1
|
Hu W, Huo X, Bai H, Chen Z, Zhang J, Yang H, Feng S. Insights into the complementation potential of the extreme acidophile's orthologue in replacing Escherichia coli hfq gene-particularly in bacterial resistance to environmental stress. World J Microbiol Biotechnol 2024; 40:105. [PMID: 38386219 DOI: 10.1007/s11274-024-03924-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Acidithiobacillus caldus is a typical extreme acidophile widely used in the biohydrometallurgical industry, which often experiences extreme environmental stress in its natural habitat. Hfq, an RNA-binding protein, typically functions as a global regulator involved in various cellular physiological processes. Yet, the biological functions of Hfq derived from such extreme acidophile have not been extensively investigated. In this study, the recombinant strain Δhfq/Achfq, constructed by CRISPR/Cas9-mediated chromosome integration, fully or partially restored the phenotypic defects caused by hfq deletion in Escherichia coli, including impaired growth performance, abnormal cell morphology, impaired swarming motility, decreased stress resistance, decreased intracellular ATP and free amino acid levels, and attenuated biofilm formation. Particularly noteworthy, the intracellular ATP level and biofilm production of the recombinant strain were increased by 12.2% and 7.0%, respectively, compared to the Δhfq mutant. Transcriptomic analysis revealed that even under heterologous expression, AcHfq exerted global regulatory effects on multiple cellular processes, including metabolism, environmental signal processing, and motility. Finally, we established a potential working model to illustrate the regulatory mechanism of AcHfq in bacterial resistance to environmental stress.
Collapse
Affiliation(s)
- Wenbo Hu
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | - Xingyu Huo
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Haochen Bai
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Zongling Chen
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, People's Republic of China.
| |
Collapse
|
2
|
Wang YJ, Li LL, Zhao S, Chen Y, Yu AF. Bioleaching of metals from spent fluid catalytic cracking catalyst using adapted Acidithiobacillus caldus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125689-125701. [PMID: 38001294 DOI: 10.1007/s11356-023-30959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023]
Abstract
In this study, an adapted bioleaching strain of Acidithiobacillus caldus UVS10 was successfully developed. Batch tests and tests in bioreactor were conducted to evaluate the metals bioleaching performance of A. caldus UVS10 to spent FCC catalyst (SFCCC). Results of batch experiments showed the bioleaching efficiency of Ni, V, La, and Ce in SFCCC reached 19.40%, 22.06%, 53.75%, and 59.56%, respectively. High SFCCC pulp density inhibited the leaching of metals. Sb leaching was inhibited in acidic environment caused by A. caldus UVS10. Contents of Ni, V, La, and Ce in extracellular polymeric substances (EPS) were significantly higher than those intracellular. Accumulation of metal in EPS and cytosol increased with the increase of SFCCC pulp density. V was less intercepted by EPS than Ni, La, and Ce, because of lower toxicity. Experimental results in bioreactor showed that Ni, V, La, and Ce could be effectively leached by A. caldus UVS10 under 10% pulp density. The aeration and stirring operating environment in bioreactor improved the leaching efficiency of metals in SFCCC. After bioleached in bioreactor, the available fraction content of four metals in SFCCC decreased significantly. Ecological risk analysis demonstrated the environmental risks of bioleached SFCCC were significantly lower than raw SFCCC. Different reaction kinetic models were used to represent metals leaching behavior under bioleaching of A. caldus UVS10, leaching of La and Ce showed good agreement with the product layer diffusion model, while Ni and V leaching kinetics fit well with the surface chemical reaction models.
Collapse
Affiliation(s)
- Yue-Jie Wang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, People's Republic of China
| | - Ling-Ling Li
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, People's Republic of China
| | - Shen Zhao
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, People's Republic of China
| | - Yan Chen
- SINOPEC Research Institute of Petroleum Processing Co., Ltd, Beijing, 100083, People's Republic of China
| | - An-Feng Yu
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, 266100, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Nazaret F, Alloing G, Mandon K, Frendo P. MarR Family Transcriptional Regulators and Their Roles in Plant-Interacting Bacteria. Microorganisms 2023; 11:1936. [PMID: 37630496 PMCID: PMC10458429 DOI: 10.3390/microorganisms11081936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The relationship between plants and associated soil microorganisms plays a major role in ecosystem functioning. Plant-bacteria interactions involve complex signaling pathways regulating various processes required by bacteria to adapt to their fluctuating environment. The establishment and maintenance of these interactions rely on the ability of the bacteria to sense and respond to biotic and abiotic environmental signals. In this context, MarR family transcriptional regulators can use these signals for transcriptional regulation, which is required to establish adapted responses. MarR-like transcriptional regulators are essential for the regulation of the specialized functions involved in plant-bacteria interactions in response to a wide range of molecules associated with the plant host. The conversion of environmental signals into changes in bacterial physiology and behavior allows the bacteria to colonize the plant and ensure a successful interaction. This review focuses on the mechanisms of plant-signal perception by MarR-like regulators, namely how they (i) allow bacteria to cope with the rhizosphere and plant endosphere, (ii) regulate the beneficial functions of Plant-Growth-Promoting Bacteria and (iii) regulate the virulence of phytopathogenic bacteria.
Collapse
Affiliation(s)
| | | | | | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (F.N.); (G.A.); (K.M.)
| |
Collapse
|
4
|
Jiang Z, Lu J, Tong Y, Yang H, Feng S. Enhancement of acid tolerance of Escherichia coli by introduction of molecule chaperone CbpA from extremophile. World J Microbiol Biotechnol 2023; 39:158. [PMID: 37046107 DOI: 10.1007/s11274-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Molecular chaperone CbpA from extreme acidophile Acidithiobacillus caldus was applied to improve acid tolerance of Escherichia coli via CRISPR/Cas9. Cell growth and viability of plasmid complementary strain indicated the importance of cbpAAc for bacteria acid tolerance. With in situ gene replacement by CRISPR/Cas9 system, colony formation unit (CFU) of genome recombinant strain BL21-ΔcbpA/AccbpA showed 7.7 times higher cell viability than deficient strain BL21-ΔcbpA and 2.3 times higher than wild type. Cell morphology observation using Field Emission Scanning Electron Microscopy (FESEM) revealed cell breakage of BL21-ΔcbpA and significant recovery of BL21-ΔcbpA/AccbpA. The intracellular ATP level of all strains gradually decreased along with the increased stress time. Particularly, the value of recombinant strain was 56.0% lower than that of deficient strain after 5 h, indicating that the recombinant strain consumed a lot of energy to resist acid stress. The arginine concentration in BL21-ΔcbpA/AccbpA was double that of BL21-ΔcbpA, while the aspartate and glutamate contents were 14.8% and 6.2% higher, respectively, compared to that of wild type. Moreover, RNA-Seq analysis examined 93 genes down-regulated in BL21-ΔcbpA compared to wild type strain, while 123 genes were up-regulated in BL21-ΔcbpA/AccbpA compared to BL21-ΔcbpA, with an emphasis on energy metabolism, transport, and cell components. Finally, the working model in response to acid stress of cbpA from A. caldus was developed. This study constructed a recombinant strain resistant to acid stress and also provided a reference for enhancing microorganisms' robustness to various conditions.
Collapse
Affiliation(s)
- Zhenming Jiang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jie Lu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanjun Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|