1
|
Yang S, Guo Z, Sun J, Wei J, Ma Q, Gao X. Recent advances in microbial synthesis of free heme. Appl Microbiol Biotechnol 2024; 108:68. [PMID: 38194135 PMCID: PMC10776470 DOI: 10.1007/s00253-023-12968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Heme is an iron-containing porphyrin compound widely used in the fields of healthcare, food, and medicine. Compared to animal blood extraction, it is more advantageous to develop a microbial cell factory to produce heme. However, heme biosynthesis in microorganisms is tightly regulated, and its accumulation is highly cytotoxic. The current review describes the biosynthetic pathway of free heme, its fermentation production using different engineered bacteria constructed by metabolic engineering, and strategies for further improving heme synthesis. Heme synthetic pathway in Bacillus subtilis was modified utilizing genome-editing technology, resulting in significantly improved heme synthesis and secretion abilities. This technique avoided the use of multiple antibiotics and enhanced the genetic stability of strain. Hence, engineered B. subtilis could be an attractive cell factory for heme production. Further studies should be performed to enhance the expression of heme synthetic module and optimize the expression of heme exporter and fermentation processes, such as iron supply. KEY POINTS: • Strengthening the heme biosynthetic pathway can significantly increase heme production. • Heme exporter overexpression helps to promote heme secretion, thereby further promoting excessive heme synthesis. • Engineered B. subtilis is an attractive alternative for heme production.
Collapse
Affiliation(s)
- Shaomei Yang
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China.
| | - Zihao Guo
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Jiuyu Sun
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Jingxuan Wei
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Qinyuan Ma
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China
| | - Xiuzhen Gao
- School of Life Sciences and Medicine, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, China.
| |
Collapse
|
2
|
Farahmand S, SamadiAfshar S, Hosseini L. TA-Cloning for Diabetes Treatment: Expressing Corynebacterium Malic Enzyme Gene in E. coli. Curr Microbiol 2024; 81:167. [PMID: 38727744 DOI: 10.1007/s00284-024-03686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
Diabetes mellitus represents a persistent metabolic condition marked by heightened levels of blood glucose, presenting a considerable worldwide health concern, and finding targeted treatment for it is a crucial priority for global health. Gram-positive aerobic bacteria, predominantly inhabiting water and soil, are known carriers of various enzyme-encoding genetic material, which includes the malic enzyme gene that plays a role in insulin secretion. Corynebacterium glutamicum bacteria (ATCC 21799) were acquired from the Pasteur Institute and confirmed using microbiological and molecular tests, including DNA extraction. After identification, gene purification and cloning of the maeB gene were performed using the TA Cloning method. Additionally, the enhancement of enzyme expression was assessed using the expression vector pET-28a, and validation of simulation results was monitored through a real-time PCR analysis. Based on previous studies, the malic enzyme plays a pivotal role in maintaining glucose homeostasis, and increased expression of this enzyme has been associated with enhanced insulin sensitivity. However, the production of malic enzyme has encountered numerous challenges and difficulties. This study successfully isolated the malic enzyme genes via Corynebacterium glutamicum and introduced them into Escherichia coli for high-yield production. According to the results, the optimum temperature for the activity of enzymes has been identified as 39 °C.
Collapse
Affiliation(s)
| | - Saber SamadiAfshar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ladan Hosseini
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
3
|
Yang T, Zhang D, Cai M, Zhang H, Pan X, You J, Zhang X, Xu M, Rao Z. Combining protein and metabolic engineering strategies for high-level production of L-theanine in Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2024; 394:130200. [PMID: 38103752 DOI: 10.1016/j.biortech.2023.130200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
L-theanine is a natural non-protein amino acid with wide applications. Thus, a high yield of L-theanine production is required on an industrial scale. Herein, an efficient L-theanine-producing strain of Corynebacterium glutamicum was constructed by combining protein and metabolic engineering. Firstly, a γ-glutamylmethylamide synthetase from Paracoccus aminovorans (PaGMAS) was isolated and engineered by computer-aided design, the resulting mutant E179K/N105R improved L-theanine yield by 36.61 %. Subsequently, to increase carbon flux towards L-theanine production, the gene ggt which degrades L-theanine, the gene alaT which participated in L-alanine synthesis, and the gene NCgl1221 which encodes glutamate-exporting protein were deleted. Finally, ppk gene was overexpressed to enhance intracellular ATP production. The reprogramed strain produced 44.12 g/L L-theanine with a yield of 57.11 % and productivity of 1.16 g/L/h, which is the highest L-theanine titer reported by Corynebacterium glutamicum. This study provides an efficient and economical biosynthetic pathway for the industrial production of L-theanine.
Collapse
Affiliation(s)
- Taowei Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Di Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Mengmeng Cai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Hengwei Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xuewei Pan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, China.
| |
Collapse
|
4
|
Melo RM, de Souza JMF, Williams TCR, Fontes W, de Sousa MV, Ricart CAO, do Vale LHF. Revealing Corynebacterium glutamicum proteoforms through top-down proteomics. Sci Rep 2023; 13:2602. [PMID: 36788287 PMCID: PMC9929327 DOI: 10.1038/s41598-023-29857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60% of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.
Collapse
Affiliation(s)
- Reynaldo Magalhães Melo
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Jaques Miranda Ferreira de Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | | | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Luis Henrique Ferreira do Vale
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil.
| |
Collapse
|