1
|
Ahlawat S, Kumar NM, Ghasemi A, Fayad LM. Three-Dimensional Magnetic Resonance Imaging in the Musculoskeletal System: Clinical Applications and Opportunities to Improve Imaging Speed and Resolution. Invest Radiol 2025; 60:184-197. [PMID: 39437020 DOI: 10.1097/rli.0000000000001133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
ABSTRACT Although conventional 2-dimensional magnetic resonance (MR) sequences have traditionally comprised the foundational imaging strategy for visualization of musculoskeletal anatomy and pathology, the emergence of isotropic volumetric 3-dimensional sequences offers to advance musculoskeletal evaluation with comparatively similar image quality and diagnostic performance, shorter acquisition times, and the added advantages of improved spatial resolution and multiplanar reformation capability. The purpose of this review article is to summarize the available 3-dimensional MR sequences and their role in the management of patients with musculoskeletal disorders, including sports imaging, rheumatologic conditions, peripheral nerve imaging, bone and soft tissue tumor imaging, and whole-body MR imaging.
Collapse
Affiliation(s)
- Shivani Ahlawat
- From The Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Johns Hopkins Medical Institutions, Baltimore, MD (S.A., N.K., A.G., L.M.F.); Department of Orthopedic Surgery, The Johns Hopkins Medical Institutions, Baltimore, MD (L.M.F.); and Department of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD (L.M.F.)
| | | | | | | |
Collapse
|
2
|
Kantzos AJ, Fayad LM, Abiad JE, Ahlawat S, Sabharwal S, Vaynrub M, Morris CD. The role of imaging in extremity sarcoma surgery. Skeletal Radiol 2024; 53:1937-1953. [PMID: 38233634 DOI: 10.1007/s00256-024-04586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
The surgical management of extremity bone and soft tissue sarcomas has evolved significantly over the last 50 years. The introduction and refinement of high-resolution cross-sectional imaging has allowed accurate assessment of anatomy and tumor extent, and in the current era more than 90% of patients can successfully undergo limb-salvage surgery. Advances in imaging have also revolutionized the clinician's ability to assess treatment response, detect metastatic disease, and perform intraoperative surgical navigation. This review summarizes the broad and essential role radiology plays in caring for sarcoma patients from diagnosis to post-treatment surveillance. Present evidence-based imaging paradigms are highlighted along with key future directions.
Collapse
Affiliation(s)
- Andrew J Kantzos
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Laura M Fayad
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | | | - Shivani Ahlawat
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Samir Sabharwal
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Max Vaynrub
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA
| | - Carol D Morris
- Orthopedic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
3
|
Debs P, Ahlawat S, Fayad LM. Bone tumors: state-of-the-art imaging. Skeletal Radiol 2024; 53:1783-1798. [PMID: 38409548 DOI: 10.1007/s00256-024-04621-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Imaging plays a central role in the management of patients with bone tumors. A number of imaging modalities are available, with different techniques having unique applications that render their use advantageous for various clinical purposes. Coupled with detailed clinical assessment, radiological imaging can assist clinicians in reaching a proper diagnosis, determining appropriate management, evaluating response to treatment, and monitoring for tumor recurrence. Although radiography is still the initial imaging test of choice for a patient presenting with a suspected bone tumor, technological innovations in the last decades have advanced the role of other imaging modalities for assessing bone tumors, including advances in computed tomography, magnetic resonance imaging, scintigraphy, and hybrid imaging techniques that combine two existing modalities, providing clinicians with diverse tools for bone tumor imaging applications. Determining the most suitable modality to use for a particular application requires familiarity with the modality in question, its advancements, and its limitations. This review highlights the various imaging techniques currently available and emphasizes the latest developments in imaging, offering a framework that can help guide the imaging of patients with bone tumors.
Collapse
Affiliation(s)
- Patrick Debs
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
- Division of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, 601 North Caroline Street, JHOC 3014, Baltimore, MD, 21287, USA.
| |
Collapse
|
4
|
Ghasemi A, Ahlawat S, Fayad LM. Magnetic Resonance Imaging Biomarkers of Bone and Soft Tissue Tumors. Semin Musculoskelet Radiol 2024; 28:39-48. [PMID: 38330969 DOI: 10.1055/s-0043-1776433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Magnetic resonance imaging (MRI) is essential in the management of musculoskeletal (MSK) tumors. This review delves into the diverse MRI modalities, focusing on anatomical, functional, and metabolic sequences that provide essential biomarkers for tumor detection, characterization, disease extent determination, and assessment of treatment response. MRI's multimodal capabilities offer a range of biomarkers that enhance MSK tumor evaluation, aiding in better patient management.
Collapse
Affiliation(s)
- Ali Ghasemi
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Laura Marie Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins Medical Institutions, Baltimore, Maryland
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
Debs P, Fayad LM, Romo CG, Ahlawat S. Whole Body MRI with DWI in People with NF1 and Schwannomatosis: Are Qualitative and Quantitative Imaging Features of Peripheral Lesions Comparable to Localized MRI? Eur J Radiol 2023; 162:110802. [PMID: 37001256 DOI: 10.1016/j.ejrad.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE To compare the qualitative and quantitative features of peripheral lesions on localized (L) and whole-body (WB) magnetic resonance imaging (MRI) in people with neurofibromatosis type 1 (NF1) and schwannomatosis. MATERIALS AND METHODS This is a retrospective, HIPAA compliant study with twenty-seven patients (14 women, 13 men; mean age (years): 38 (3-67)) who underwent both L-MRI and WB-MRI without interval treatment. WB-MRI and L-MRI were comprised of T1-weighted, fat suppressed (FS) T2-weighted or short tau inversion recovery (STIR), diffusion-weighted imaging (DWI) using b-values of 50, 400, and 800 s/mm2, apparent diffusion coefficient (ADC) mapping and pre- and post-contrast FST1 sequences. Two readers recorded qualitative (T1 and T2/STIR signal intensity and heterogeneity, contrast enhancement and heterogeneity, perilesional enhancement, presence of a target sign and perilesional edema) and quantitative (size, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), ADC) features of peripheral lesions on L-MRI and WB-MRI.Descriptive statistics, Wilcoxon signed-rank test and McNemar's test were used. RESULTS There were 31 peripheral lesions identified in 27 subjects, (mean size: 3.1 cm (range: 1-8.1 cm) on both L-MRI and WB-MRI).There were no differences in T1 signal and heterogeneity and T2/STIR signal and heterogeneity between WB-MRI and L-MRI ((p = 0.180, 0.083, 0.317 and 0.157 respectively). There were also no differences in contrast enhancement, heterogeneity and perilesional enhancement between WB-MRI and L-MRI (p = 1.000, 0.380 and 1.000 respectively). Presence of a target sign and perilesional edema did not differ between WB-MRI and L-MRI (p = 1.000 and 0.500 respectively). Craniocaudal (CC), mediolateral (ML) and anteroposterior (AP) size measurements on WB-MRI did not differ from CC, ML and AP size measurements on L-MRI (p = 0.597, 0.128 and 0.783 respectively). SNR on WB-DWI did not differ from SNR on L-DWI for b50, b400 and b800 images (p = 0.285, 0.166, and 0.974 respectively), and CNR on WB-DWI did not differ from CNR on L-DWI for b50, b400 and b800 images (p = 0.600, 0.124, and 0.787 respectively). There was no significant difference in minimum, mean and maximum ADC values between WB-DWI and L-DWI (p = 0.234, 0.481, and 0.441 respectively). Median minimum, mean and maximum ADC (×10(-3)mm(2)/s) differences between WB-DWI and L-DWI were 0.0 (range -1 to 0.7), 0.0 (range -0.5 to 0.6), and 0.1 (range -1.2 to 0.8) respectively. Relative ADC difference averages were 29.1% for minimum values, 10.1% for mean values, and 14.8% for maximum values. CONCLUSION WB-MRI yields qualitative and quantitative features for peripheral lesions, including DWI and ADC measurements, that are comparable to L-MRI scans. WB-DWI can be reliably used for the assessment of peripheral nerve sheath tumors, obviating the need for a repeat follow-up L-DWI acquisition.
Collapse
|
6
|
MRI evaluation of soft tissue tumors: comparison of a fast, isotropic, 3D T2-weighted fat-saturated sequence with a conventional 2D T2-weighted fat-saturated sequence for tumor characteristics, resolution, and acquisition time. Eur Radiol 2022; 32:8670-8680. [PMID: 35751699 DOI: 10.1007/s00330-022-08937-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To test whether a 4-fold accelerated 3D T2-weighted (T2) CAIPIRINHA SPACE TSE sequence with isotropic voxel size is equivalent to conventional 2DT2 TSE for the evaluation of intrinsic and perilesional soft tissue tumors (STT) characteristics. METHODS For 108 patients with histologically-proven STTs, MRI, including 3DT2 (CAIPIRINHA SPACE TSE) and 2DT2 (TSE) sequences, was performed. Two radiologists evaluated each sequence for quality (diagnostic, non-diagnostic), tumor characteristics (heterogeneity, signal intensity, margin), and the presence or absence of cortical involvement, marrow edema, and perilesional edema (PLE); tumor size and PLE extent were measured. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios and acquisition times for 2DT2 in two planes and 3DT2 sequences were reported. Descriptive statistics and inter-method agreement were reported. RESULTS Image quality was diagnostic for all sequences (100% [108/108]). No difference was observed between 3DT2 and 2DT2 tumor characteristics (p < 0.05). There was no difference in mean tumor size (3DT2: 2.9 ± 2.5 cm, 2DT2: 2.8 ± 2.6 cm, p = 0.4) or PLE extent (3DT2:0.5 ± 1.2 cm, 2DT2:0.5 ± 1.0 cm, p = 0.9) between the sequences. There was no difference in the SNR of tumors, marrow, and fat between the sequences, whereas the SNR of muscle was higher (p < 0.05) on 3DT2 than 2DT2. CNR measures on 3DT2 were similar to 2DT2 (p > 0.1). The average acquisition time was shorter for 3DT2 compared with 2DT2 (343 ± 127 s vs 475 ± 162 s, respectively). CONCLUSION Isotropic 3DT2 MRI offers higher spatial resolution, faster acquisition times, and equivalent assessments of STT characteristics compared to conventional 2DT2 MRI in two planes. 3DT2 is interchangeable with a 2DT2 sequence in tumor protocols. KEY POINTS • Isotropic 3DT2 CAIPIRINHA SPACE TSE offers higher spatial resolution than 2DT2 TSE and is equivalent to 2DT2 TSE for assessments of soft tissue tumor intrinsic and perilesional characteristics. • Multiplanar reformats of 3DT2 CAIPIRINHA SPACE TSE can substitute for 2DT2 TSE acquired in multiple planes, thereby reducing the acquisition time of MRI tumor protocols. • 3DT2 CAIPIRINHA SPACE TSE and 2DT2 TSE had similar CNR of tissues.
Collapse
|
7
|
Shafiei M, Chalian M, Luna R, Ahlawat S, Fayad LM. Imaging in Musculoskeletal Oncology. Radiol Clin North Am 2022; 60:657-668. [DOI: 10.1016/j.rcl.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Bones and Soft-Tissue Tumors. Radiol Clin North Am 2022; 60:327-338. [DOI: 10.1016/j.rcl.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Liu L, Wu G. Three-dimensional SPACE MR with CAIPIRINHA fourfold acceleration for assessing long head of biceps tendon. Acta Radiol 2021:2841851211055324. [PMID: 34854744 DOI: 10.1177/02841851211055324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Data regarding controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) T2-weighted sampling perfection with application optimized contrast evolution (SPACE) with fourfold acceleration factor for assessing long head of biceps tendon (LHBT) disorder is lacking. PURPOSE To investigate the feasibility of 3D CAIPIRINHA SPACE with fourfold acceleration in assessing LHBT disorder. MATERIAL AND METHODS A total of 42 consecutive patients underwent shoulder magnetic resonance (MR) examinations including CAIPIRINHA SPACE with fourfold acceleration, and non-CAIPIRINHA SPACE with twofold acceleration, and 2D fast spin echo (FSE). A subjective score of depiction of LHBT was given to 3D sequence according to a 4-point scale (0-3, "poor" to "excellent"). The Wilcoxon signed rank test was used to compare depiction scores between 3D sequences. Three statuses of LHBT were defined in the study: normal, tendonitis, and tear. McNemar's test was used compare diagnostic accuracy. RESULTS LHBT was better depicted with CAIPIRINHA SPACE versus non-CAIPIRINHA SPACE (2.1 ± 0.4 vs. 1.5 ± 0.4; P < 0.001). Inter-modality agreement between CAIPIRINHA SPACE and 2D FSE was almost perfect (kappa = 0.884 ± 0.064). The sensitivity and specificity in detecting LHBT disorder were 95% (20/21) and 95% (20/21), respectively, for CAIPIRINHA SPACE, and 71% (15/21) and 76% (16/21), respectively, for non-CAIPIRINHA SPACE (P = 0.039). CONCLUSION Fourfold acceleration CAIPIRINHA is feasible in reducing the acquisition time of SPACE MR in the shoulder. 3D CAIPIRINHA SPACE with fourfold acceleration is highly accurate in detecting LHBT disorder.
Collapse
Affiliation(s)
- Liangjin Liu
- Department of Radiology, Hubei No.3 People’s Hospital of Jianghan University, Wuhan, China
| | - Gang Wu
- Department of Radiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
10
|
Khodarahmi I, Fritz J. The Value of 3 Tesla Field Strength for Musculoskeletal Magnetic Resonance Imaging. Invest Radiol 2021; 56:749-763. [PMID: 34190717 DOI: 10.1097/rli.0000000000000801] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Musculoskeletal magnetic resonance imaging (MRI) is a careful negotiation between spatial, temporal, and contrast resolution, which builds the foundation for diagnostic performance and value. Many aspects of musculoskeletal MRI can improve the image quality and increase the acquisition speed; however, 3.0-T field strength has the highest impact within the current diagnostic range. In addition to the favorable attributes of 3.0-T field strength translating into high temporal, spatial, and contrast resolution, many 3.0-T MRI systems yield additional gains through high-performance gradients systems and radiofrequency pulse transmission technology, advanced multichannel receiver technology, and high-end surface coils. Compared with 1.5 T, 3.0-T MRI systems yield approximately 2-fold higher signal-to-noise ratios, enabling 4 times faster data acquisition or double the matrix size. Clinically, 3.0-T field strength translates into markedly higher scan efficiency, better image quality, more accurate visualization of small anatomic structures and abnormalities, and the ability to offer high-end applications, such as quantitative MRI and magnetic resonance neurography. Challenges of 3.0-T MRI include higher magnetic susceptibility, chemical shift, dielectric effects, and higher radiofrequency energy deposition, which can be managed successfully. The higher total cost of ownership of 3.0-T MRI systems can be offset by shorter musculoskeletal MRI examinations, higher-quality examinations, and utilization of advanced MRI techniques, which then can achieve higher gains and value than lower field systems. We provide a practice-focused review of the value of 3.0-T field strength for musculoskeletal MRI, practical solutions to challenges, and illustrations of a wide spectrum of gainful clinical applications.
Collapse
Affiliation(s)
- Iman Khodarahmi
- From the Division of Musculoskeletal Radiology, Department of Radiology, NYU Grossman School of Medicine, New York, NY
| | | |
Collapse
|
11
|
Do contrast-enhanced and advanced MRI sequences improve diagnostic accuracy for indeterminate lipomatous tumors? Radiol Med 2021; 127:90-99. [PMID: 34697728 DOI: 10.1007/s11547-021-01420-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/14/2021] [Indexed: 12/24/2022]
Abstract
PURPOSE Benign, intermediate-grade and malignant tumors sometimes have overlapping imaging and clinical characteristics. The purpose of this study was to evaluate the added value of contrast-enhanced sequences (dynamic contrast enhancement (DCE)), diffusion-weighted imaging (DWI), and chemical shift imaging (CSI) to noncontrast MRI sequences for the characterization of indeterminate lipomatous tumors. MATERIALS AND METHODS Thirty-two consecutive patients with histologically proven peripheral lipomatous tumors were retrospectively evaluated. Two musculoskeletal radiologists recorded the MRI features in three sessions: (1) with noncontrast T1-weighted and fluid-sensitive sequences; (2) with addition of static pre- and post-contrast 3D volumetric T1-weighted sequences; and (3) with addition of DCE, DWI, and CSI. After each session, readers recorded a diagnosis (benign, intermediate/atypical lipomatous tumor (ALT), or malignant/dedifferentiated liposarcoma (DDL)). Categorical imaging features (presence of septations, nodules, contrast enhancement) and quantitative metrics (apparent diffusion coefficient values, CSI signal loss) were recorded. RESULTS For 32 tumors, the diagnostic accuracy of both readers did not improve with the addition of contrast-enhanced sequences, DWI, or CSI (53% (17/32) session 1; 50% (16/30) session 2; 53% (17/32) session 3). Noncontrast features, including thick septations (p = 0.025) and nodules ≥ 1 cm (p < 0.001), were useful for differentiating benign tumors from ALTs and DDLs, as were DWI (p = 0.01) and CSI (p = 0.009) metrics. CONCLUSION The addition of contrast-enhanced sequences (static, DCE), DWI, and CSI to a conventional, noncontrast MRI protocol did not improve diagnostic accuracy for differentiating benign, intermediate-grade, and malignant lipomatous tumors. However, we identified potentially useful imaging features by DCE, DWI, and CSI that may help distinguish these entities.
Collapse
|
12
|
Abstract
Advances in magnetic resonance imaging (MRI) technology now enable the feasible three-dimensional (3D) acquisition of images. With respect to the imaging of musculoskeletal (MSK) tumors, literature is beginning to accumulate on the use of 3D MRI acquisition for tumor detection and characterization. The benefits of 3D MRI, including general advantages, such as decreased acquisition time, isotropic resolution, and increased image quality, are not only inherently useful for tumor imaging, but they also contribute to the feasibility of more specialized tumor-imaging techniques, such as whole-body MRI, and are reviewed here. Disadvantages of 3D acquisition, such as motion artifact and equipment requirements, do exist and are also discussed. Although further study is needed, 3D MRI acquisition will likely prove increasingly useful in the evaluation of patients with tumors of the MSK system.
Collapse
Affiliation(s)
- Blake C Jones
- Department of Radiology, Medical College of Wisconsin, Froedtert Memorial Lutheran Hospital, Milwaukee, Wisconsin
| | - Shivani Ahlawat
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
13
|
Fritz J. Musculoskeletal 3D MRI: A Decade of Developments and Innovations Coming to Fruition. Semin Musculoskelet Radiol 2021; 25:379-380. [PMID: 34547802 DOI: 10.1055/s-0041-1733946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jan Fritz
- Department of Radiology, Division of Musculoskeletal Radiology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
14
|
Luna R, Fritz J, Del Grande F, Ahlawat S, Fayad LM. Determination of skeletal tumor extent: is an isotropic T1-weighted 3D sequence adequate? Eur Radiol 2020; 31:3138-3146. [PMID: 33179165 DOI: 10.1007/s00330-020-07394-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To test the hypothesis that an accelerated, T1-weighted 3D CAIPIRINHA SPACE sequence with isotropic voxel size offers a similar performance to conventional T1-weighted 2D TSE (turbo spin echo) for the evaluation of bone tumor extent and characteristics. METHODS Thirty-four patients who underwent 3-T MRI with 3DT1 (CAIPIRINHA SPACE TSE) and 2DT1 (TSE) were included. Sequence acquisition time was reported. Two radiologists independently evaluated each technique for tumor location, size/length, tumor-to-joint distance, signal intensity, margin/extraosseous extension, and signal-to-noise (SNR) and contrast-to-noise (CNR) ratios. RESULTS Tumors were located in long (20/36, 55.5%) and pelvic (16/36, 44.4%) bones. 3DT1 sequence required an average acquisition time of 235 s (± 42 s, range 156-372), while two plane 2DT1 sequences combined (coronal and axial) had an average acquisition time of 381 s (± 73 s, range 312-523). There was no difference in the measurements of tumor length and tumor-to-joint distance (p = 0.95) between 3DT1 and 2DT1 images. Tumors were hypointense (17/36, 47.2% vs 17/36, 47.2%), isointense (12/36, 33.3% vs 12/36, 33.3%), or hyperintense (7/36, 19.4% vs 7/36, 19.4%) on 3DT1 vs 2DT1, respectively. Assessment of tumor margins and extraosseous extension was similar, and there was no difference in tumor SNR or CNR (p > 0.05). CONCLUSIONS An accelerated 3D CAIPIRINHA SPACE T1 sequence provides comparable assessments of intramedullary bone tumor extent and similar tumor characteristics to conventional 2DT1 MRI. For the assessment of bone tumors, the isotropic volume acquisition and multiplanar reformation capability of the 3DT1 datasets can obviate the need for 2DT1 acquisitions in multiple planes. KEY POINTS • 3DT1 offers an equivalent performance to 2DT1 for the assessment of bone tumor characteristics, with faster and higher resolution capability, obviating the need for acquiring 2DT1 in multiple planes. • There was no difference in the measurements of tumor length and tumor-to-joint distance obtained on 3DT1 and 2DT1 images. • There was no difference in signal-to-noise ratio (SNR) or contrast-to-noise ratio (CNR) measures between 3DT1 and 2DT1.
Collapse
Affiliation(s)
- Rodrigo Luna
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Jan Fritz
- Grossman School of Medicine, NYU Langone Health, 550 First Avenue, New York, NY, 10016, USA
| | - Filippo Del Grande
- Servizio si Radiologia del Sottoceneri, Ospedale Regionale di Lugano, Lugano, Ticino, Switzerland
| | - Shivani Ahlawat
- Division of Musculoskeletal Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
15
|
Ni J, Bongers A, Chamoli U, Bucci J, Graham P, Li Y. In Vivo 3D MRI Measurement of Tumour Volume in an Orthotopic Mouse Model of Prostate Cancer. Cancer Control 2019; 26:1073274819846590. [PMID: 31032634 PMCID: PMC6488786 DOI: 10.1177/1073274819846590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (CaP) is the most commonly diagnosed cancer in males in western
countries. Orthotopic implantation is considered as an ideal xenograft model for
CaP study, and noninvasive measurement of tumor volume changes is important for
monitoring responses to anticancer therapies. In this study, the T2-weighted
fast spin echo sequence magnetic resonance imaging (MRI) was performed on a CaP
orthotopic non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse
model weekly for 6 weeks post PC-3 CaP cell inoculation, and the fat signal was
suppressed using a chemical shift-selective pulse. Subsequently, the MRI data
were imported into the image processing software Avizo Standard and stacked into
three-dimensional (3D) volumes. Our results demonstrate that MRI, combined with
3D reconstruction, is a feasible and sensitive method to assess tumor growth in
a PC-3 orthotopic CaP mouse model and this established monitoring approach is
promising for longitudinal observation of CaP xenograft development after
anticancer therapy in vivo. Further investigation is needed to
validate this protocol in a larger cohort of mice to generate enough statistical
power.
Collapse
Affiliation(s)
- Jie Ni
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia
| | - Andre Bongers
- 3 Biological Resource Imaging Laboratory, UNSW Sydney, New South Wales, Australia
| | - Uphar Chamoli
- 4 Spine Service, Department of Orthopaedic Surgery, St George and Sutherland Clinical School, UNSW Sydney, Kogarah, New South Wales, Australia.,5 School of Biomedical Engineering, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Joseph Bucci
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia
| | - Peter Graham
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia
| | - Yong Li
- 1 Cancer Care Centre, St George Hospital, Kogarah, New South Wales, Australia.,2 St George and Sutherland Clinical School, UNSW Sydney, New South Wales, Australia.,6 School of Basic Medical Sciences, Zhengzhou University, Henan, China
| |
Collapse
|
16
|
Tang H, Ahlawat S, Fayad LM. Multiparametric MR Imaging of Benign and Malignant Bone Lesions. Magn Reson Imaging Clin N Am 2018; 26:559-569. [DOI: 10.1016/j.mric.2018.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
|
18
|
Jones BC, Fayad LM. Musculoskeletal Tumor Imaging: Focus on Emerging Techniques. Semin Roentgenol 2017; 52:269-281. [PMID: 28965546 DOI: 10.1053/j.ro.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Blake C Jones
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Laura M Fayad
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD; The Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD; The Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
19
|
Sujlana P, Skrok J, Fayad LM. Review of dynamic contrast‐enhanced MRI: Technical aspects and applications in the musculoskeletal system. J Magn Reson Imaging 2017; 47:875-890. [DOI: 10.1002/jmri.25810] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/20/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Parvinder Sujlana
- The Russell H. Morgan Department of Radiology and Radiological ScienceBaltimore Maryland USA
| | - Jan Skrok
- The Russell H. Morgan Department of Radiology and Radiological ScienceBaltimore Maryland USA
| | - Laura M. Fayad
- The Russell H. Morgan Department of Radiology and Radiological ScienceBaltimore Maryland USA
| |
Collapse
|