed at the overripened stage, thus suggesting that doses applied should be reconsidered at advanced maturity. Our study confirmed the bioprotective role of Metschnikowia pulcherrima and Torulaspora delbrueckii in a context of vinification without sulfites.
Collapse
Affiliation(s)
- Sara Windholtz
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France
| | | | - Laura Farris
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France.,Bordeaux Sciences Agro, Gradignan, France
| | - Cécile Thibon
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France
| | - Isabelle Masneuf-Pomarède
- Univ. Bordeaux, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Villenave d'Ornon, France.,Bordeaux Sciences Agro, Gradignan, France
| |
Collapse
|
21
|
Comitini F, Agarbati A, Canonico L, Ciani M. Yeast Interactions and Molecular Mechanisms in Wine Fermentation: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22147754. [PMID: 34299371 PMCID: PMC8307806 DOI: 10.3390/ijms22147754] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023] Open
Abstract
Wine can be defined as a complex microbial ecosystem, where different microorganisms interact in the function of different biotic and abiotic factors. During natural fermentation, the effect of unpredictable interactions between microorganisms and environmental factors leads to the establishment of a complex and stable microbiota that will define the kinetics of the process and the final product. Controlled multistarter fermentation represents a microbial approach to achieve the dual purpose of having a less risky process and a distinctive final product. Indeed, the interactions evolved between microbial consortium members strongly modulate the final sensorial properties of the wine. Therefore, in well-managed mixed fermentations, the knowledge of molecular mechanisms on the basis of yeast interactions, in a well-defined ecological niche, becomes fundamental to control the winemaking process, representing a tool to achieve such objectives. In the present work, the recent development on the molecular and metabolic interactions between non-Saccharomyces and Saccharomyces yeasts in wine fermentation was reviewed. A particular focus will be reserved on molecular studies regarding the role of nutrients, the production of the main byproducts and volatile compounds, ethanol reduction, and antagonistic actions for biological control in mixed fermentations.
Collapse
|
22
|
Gonzalez R, Morales P. Truth in wine yeast. Microb Biotechnol 2021; 15:1339-1356. [PMID: 34173338 PMCID: PMC9049622 DOI: 10.1111/1751-7915.13848] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Evolutionary history and early association with anthropogenic environments have made Saccharomyces cerevisiae the quintessential wine yeast. This species typically dominates any spontaneous wine fermentation and, until recently, virtually all commercially available wine starters belonged to this species. The Crabtree effect, and the ability to grow under fully anaerobic conditions, contribute decisively to their dominance in this environment. But not all strains of Saccharomyces cerevisiae are equally suitable as starter cultures. In this article, we review the physiological and genetic characteristics of S. cerevisiae wine strains, as well as the biotic and abiotic factors that have shaped them through evolution. Limited genetic diversity of this group of yeasts could be a constraint to solving the new challenges of oenology. However, research in this field has for many years been providing tools to increase this diversity, from genetic engineering and classical genetic tools to the inclusion of other yeast species in the catalogues of wine yeasts. On occasion, these less conventional species may contribute to the generation of interspecific hybrids with S. cerevisiae. Thus, our knowledge about wine strains of S. cerevisiae and other wine yeasts is constantly expanding. Over the last decades, wine yeast research has been a pillar for the modernisation of oenology, and we can be confident that yeast biotechnology will keep contributing to solving any challenges, such as climate change, that we may face in the future.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera de Burgos, km 6, Logroño, La Rioja, 26071, Spain
| |
Collapse
|