1
|
El-Sayed ESR, Grzelczyk J, Strzała T, Gałązka-Czarnecka I, Budryn G, Boratyński F. Bioprospecting endophytic fungi of forest plants for their monoamine oxidase A and cholinesterases inhibitors, and peroxisome proliferator-activated receptor gamma agonists. J Appl Microbiol 2025; 136:lxaf034. [PMID: 39947203 DOI: 10.1093/jambio/lxaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/06/2025]
Abstract
AIMS The urgent search for new natural bioactive compounds is crucial to address growing clinical demands. With this perspective, this paper focuses on isolating and bioprospecting fungal endophytes from some plant species in a local forest in Wrocław, Poland. METHODS AND RESULTS Forty-three fungal endophytes were isolated and their extracts were tested for inhibitory potential against monoamine oxidase A (MAO-A), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and for peroxisome proliferator-activated receptor gamma (PPAR-γ) agonists. Six promising strains after screening were identified to possess all these activities. These strains and their respective plant hosts were Sphaeropsis sapinea BUK-L2 (Fagus sylvatica), Coniochaeta velutina SW-B (Picea abies), Epicoccum nigrum COR-B (Corylus avellana), Paraphaeosphaeria verruculosa JAR-B (Sorbus aucuparia), Umbelopsis isabellina COR-L1 (Corylus avellana), and Epicoccum mezzettii QR-B (Quercus robur). Moreover, gamma irradiation at several doses (Gy) was separately applied to the fungal cultures to study their enhancement effects on the recorded activities. Finally, compounds of active bands from preparative thin-layer chromatography of the two promising strains (Coniochaeta velutina SW-B and Epicoccum nigrum COR-B), were identified by GC-MS (Gas chromatography-mass spectrometry). CONCLUSIONS The present study is the first report on bioprospecting endophytic fungi of forest plants for the aforementioned activities.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Joanna Grzelczyk
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-537, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Ilona Gałązka-Czarnecka
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-537, Poland
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz 90-537, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| |
Collapse
|
2
|
Mwaheb MA, Hasanien YA, Zaki AG, Abdel-Razek AS, Al Halim LRA. Fusarium verticillioides pigment: production, response surface optimization, gamma irradiation and encapsulation studies. BMC Biotechnol 2024; 24:84. [PMID: 39472859 PMCID: PMC11523785 DOI: 10.1186/s12896-024-00909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Natural pigments are becoming more significant because of the rising cost of raw materials, pollution, and the complexity of synthetic pigments. Compared to synthetic pigments, natural pigments exhibit antimicrobial properties and is less allergic. Pigments from microbial sources could easily be obtained in an inexpensive culture media, produced in high yields, and microbes are capable of producing different colored pigments. Searching for new sources for natural pigments to replace synthetic ones in food applications has become an urgent necessity, but the instability of these compounds is sometimes considered one of the obstacles that reduce their application. Encapsulation provides an ideal solution for natural dye protection through a controlled release strategy. Thus, this study aims at isolation of several soil fungi and subsequent screening their pigment production ability. The chosen pigment-producing fungal strain underwent full identification. The produced pigment was extracted with ethyl acetate and estimated spectrophotometrically. As there is a necessity to obtain a high pigment yield for efficient industrial application, the best production medium was tested, optimum conditions for maximum dye production were also investigated through the response surface methodology, and gamma irradiation was also employed to enhance the fungal productivity. Encapsulation of the produced pigment into chitosan microsphere was tested. The pigment release under different pH conditions was also investigated. RESULTS A new strain, Fusarium verticillioides AUMC 15934 was chosen and identified for a violet pigment production process. Out of four different media studied, the tested strain grew well on potato dextrose broth medium. Optimum conditions are initial medium pH 8, 25 °C-incubation temperature, and for 15-day incubation period under shaking state. Moreover, a 400 Gy irradiation dose enhanced the pigment production. Chitosan microsphere loaded by the pigment was successfully prepared and characterized by infrared spectroscopy and scanning electron microscopy. CONCLUSION This irradiated Fusarium strain provides a more economically favorable source for production of a natural violet dye with an optimum productivity, enhanced yield, and improved properties (such as, enhanced stability, controlled release, and bioaccessibility) by encapsulation with chitosan for efficient application in food industry.
Collapse
Affiliation(s)
- Mai Ali Mwaheb
- Botany Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Yasmeen A Hasanien
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Alaa S Abdel-Razek
- Radiation Protection and Safety Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Laila R Abd Al Halim
- Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
3
|
Rezazadeh H, Ghanati F, Bonfill M, Nasibi F, Mohammadi Ballakuti N. Enhancement of paclitaxel production by Neopestalotiopsis vitis via optimization of growth conditions. PLoS One 2024; 19:e0309325. [PMID: 39405307 PMCID: PMC11478870 DOI: 10.1371/journal.pone.0309325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Accessibility of paclitaxel and other taxoids from natural resources is restricted. Endophytic fungi are novel, rapidly growing resources for producing these compounds. Neopestalotiopsis vitis (N. vitis) has been recently isolated from Corylus avellana, and its ability to produce a variety of taxoids has been detected and confirmed by analytical methods. Simultaneous growth and high production of taxoids by application of different sorts and concentrations of carbon and nitrogen were targeted in the present research. These criteria were assessed in different acidities (pH 4.0-7.0), carbon sources (sucrose, fructose, glucose, mannitol, sorbitol, and malt extract), and nitrogen forms (urea, ammonium nitrate, potassium nitrate, ammonium phosphate, and ammonium sulfate) by testing one parameter at a time approach. The first analysis introduced pH 7.0 as the best acidity of the medium for N. vitis, where the highest paclitaxel yield was generated. Further analysis introduced 3% Malt extract as the best carbon-providing medium. In the next step, the effects of nitrogen forms on the growth rate, paclitaxel yield, alkaloids, and amino acid contents were evaluated. Based on the results of this experiment, 5 mM ammonium sulfate was selected as the best nitrogen source to obtain the maximum biomass and paclitaxel yield. Overall, the results introduce a medium containing 3% (w/v) malt extract and 5 mM ammonium sulfate at pH 7.0 as the best medium in which N. vitis produces the highest paclitaxel yield coincident with rapid and sustainable growth. The findings pave the way for industrial manufacturing of taxoids.
Collapse
Affiliation(s)
- Hamzeh Rezazadeh
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Ghanati
- Department of Plant Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Fatemeh Nasibi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | | |
Collapse
|
4
|
El-Sayed ESR, Mousa SA, Strzała T, Boratyński F. Enhancing bioprocessing of red pigment from immobilized culture of gamma rays mutant of the endophytic fungus Monascus ruber SRZ112. J Biol Eng 2024; 18:44. [PMID: 39148082 PMCID: PMC11325623 DOI: 10.1186/s13036-024-00439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Considerable attention has been paid to exploring the biotechnological applications of several Monascus sp. for pigment production. In this study, our focus is on enhancing the bioprocessing of red pigment (RP) derived from the endophytic fungus Monascus ruber SRZ112. To achieve this, we developed a stable mutant strain with improved productivity through gamma irradiation. This mutant was then employed in the immobilization technique using various entrapment carriers. Subsequently, we optimized the culture medium for maximal RP production using the Response Surface Methodology. Finally, these immobilized cultures were successfully utilized for RP production using a semi-continuous mode of fermentation. After eight cycles of fermentation, the highest RP yield by immobilized mycelia reached 309.17 CV mL-1, a significant increase compared to the original titer. Importantly, this study marks the first report on the successful production of Monascus RP in a semi-continuous mode using gamma rays' mutant strain, offering prospects for commercial production.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland.
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Shaimaa A Mousa
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Tomasz Strzała
- Department of Genetics, Wrocław University of Environmental and Life Sciences, Ul. Kożuchowska 7, Wrołcaw, 51-631, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, Wrocław, 50-375, Poland
| |
Collapse
|
5
|
Vu THN, Quach NT, Pham QA, Le PC, Nguyen VT, Le TTX, Do TT, Anh DH, Quang TH, Chu HH, Phi QT. Fusarium solani PQF9 Isolated from Podocarpus pilgeri Growing in Vietnam as a New Producer of Paclitaxel. Indian J Microbiol 2023; 63:596-603. [PMID: 38031615 PMCID: PMC10681966 DOI: 10.1007/s12088-023-01119-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Endophytic fungi are known as an alternative promising source of anticancer drug, paclitaxel, however fungi inhabiting in medicinal plant Podocarpus pilgeri and their paclitaxel production have not been reported to date. In the present study, a total of 15 culturable fungi classified into 5 genera, were successfully recovered from P. pilgeri collected in Vietnam. Screening fungal dichloromethane extracts for anticancer activity revealed that only PQF9 extract displayed potent inhibitory effects on A549 and MCF7 cancer cell lines with IC50 values of 33.9 ± 2.3 µg/mL and 43.5 ± 1.7 µg/mL, respectively. Through PCR-based molecular screening, the isolate PQF9 was found to possess 3 key genes involved in paclitaxel biosynthesis. Importantly, high-performance liquid chromatography quantification showed that fungal isolate PQF9 was able to produce 18.2 µg/L paclitaxel. The paclitaxel-producing fungus was identified as Fusarium solani PQF9 based on morphological and molecular phylogenetic analysis. Intensive investigations by chromatographic methods and spectroscopic analyses confirmed the presence of paclitaxel along with tyrosol and uracil. The pure paclitaxel had an IC50 value of 80.8 ± 9.4 and 67.9 ± 7.0 nM by using cell viability assay on A549 lung and MCF7 breast cancer cells. In addition, tyrosol exhibited strong antioxidant activity by scavenging 2, 2-diphenyl-picrylhydrazyl (DPPH) (IC50 5.1 ± 0.2 mM) and hydroxyl radical (IC50 3.6 ± 0.1 mM). In contrast, no biological activity was observed for uracil. Thus, the paclitaxel-producing fungus F. solani PQF9 could serve as a new material for large-scale production and deciphering paclitaxel biosynthesis. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01119-z.
Collapse
Affiliation(s)
- Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Quynh Anh Pham
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Phuong Chi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Van The Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Thi Thanh Xuan Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Thi Thao Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Do Hoang Anh
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Tran Hong Quang
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| | - Quyet Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 10072 Vietnam
| |
Collapse
|
6
|
Production of value-added peptides from agro-industrial residues by solid-state fermentation with a new thermophilic protease-producing strain. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
El-Sayed ESR, Zaki AG. Unlocking the biosynthetic potential of Penicillium roqueforti for hyperproduction of the immunosuppressant mycophenolic acid: Gamma radiation mutagenesis and response surface optimization of fermentation medium. Biotechnol Appl Biochem 2023; 70:306-317. [PMID: 35481612 DOI: 10.1002/bab.2353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/10/2022] [Indexed: 11/09/2022]
Abstract
Based on the broad clinical utility of the immunosuppressant mycophenolic acid (MPA), this article aims to intensify the biosynthetic potential of Penicillium roqueforti for more effective hyperproduction of the drug. Several mutants were generated from irradiation mutagenesis and screened. Two strains (GM1013 and GM1093) presented an elevated MPA productivity with significant yield constancy over 10 subsequent generations. By investigating the effect of some phosphorous sources and mineral salts on MPA production by the two mutants, KH2 PO4 and FeSO4 ·7H2 O were most preferred by the two mutants for higher MPA production rates. Statistics-dependent experimental designs were also employed for optimizing medium components for maximum MPA production. Medium components were primarily screened using the Plackett-Burman model to demonstrate the most important components that most significantly affect MPA production. The concentrations of these significant components were then optimized through a central composite rotatable model. In conclusion, gamma-radiation mutation and response surface optimization resulted in a promising MPA productivity by P. roqueforti GM1013. To our knowledge, the MPA-yield achieved in this study (2933.32 mg L-1 ) is the highest reported by academic laboratories from P. roqueforti cultures, which could be of economic value for a prospective large industrialized application.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
8
|
Gamma irradiation mediated production improvement of some myco-fabricated nanoparticles and exploring their wound healing, anti-inflammatory and acetylcholinesterase inhibitory potentials. Sci Rep 2023; 13:1629. [PMID: 36717680 PMCID: PMC9887004 DOI: 10.1038/s41598-023-28670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
In the current scenario, scaling up the microbial production of nanoparticles with diverse biological applications is an emerging prospect for NPs' sustainable industry. Thus, this paper was conducted to develop a suitable applicative process for the myco-fabrication of cobalt-ferrite (CoFeNPs), selenium (SeNPs), and zinc oxide (ZnONPs) nanoparticles. A strain improvement program using gamma irradiation mutagenesis was applied to improve the NPs-producing ability of the fungal strains. The achieved yields of CoFeNPs, SeNPs, and ZnONPs were intensified by a 14.47, 7.85, and 22.25-fold increase from the initial yield following gamma irradiation and isolation of stable mutant strains. The myco-fabricated CoFeNPs, SeNPs, and ZnONPs were then exploited to study their wound healing, and anti-inflammatory. In addition, the acetylcholinesterase inhibition activities of the myco-fabricated NPs were evaluated and analyzed by molecular docking. The obtained results confirmed the promising wound healing, anti-inflammatory, and acetylcholinesterase inhibition potentials of the three types of NPs. Additionally, data from analyzing the interaction of NPs with acetylcholinesterase enzyme by molecular docking were in conformation with the experimental data.
Collapse
|
9
|
Hazaa MA, Shebl MM, El-Sayed ESR, Mahmoud SR, Khattab AA, Amer MM. Bioprospecting endophytic fungi for antifeedants and larvicides and their enhancement by gamma irradiation. AMB Express 2022; 12:120. [PMID: 36114376 PMCID: PMC9481848 DOI: 10.1186/s13568-022-01461-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
The search and discovery of new natural products with antifeedant and larvicidal potentials to mitigate harmful insects are scientific pressing issues in the modern agriculture. In this paper, the antifeedant and larvicidal potentials of 69 fungal isolates were screened against the Egyptian cotton leafworm Spodoptera littoralis. A total of 17 isolates showed the insecticidal potentials with three promising isolates. These strains were Aspergillus sydowii, Lasiodiplodia theobromae, and Aspergillus flavus isolated from Ricinus communis (bark), Terminalia arjuna (Bark), and Psidium guajava (twigs), respectively. The effect of gamma irradiation on the antifeedant and larvicidal activities of the three strains was investigated. Exposure of the fungal spores to 1000 Gy of gamma rays significantly intensified both the antifeedant and larvicidal potentials. To identify compounds responsible for these activities, extracts of the three strains were fractionated by thin layer chromatography. The nature of the separated compounds namely, Penitrem A, 1, 3, 5, 8- tetramethyl- 4, 6-diethyl- 7- [2- (methoxycarbonyl)ethyl] porphyrin (from A. sydowii), Penitrem A, 2, 7, 12, 17-Tetramethyl-3, 5:8, 10:13, 15:18, 20-tetrakis (2,2-dimethylpropano) porphyrin (from A. flavus), N,N-Diethyl-3-nitrobenzamide, and Diisooctyl-phthalate (from L. theobromae) were studied by GC-MS analysis. These findings recommend endophytic fungi as promising sources of novel natural compounds to mitigate harmful insects. Three promising fungal endophytes with antifeedant and larvicidal activities were reported. The antifeedant and larvicidal activities were intensified following exposure of fungal spores to 1000 Gy gamma rays. Extracts of the three strains were separately fractionated by TLC then GC-MS was used to identify chemical constituents responsible for bioactivity.
Collapse
|
10
|
Anwar MM, Aly SSH, Nasr EH, El-Sayed ESR. Improving carboxymethyl cellulose edible coating using ZnO nanoparticles from irradiated Alternaria tenuissima. AMB Express 2022; 12:116. [PMID: 36070053 PMCID: PMC9452608 DOI: 10.1186/s13568-022-01459-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/30/2022] [Indexed: 11/29/2022] Open
Abstract
In this paper, gamma-irradiation was successfully used to intensify the yield of Zinc oxide nanoparticles (ZnONPs) produced by the fungus Alternaria tenuissima as a sustainable and green process. The obtained data showed that 500 Gy of gamma-irradiation increased ZnONPs' yield to approximately four-fold. The synthesized ZnONPs were then exploited to develop active Carboxymethyl Cellulose films by casting method at two different concentration of ZnONPs 0.5% and 1.0%. The physicochemical, mechanical, antioxidant, and antimicrobial properties of the prepared films were evaluated. The incorporation of ZnONPs in the Carboxymethyl Cellulose films had significantly decreased solubility (from 78.31% to 66.04% and 59.72%), water vapor permeability (from 0.475 g m-2 to 0.093 g m-2 and 0.026 g m-2), and oxygen transfer rate (from 24.7 × 10-2 to 2.3 × 10-2 and 1.8 × 10-2) of the respective prepared films. Meanwhile, tensile strength (from 183.2 MPa to 203.34 MPa and 235.94 MPa), elongation (from 13.0% to 62.5% and 83.7%), and Yang's modulus (from 325.344 to 1410.0 and 1814.96 MPa) of these films were increased. Moreover, the antioxidant and antimicrobial activities against several human and plant pathogens the prepared of Carboxymethyl Cellulose-ZnONPs films were significantly increased. In conclusion, the prepared Carboxymethyl Cellulose-ZnONPs films showed enhanced activities in comparison with Carboxymethyl Cellulose film without NPs. With these advantages, the fabricated Carboxymethyl Cellulose-ZnONPs films in this study could be effectively utilized as protective edible coating films of food products.
Collapse
Affiliation(s)
- Mervat M Anwar
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Sanaa S H Aly
- Food Engineering and Packing Department, Agriculture Research Centre, Food Technology Research Institute, Giza, Egypt
| | - Essam H Nasr
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
11
|
El-Sayed ESR, Gach J, Olejniczak T, Boratyński F. A new endophyte Monascus ruber SRZ112 as an efficient production platform of natural pigments using agro-industrial wastes. Sci Rep 2022; 12:12611. [PMID: 35871189 PMCID: PMC9308793 DOI: 10.1038/s41598-022-16269-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
A number of biopigment applications in various industrial sectors are gaining importance due to the growing consumer interest in their natural origin. Thus, this work was conducted to valorize endophytic fungi as an efficient production platform for natural pigments. A promising strain isolated from leaves of Origanum majorana was identified as Monascus ruber SRZ112 produced several types of pigments. The nature of the pigments, mainly rubropunctamine, monascin, ankaflavin, rubropunctatin, and monascorubrin in the fungal extract was studied by LC/ESI-MS/MS analyses. As a first step towards developing an efficient production of red pigments, the suitability of seven types of agro-industrial waste was evaluated. The highest yield of red pigments was obtained using potato peel moistened with mineral salt broth as a culture medium. To increase yield of red pigments, favourable culture conditions including incubation temperature, incubation period, pH of moistening agent, inoculum concentration, substrate weight and moisture level were evaluated. Additionally, yield of red pigments was intensified after the exposure of M. ruber SRZ112 spores to 1.00 KGy gamma rays. The final yield was improved by a 22.12-fold increase from 23.55 to 3351.87 AU g-1. The anticancer and antioxidant properties of the pigment's extract from the fungal culture were also studied. The obtained data indicated activity of the extract against human breast cancer cell lines with no significant cytotoxicity against normal cell lines. The extract also showed a free radical scavenging potential. This is the first report, to our knowledge, on the isolation of the endophytic M. ruber SRZ112 strain with the successful production of natural pigments under solid-state fermentation using potato peel as a substrate.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
12
|
Zaki AG, Hasanien YA, Abdel-Razek AS. Biosorption optimization of lead(II) and cadmium(II) ions by two novel nanosilica-immobilized fungal mutants. J Appl Microbiol 2022; 133:987-1000. [PMID: 35578549 DOI: 10.1111/jam.15624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Abstract
AIMS This study aims at immobilization of fungal mutants on nanosilica-carriers for designing efficient biosorbents as a significant new technology for decontamination practices and maximizing their heavy metal (HM) sorption proficiency through the experimental design methodology. MATERIALS AND RESULTS Endophytic fungal mutant strains, Chaetomium globosum El26 mutant and Alternaria alternata S5 mutant were heat inactivated then immobilized, each separately, on nanosilica (NSi) carriers to formulate two separated nano-biosorbents. The formulated NSi-Chaetomium globosum El26 mutant (NSi-Chae El26 m) was investigated for Pb+2 uptake while, the formulated NSi-Alternaria alternata S5 mutant (NSi-Alt S5 m) was investigated for Cd+2 uptake, each through a batch equilibrium protocol. Before and after the metal sorption process, the designed nano-biosorbents were characterized via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier Transform Infrared analysis. Sorption pH, contact time, sorbent concentration, and initial HM concentration, were statistically optimized using a Box-Behnken design (BBD). Results showed that NSi-Chae El26 m was efficient in Pb+2 uptake with maximum biosorption capacities of 199.0 while, NSi-Alt S5 m was efficient in Cd+2 uptake with maximum biosorption capacities of 162.0 mg∙g-1 . Moreover, the equilibrium data indicated that the adsorption of Pb+2 and Cd+2 by the tested nano-biosorbents fitted to the Freundlich isotherm. CONCLUSIONS The formulated nano-biosorbents resulted in higher HM biosorption of metal ions from aqueous solution than that obtained by the free fungal biomass. The biosorption statistical modelling described the interactions between the tested sorption parameters and predicted the optimum values for maximum HM biosorption capacity by the two designed nano-biosorbents. SIGNIFICANCE AND IMPACT OF THE STUDY These findings verify that members of the endophytic fungal genera Alternaria and Chaetomium are suitable to produce nano-biosorbents for decontamination practices after treatment by gamma mutagenesis, heat inactivation, and nanosilica immobilization. Moreover, statistical optimization can assist to evaluate the optimal conditions to produce such bioremediation material.
Collapse
Affiliation(s)
- Amira G Zaki
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Yasmeen A Hasanien
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Alaa S Abdel-Razek
- Radiation Protection and Safety Department, Hot Labs Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
13
|
El-Sayed ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express 2022. [PMID: 35438322 DOI: 10.1186/s13568-022-01386x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The search for new bioactive compounds with innovative modes of action and chemistry are desperately needed to tackle the increased emergence of drug-resistant microbes. With this view, this paper was conducted for the isolation, identification, and biological evaluation of fungal endophytes of eleven different plant species. A total of 69 endophytic strains were isolated and tested for the presence of bioactive metabolites with antifungal, antibacterial, anticancer, and antioxidant properties in their extracts. Upon screening, two promising strains were found to have all the before-mentioned activities. These strains were Aspergillus sydowii isolated from the bark of Ricinus communis and Aspergillus flavus isolated from the twigs of Psidium guajava. Major compounds present in extracts of the two strains were identified by GC-Mass analyses. Several well-known bioactive compounds as well as unreported ones were identified in the fungal extracts of the two strains. Furthermore, gamma irradiation (at 1000 Gy) of the fungal cultures resulted in improved bioactivities of extracts from the two strains. These findings recommend the two fungal strains as sources of antimicrobial, anticancer, and antioxidant compounds which may aid in the development of novel drugs. The presented research also explains the high-value of fungal endophytes as untapped sources of bioactive metabolites.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Magdia A Hazaa
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Magdy M Shebl
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Amer
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| | - Samar R Mahmoud
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abeer A Khattab
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| |
Collapse
|
14
|
El-Sayed ESR, Hazaa MA, Shebl MM, Amer MM, Mahmoud SR, Khattab AA. Bioprospecting endophytic fungi for bioactive metabolites and use of irradiation to improve their bioactivities. AMB Express 2022; 12:46. [PMID: 35438322 PMCID: PMC9018947 DOI: 10.1186/s13568-022-01386-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/09/2022] [Indexed: 01/25/2023] Open
Abstract
The search for new bioactive compounds with innovative modes of action and chemistry are desperately needed to tackle the increased emergence of drug-resistant microbes. With this view, this paper was conducted for the isolation, identification, and biological evaluation of fungal endophytes of eleven different plant species. A total of 69 endophytic strains were isolated and tested for the presence of bioactive metabolites with antifungal, antibacterial, anticancer, and antioxidant properties in their extracts. Upon screening, two promising strains were found to have all the before-mentioned activities. These strains were Aspergillus sydowii isolated from the bark of Ricinus communis and Aspergillus flavus isolated from the twigs of Psidium guajava. Major compounds present in extracts of the two strains were identified by GC-Mass analyses. Several well-known bioactive compounds as well as unreported ones were identified in the fungal extracts of the two strains. Furthermore, gamma irradiation (at 1000 Gy) of the fungal cultures resulted in improved bioactivities of extracts from the two strains. These findings recommend the two fungal strains as sources of antimicrobial, anticancer, and antioxidant compounds which may aid in the development of novel drugs. The presented research also explains the high-value of fungal endophytes as untapped sources of bioactive metabolites.
Collapse
Affiliation(s)
- El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Magdia A Hazaa
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Magdy M Shebl
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Amer
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| | - Samar R Mahmoud
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abeer A Khattab
- Department of Botany, and Microbiology Faculty of Science, Benha University, Benha, Qalubiya Governorate, Egypt
| |
Collapse
|
15
|
El-Sayed ESR, Mousa SA, Abdou DA, Abo El-Seoud MA, Elmehlawy AA, Mohamed SS. Exploiting the exceptional biosynthetic potency of the endophytic Aspergillus terreus in enhancing production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles using bioprocess optimization and gamma irradiation. Saudi J Biol Sci 2022; 29:2463-2474. [PMID: 35531225 PMCID: PMC9072909 DOI: 10.1016/j.sjbs.2021.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022] Open
Abstract
Developing a suitable applicative process and scaling up the microbial synthesis of nanomaterials is an attractive and emerging prospect for a future sustainable industrial production. In this paper, optimization of fermentation conditions for enhanced production of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic A. terreus ORG-1 was studied. Different cultivation conditions were evaluated. Then, a response surface methodology program was used to optimize physical conditions controlling the biosynthesis of these NPs. Finally, the use of gamma irradiation for improvement of NPs’ production was adopted. Under the optimum conditions and after gamma irradiation, the final yields of the respective NPs reached 545.71, 651.67, 463.19, 954.88, 1356.42 mg L−1. To the best of our knowledge, this is the first report on the production and enhancement of different types of nanomaterials from one microbial culture that can open up the way towards the industrialization of the microbial production of nanomaterials.
Collapse
|
16
|
Zaki AG, Hasanien YA, El-Sayyad GS. Novel fabrication of SiO 2/Ag nanocomposite by gamma irradiated Fusarium oxysporum to combat Ralstonia solanacearum. AMB Express 2022; 12:25. [PMID: 35229228 PMCID: PMC8885861 DOI: 10.1186/s13568-022-01372-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The bacterial wilt is a global destructive plant disease that initiated by the phytopathogenic Ralstonia solanacearum. This study display a novel biofabrication of silica/silver nanocomposite using Fusarium oxysporum-fermented rice husk (RH) under solid state fermentation (SSF). The biofabricated nanocomposite was characterized by XRD, UV-Vis. spectroscopy, DLS, SEM, EDX elemental mapping, and TEM analyses as well as investigated for anti-R. solanacearum activity. Response surface methodology was also processed for optimizing the biofabrication process and improving the anti-bacterial activity of the fabricated nanocomposite. Maximum suppression zone of 29.5 mm against R. solanacearum was reached at optimum RH content of 6.0 g, AgNO3 concentration of 2.50 mM, reaction pH of 6.3, and reaction time of 2 days. The anti-R. solanacearum activity of the fabricated nanocomposite was further improved by exposing the F. oxysporum strain to a gamma irradiation dose of 200 Gy. In conclusion, RH recycling under SSF by F. oxysporum could provide an innovative, facile, non-expensive, and green approach for fabricating SiO2/Ag nanocomposite that could be applied efficiently as an eco-friendly antibacterial agent to combat R. solanacearum in agricultural applications. Moreover, the developed method could serve as a significant platform for the designing of new nanostructures for broad applications.
Collapse
Affiliation(s)
- Amira G. Zaki
- Plant Research Department, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Yasmeen A. Hasanien
- Plant Research Department, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S. El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|