1
|
Yang J, Shang P, Liu Z, Wang J, Zhang B, Zhang H. Ligilactobacillus salivarius regulating translocation of core bacteria to enrich mouse intrinsic microbiota of heart and liver in defense of heat stress. Front Immunol 2025; 16:1540548. [PMID: 40276518 PMCID: PMC12018310 DOI: 10.3389/fimmu.2025.1540548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The aim of this study was to elucidate the intrinsic microbiota residing in the heart and liver, which was enriched with Ligilactobacillus salivarius supplementation and its roles in defending anti-oxidation of heat stress. The specific pathogen free (SPF) mice were employed to perform the study. Genomic sequencing showed that the intrinsic microbes in the heart and liver of SPF mice, which were primarily of the genera Burkholderia and Ralstonia, functioned in organic metabolism, environmental information processing, cellular processes, and genetic information processing. Lactobacillus sp. were found in the liver but not in the heart. The heart had a lower bacterial abundance than the liver. A culturomic assay of the heart flushing liquid indicated that the dominant species of bacteria were Ralstonia pickettii, Ralstonia sp._3PA37C10, Ralstonia insidiosa, Burkholderia lata, unclassified _g_ Ralstonia, and unclassified _p_ Pseudomonadota. Intrinsic bacteria exist in the heart due to their inhibitory action against pathogenic Escherichia coli. After, the mice were supplemented with Ligilactobacillus salivarius to optimize the microbiota levels. The dominant bacterial phyla in the liver and heart were Bacillota, Bacteroidota, Pseudomonadota, Thermodesulfobacteriota, andActinomycetota, which comprised 98.2% of total bacteria. The genus Lactobacillus was also abundant. Core bacteria such as Lactobacillus reuteri are translocated from the intestine to the heart and liver. The enriched bacterial composition up-regulated anti-oxidation capacities in the heart and liver. The levels of reactive oxygen species and superoxide dismutase (SOD) were significantly improved compared to those in control (P < 0.01). In conclusion, intrinsic bacteria present in the heart and liver alleviate infection by pathogens, environmental and genetic information processing, and cellular processes during heat stress exposure. Diet with Ligilactobacillus salivarius supplementation regulated the translocation of core bacteria to the heart and liver, improved bacterial composition, and induced a higher anti-oxidative capacity under heat stress.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Shang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Zongliang Liu
- College of Animal Science and Technology, Aihui Agricultural University, Hefei, Anhui, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Bo Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Guamán LP, Carrera-Pacheco SE, Zúñiga-Miranda J, Teran E, Erazo C, Barba-Ostria C. The Impact of Bioactive Molecules from Probiotics on Child Health: A Comprehensive Review. Nutrients 2024; 16:3706. [PMID: 39519539 PMCID: PMC11547800 DOI: 10.3390/nu16213706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background: This review investigates the impact of bioactive molecules produced by probiotics on child health, focusing on their roles in modulating gut microbiota, enhancing immune function, and supporting overall development. Key metabolites, including short-chain fatty acids (SCFAs), bacteriocins, exopolysaccharides (EPSs), vitamins, and gamma-aminobutyric acid (GABA), are highlighted for their ability to maintain gut health, regulate inflammation, and support neurodevelopment. Objectives: The aim of this review is to examine the mechanisms of action and clinical evidence supporting the use of probiotics and postbiotics in pediatric healthcare, with a focus on promoting optimal growth, development, and overall health in children. Methods: The review synthesizes findings from clinical studies that investigate the effects of probiotics and their metabolites on pediatric health. The focus is on specific probiotics and their ability to influence gut health, immune responses, and developmental outcomes. Results: Clinical studies demonstrate that specific probiotics and their metabolites can reduce gastrointestinal disorders, enhance immune responses, and decrease the incidence of allergies and respiratory infections in pediatric populations. Additionally, postbiotics-bioactive compounds from probiotic fermentation-offer promising benefits, such as improved gut barrier function, reduced inflammation, and enhanced nutrient absorption, while presenting fewer safety concerns compared to live probiotics. Conclusions: By examining the mechanisms of action and clinical evidence, this review underscores the potential of integrating probiotics and postbiotics into pediatric healthcare strategies to promote optimal growth, development, and overall health in children.
Collapse
Affiliation(s)
- Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (S.E.C.-P.); (J.Z.-M.)
| | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
| | - Cesar Erazo
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
| | - Carlos Barba-Ostria
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador; (E.T.); (C.E.)
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
3
|
Yang S, Wu S, Zhao F, Zhao Z, Shen X, Yu X, Zhang M, Wen F, Sun Z, Menghe B. Diversity Analysis of Intestinal Bifidobacteria in the Hohhot Population. Microorganisms 2024; 12:756. [PMID: 38674700 PMCID: PMC11051944 DOI: 10.3390/microorganisms12040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
(1) Background: Bifidobacterium plays a pivotal role within the gut microbiota, significantly affecting host health through its abundance and composition in the intestine. Factors such as age, gender, and living environment exert considerable influence on the gut microbiota, yet scant attention has been directed towards understanding the specific effects of these factors on the Bifidobacterium population. Therefore, this study focused on 98 adult fecal samples to conduct absolute and relative quantitative analyses of bifidobacteria. (2) Methods: Using droplet digital PCR and the PacBio Sequel II sequencing platform, this study sought to determine the influence of various factors, including living environment, age, and BMI, on the absolute content and biodiversity of intestinal bifidobacteria. (3) Results: Quantitative results indicated that the bifidobacteria content in the intestinal tract ranged from 106 to 109 CFU/g. Notably, the number of bifidobacteria in the intestinal tract of the school population surpassed that of the off-campus population significantly (p = 0.003). Additionally, the group of young people exhibited a significantly higher count of bifidobacteria than the middle-aged and elderly groups (p = 0.041). The normal-weight group displayed a significantly higher bifidobacteria count than the obese group (p = 0.027). Further analysis of the relative abundance of bifidobacteria under different influencing factors revealed that the living environment emerged as the primary factor affecting the intestinal bifidobacteria structure (p = 0.046, R2 = 2.411). Moreover, the diversity of bifidobacteria in the intestinal tract of college students surpassed that in the out-of-school population (p = 0.034). This was characterized by a notable increase in 11 strains, including B. longum, B. bifidum, and B. pseudolongum, in the intestinal tract of college students, forming a more intricate intestinal bifidobacteria interaction network. (4) Conclusions: In summary, this study elucidated the principal factors affecting intestinal bifidobacteria and delineated their characteristics of intestinal bifidobacteria in diverse populations. By enriching the theory surrounding gut microbiota and health, this study provides essential data support for further investigations into the intricate dynamics of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bilige Menghe
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.Y.); (S.W.); (F.W.)
| |
Collapse
|
4
|
Lu J, Zhang L, Zhang H, Chen Y, Zhao J, Chen W, Lu W, Li M. Population-level variation in gut bifidobacterial composition and association with geography, age, ethnicity, and staple food. NPJ Biofilms Microbiomes 2023; 9:98. [PMID: 38086914 PMCID: PMC10716157 DOI: 10.1038/s41522-023-00467-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Bifidobacteria are key gut commensals that confer various health benefits and are commonly used as probiotics. However, little is known about the population-level variation in gut bifidobacterial composition and its affecting factors. Therefore, we analyzed Bifidobacterium species with amplicon sequencing of the groEL gene on fecal samples of 1674 healthy individuals, who belonged to eight ethnic groups and resided in 60 counties/cities of 28 provinces across China. We found that the composition of the bifidobacterial community was associated with geographical factors, demographic characteristics, staple food type, and urbanization. First, geography, which reflects a mixed effect of other variables, explained the largest variation in the bifidobacterial profile. Second, middle adolescence (age 14-17) and age 30 were two key change points in the bifidobacterial community development, and a bifidobacterial community resembling that of adults occurred in middle adolescence, which is much later than the maturation of the whole gut microbial community at approximately age 3. Third, each ethnicity showed a distinct bifidobacterial profile, and the remarkable amount of unknown Bifidobacterium species in the Tibetan gut suggested undiscovered biodiversity. Fourth, wheat as the main staple food promoted the flourish of B. adolescentis and B. longum. Fifth, alpha diversity of the bifidobacterial community decreased with urbanization. Collectively, our findings provide insight into the environmental and host factors that shape the human gut bifidobacterial community, which is fundamental for precision probiotics.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 101300, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Yutao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, China.
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, 214122, China.
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, 101300, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Derrien M, Turroni F, Ventura M, van Sinderen D. Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol 2022; 30:940-947. [DOI: 10.1016/j.tim.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023]
|