1
|
Cheng T, Li F, Jiang X, Yu D, Wei J, Yuan Y, Xu H. Comparison of different acceleration factors of artificial intelligence-compressed sensing for brachial plexus MRI imaging: scanning time and image quality. BMC Med Imaging 2024; 24:309. [PMID: 39543482 PMCID: PMC11566112 DOI: 10.1186/s12880-024-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND 3D brachial plexus MRI scanning is prone to examination failure due to the lengthy scan times, which can lead to patient discomfort and motion artifacts. Our purpose is to investigate the efficacy of artificial intelligence-assisted compressed sensing (ACS) in improving the acceleration efficiency and maintaining or enhancing the image quality of brachial plexus MR imaging. METHODS A total of 30 volunteers underwent 3D sampling perfection with application-optimized contrast using different flip angle evolution short time inversion recovery using a 3.0T MR scanner. The imaging protocol included parallel imaging (PI) and ACS employing acceleration factors of 4.37, 6.22, and 9.03. Radiologists evaluated the neural detail display, fat suppression effectiveness, presence of image artifacts, and overall image quality. Signal intensity and standard deviation of specific anatomical sites within the brachial plexus and background tissues were measured, with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) subsequently calculated. Cohen's weighted kappa (κ), One-way ANOVA, Kruskal-Wallis and pairwise comparisons with Bonferroni-adjusted significance level. P < 0.05 was considered statistically significant. RESULTS ACS significantly reduced scanning times compared to PI. Evaluations revealed differences in subjective scores and SNR across the sequences (P < 0.05), with no marked differences in CNR (P > 0.05). For subjective scores, ACS 9.03 were lower than the other three sequences in neural details display, image artifacts and overall image quality. There was no significant difference in fat suppression. For objective quantitative evaluation, SNR of right C6 root in ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of left C6 root in ACS 4.37, ACS 6.22 and ACS 9.03 was higher than that in PI; SNR of medial cord in ACS 6.22, ACS 9.03 was higher than that in PI. CONCLUSION Compared with PI, ACS can shorten scanning time while ensuring good image quality.
Collapse
Affiliation(s)
- Tianxin Cheng
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China
| | - Feifei Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China
- Department of Radiology, BaoShan Hospital of Traditional Chinese Medicine, Baoshan, Yunnan, China
| | - Xuetao Jiang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China
- Department of Radiology, Zunyi First People's Hospital, The Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Dan Yu
- United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Jie Wei
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Ying Yuan
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China.
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing, 100050, China.
| |
Collapse
|
2
|
Baal JD, Yoon D, Patel RP, Chin CT, Shah VN. Advanced Imaging of the Peripheral Nerves, From the AJR "How We Do It" Special Series. AJR Am J Roentgenol 2024; 223:e2430826. [PMID: 38353448 PMCID: PMC11855510 DOI: 10.2214/ajr.24.30826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Advanced imaging of peripheral nerves is occupying an increasingly important role in the diagnostic workup of peripheral nerve disorders. Advances in MR neurography (MRN) and high-resolution ultrasound have addressed historical challenges in peripheral nerve imaging related to nerves' small size and nonlinear course and difficult differentiation from surrounding tissues. Modern MRN depicts neuromuscular anatomy with exquisite contrast resolution, and MRN has become the workhorse imaging modality for peripheral nerve evaluation. MRN protocols vary across institutions and are adjusted in individual patients, although they commonly include nerve-selective sequences and diffusion-tensor imaging tractography. Ultrasound offers a dynamic real-time high-resolution assessment of peripheral nerves and is widely accessible and less costly than MRN. Ultrasound has greater ability to examine peripheral nerves at the fascicular level and provides complementary information to MRN. However, ultrasound of peripheral nerves requires substantial skill and experience and is operator-dependent. The two modalities have distinct advantages and disadvantages, and the selection between these depends on the clinical context. This article provides an overview of advanced imaging techniques used for evaluation of peripheral nerves, with attention to MRN and high-resolution ultrasound. We draw on our institutional experience in performing both modalities to highlight technical considerations for optimizing examinations.
Collapse
Affiliation(s)
- Joe D. Baal
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Daehyun Yoon
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Rina P. Patel
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Cynthia T. Chin
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| | - Vinil N. Shah
- University of California San Francisco, Department of Radiology & Biomedical Imaging
| |
Collapse
|
3
|
She D, Huang H, Jiang D, Hong J, You P, Li L, Zhao X, Cao D. Visualization of the Extracranial Branches of the Trigeminal Nerve Using Improved Motion-Sensitized Driven Equilibrium-Prepared 3D Inversion Recovery TSE Sequence. AJNR Am J Neuroradiol 2024; 45:1128-1134. [PMID: 38964862 PMCID: PMC11383420 DOI: 10.3174/ajnr.a8273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND AND PURPOSE Visualization of the extracranial trigeminal nerve is crucial to detect nerve pathologic alterations. This study aimed to evaluate visualization of the extracranial trigeminal nerve using 3D inversion recovery TSE with an improved motion-sensitized driven equilibrium (iMSDE) pulse. MATERIALS AND METHODS In this prospective study, 35 subjects underwent imaging of the trigeminal nerve using conventional 3D inversion recovery TSE, 3D inversion recovery TSE with an iMSDE pulse, and contrast-enhanced 3D inversion recovery TSE. The visibility of 7 extracranial branches of the trigeminal nerve, venous/muscle suppression, and identification of the relationship between nerves and lesions were scored on a 5-point scale system. In addition, SNR, nerve-muscle contrast ratio, nerve-venous contrast ratio, nerve-muscle contrast-to-noise ratio, and nerve-venous contrast-to-noise ratio were calculated and compared. RESULTS Images acquired with iMSDE 3D inversion recovery TSE had significantly higher nerve-muscle contrast ratio, nerve-venous contrast ratio, and nerve-to-venous contrast-to-noise ratio (all P < .001); improved venous/muscle suppression and clearer visualization of the trigeminal nerve branches except the ophthalmic nerve than with conventional 3D inversion recovery TSE (all P < .05). Compared with contrast-enhanced 3D inversion recovery TSE, images acquired with iMSDE 3D inversion recovery TSE had significantly higher SNR, nerve-muscle contrast ratio, and nerve-to-venous contrast-to-noise ratio (all P < .05), and demonstrated comparable diagnostic quality (scores ≥3) of the maxillary nerve, mandibular nerve, inferior alveolar nerve, lingual nerve, and masseteric nerve (P > .05). As for the identification of the relationship between nerves and lesions, iMSDE 3D inversion recovery TSE showed the highest scores among these 3 sequences (all P < .05). CONCLUSIONS The iMSDE 3D inversion recovery TSE is a promising alternative to conventional 3D inversion recovery TSE and contrast-enhanced 3D inversion recovery TSE for visualization of the extracranial branches of trigeminal nerve in clinical practice.
Collapse
Affiliation(s)
- Dejun She
- From the Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C.), First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions (D.S., D.C.), the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Hao Huang
- From the Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C.), First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Dongmei Jiang
- From the Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C.), First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Junhuan Hong
- From the Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C.), First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Peiying You
- From the Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C.), First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
| | - Lu Li
- The School of Medical Imaging (L.L.), Fujian Medical University, Fuzhou, Fujian, China
| | - Xiance Zhao
- Philips Healthcare (X.Z.), Shanghai, P.R. China
| | - Dairong Cao
- From the Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C.), First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Department of Radiology (D.S., H.H., D.J., J.H., P.Y., D.C), National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, P.R. China
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions (D.S., D.C.), the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology (D.C.), Fujian Key Laboratory of Precision Medicine for Cancer, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Chaudhary RK, Karkala N, Nepal P, Gupta E, Kaur N, Batchala P, Sapire J, Alam SI. Multimodality imaging review of ulnar nerve pathologies. Neuroradiol J 2024; 37:137-151. [PMID: 36961518 PMCID: PMC10973834 DOI: 10.1177/19714009231166087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
The ulnar nerve is the second most commonly entrapped nerve after the median nerve. Although clinical evaluation and electrodiagnostic studies remain widely used for the evaluation of ulnar neuropathy, advancements in imaging have led to increased utilization of these newer / better imaging techniques in the overall management of ulnar neuropathy. Specifically, high-resolution ultrasonography of peripheral nerves as well as MRI has become quite useful in evaluating the ulnar nerve in order to better guide treatment. The caliber and fascicular pattern identified in the normal ulnar nerves are important distinguishing features from ulnar nerve pathology. The cubital tunnel within the elbow and Guyon's canal within the wrist are important sites to evaluate with respect to ulnar nerve compression. Both acute and chronic conditions resulting in deformity, trauma as well as inflammatory conditions may predispose certain patients to ulnar neuropathy. Granulomatous diseases as well as both neurogenic and non-neurogenic tumors can also potentially result in ulnar neuropathy. Tumors around the ulnar nerve can also lead to mass effect on the nerve, particularly in tight spaces like the aforementioned canals. Although high-resolution ultrasonography is a useful modality initially, particularly as it can be helpful for dynamic evaluation, MRI remains most reliable due to its higher resolution. Newer imaging techniques like sonoelastography and microneurography, as well as nerve-specific contrast agents, are currently being investigated for their usefulness and are not routinely being used currently.
Collapse
Affiliation(s)
| | - Nikitha Karkala
- Department of Radiology, Northwell North Shore University Hospital, Long Island Jewish Medical Center, Queens, NY, USA
| | - Pankaj Nepal
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Elina Gupta
- Department of Radiology, St. Vincent’s Medical Center, Bridgeport, CT, USA
| | - Neeraj Kaur
- Department of Radiology, University Hospital of Northern British Columbia, Prince George, BC, Canada
| | - Prem Batchala
- Department of Radiology, University of Virginia, Charlottesville, VA, USA
| | - Joshua Sapire
- Department of Radiology, St. Vincent’s Medical Center, Bridgeport, CT, USA
| | | |
Collapse
|
5
|
Kang J, Wu W, Kong X, Su Y, Liu D, Li C, Gao N, Wang Y, Zheng C, Weng Y, Wang L. Improved visualization of median, ulnar nerves, and small branches in the wrist and palm using contrast-enhanced magnetic resonance neurography. Ther Adv Neurol Disord 2024; 17:17562864241239739. [PMID: 38532801 PMCID: PMC10964438 DOI: 10.1177/17562864241239739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Background Magnetic resonance imaging of peripheral nerves in the wrist and palm is challenging due to the small size, tortuous course, complex surrounding tissues, and accompanying blood vessels. The occurrence of carpal palmar lesions leads to edema, swelling, and mass effect, which may further interfere with the display and identification of nerves. Objective To evaluate whether contrast-enhanced magnetic resonance neurography (ceMRN) improves the visualization of the morphology and pathology of the median, ulnar nerves, and their small branches in the wrist and palm. Design An observational study. Methods In total 57 subjects, including 36 volunteers and 21 patients with carpal palmar lesions, were enrolled and underwent ceMRN and non-contrast MRN (ncMRN) examination at 3.0 Tesla. The degree of vascular suppression, nerve visualization, diagnostic confidence, and lesion conspicuity was qualitatively assessed by two radiologists. Kappa statistics were obtained for inter-reader agreement. The signal-to-noise ratio, contrast ratio (CR), and contrast-to-noise ratio (CNR) of the median nerve were measured. The subjective ratings and quantitative measurements were compared between ncMRN and ceMRN. Results The inter-reader agreement was excellent (k > 0.8) for all qualitative assessments and visualization assessment of each nerve segment. Compared with ncMRN, ceMRN significantly improved vascular suppression in volunteers and patients (both p < 0.001). The ceMRN significantly enhanced nerve visualization of each segment (all p < 0.05) and diagnostic confidence in volunteers and patients (both p < 0.05). The ceMRN improved lesion conspicuity (p = 0.003) in patients. Quantitatively, ceMRN had significantly higher CRs of nerve versus subcutaneous fat, bone marrow, and vessels and CNR of nerve versus vessel than ncMRN (all p < 0.05). Conclusion The ceMRN significantly improves the visualization of peripheral nerves and pathology in the wrist and palm by robustly suppressing the signals of fat, bone marrow, and especially vessels in volunteers and patients.
Collapse
Affiliation(s)
- Jiamin Kang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yu Su
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingxi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chungao Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Nan Gao
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youzhi Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuxiong Weng
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
6
|
Samet JD, Alizai H, Chalian M, Costelloe C, Deshmukh S, Kalia V, Kamel S, Mhuircheartaigh JN, Saade J, Walker E, Wessell D, Fayad LM. Society of skeletal radiology position paper - recommendations for contrast use in musculoskeletal MRI: when is non-contrast imaging enough? Skeletal Radiol 2024; 53:99-115. [PMID: 37300709 DOI: 10.1007/s00256-023-04367-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
The following White Paper will discuss the appropriateness of gadolinium administration in MRI for musculoskeletal indications. Musculoskeletal radiologists should consider the potential risks involved and practice the judicious use of intravenous contrast, restricting administration to cases where there is demonstrable added value. Specific nuances of when contrast is or is not recommended are discussed in detail and listed in table format. Briefly, contrast is recommended for bone and soft tissue lesions. For infection, contrast is reserved for chronic or complex cases. In rheumatology, contrast is recommended for early detection but not for advanced arthritis. Contrast is not recommended for sports injuries, routine MRI neurography, implants/hardware, or spine imaging, but is helpful in complex and post-operative cases.
Collapse
Affiliation(s)
- Jonathan D Samet
- Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, USA.
| | - Hamza Alizai
- CHOP Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Majid Chalian
- Department of Radiology, University of Washington, Seattle, USA
| | | | | | - Vivek Kalia
- Children's Scottish Rite Hospital, Dallas, USA
| | - Sarah Kamel
- Thomas Jefferson University Hospital, Philadelphia, USA
| | | | - Jimmy Saade
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, USA
| | - Eric Walker
- Penn State Health Milton S Hershey Medical Center, Hershey, USA
| | - Daniel Wessell
- Mayo Clinic Jacksonville Campus: Mayo Clinic in Florida, Jacksonville, USA
| | - Laura M Fayad
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, USA.
| |
Collapse
|
7
|
Ensle F, Kaniewska M, Tiessen A, Lohezic M, Getzmann JM, Guggenberger R. Diagnostic performance of deep learning-based reconstruction algorithm in 3D MR neurography. Skeletal Radiol 2023; 52:2409-2418. [PMID: 37191931 PMCID: PMC10581934 DOI: 10.1007/s00256-023-04362-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE The study aims to evaluate the diagnostic performance of deep learning-based reconstruction method (DLRecon) in 3D MR neurography for assessment of the brachial and lumbosacral plexus. MATERIALS AND METHODS Thirty-five exams (18 brachial and 17 lumbosacral plexus) of 34 patients undergoing routine clinical MR neurography at 1.5 T were retrospectively included (mean age: 49 ± 12 years, 15 female). Coronal 3D T2-weighted short tau inversion recovery fast spin echo with variable flip angle sequences covering plexial nerves on both sides were obtained as part of the standard protocol. In addition to standard-of-care (SOC) reconstruction, k-space was reconstructed with a 3D DLRecon algorithm. Two blinded readers evaluated images for image quality and diagnostic confidence in assessing nerves, muscles, and pathology using a 4-point scale. Additionally, signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNR) between nerve, muscle, and fat were measured. For comparison of visual scoring result non-parametric paired sample Wilcoxon signed-rank testing and for quantitative analysis paired sample Student's t-testing was performed. RESULTS DLRecon scored significantly higher than SOC in all categories of image quality (p < 0.05) and diagnostic confidence (p < 0.05), including conspicuity of nerve branches and pathology. With regard to artifacts there was no significant difference between the reconstruction methods. Quantitatively, DLRecon achieved significantly higher CNR and SNR than SOC (p < 0.05). CONCLUSION DLRecon enhanced overall image quality, leading to improved conspicuity of nerve branches and pathology, and allowing for increased diagnostic confidence in evaluation of the brachial and lumbosacral plexus.
Collapse
Affiliation(s)
- Falko Ensle
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
- University of Zurich (UZH), Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Malwina Kaniewska
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich (UZH), Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Anja Tiessen
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich (UZH), Raemistrasse 100, CH-8091, Zurich, Switzerland
| | | | - Jonas M Getzmann
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich (UZH), Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Roman Guggenberger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich (UZH), Raemistrasse 100, CH-8091, Zurich, Switzerland
| |
Collapse
|
8
|
Mandeville R, Deshmukh S, Tan ET, Kumar V, Sanchez B, Dowlatshahi AS, Luk J, See RHB, Leochico CFD, Thum JA, Bazarek S, Johnston B, Brown J, Wu J, Sneag D, Rutkove S. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration and regeneration: part 2, non-invasive imaging. J Neural Eng 2023; 20:041002. [PMID: 37369193 DOI: 10.1088/1741-2552/ace217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
Peripheral neuroregenerative research and therapeutic options are expanding exponentially. With this expansion comes an increasing need to reliably evaluate and quantify nerve health. Valid and responsive measures of the nerve status are essential for both clinical and research purposes for diagnosis, longitudinal follow-up, and monitoring the impact of any intervention. Furthermore, novel biomarkers can elucidate regenerative mechanisms and open new avenues for research. Without such measures, clinical decision-making is impaired, and research becomes more costly, time-consuming, and sometimes infeasible. Part 1 of this two-part scoping review focused on neurophysiology. In part 2, we identify and critically examine many current and emerging non-invasive imaging techniques that have the potential to evaluate peripheral nerve health, particularly from the perspective of regenerative therapies and research.
Collapse
Affiliation(s)
- Ross Mandeville
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Swati Deshmukh
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Ek Tsoon Tan
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Viksit Kumar
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Benjamin Sanchez
- Department Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Arriyan S Dowlatshahi
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Justin Luk
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Reiner Henson B See
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Carl Froilan D Leochico
- Department of Physical Medicine and Rehabilitation, St. Luke's Medical Center, Global City, Taguig, The Philippines
- Department of Rehabilitation Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, The Philippines
| | - Jasmine A Thum
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Stanley Bazarek
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Benjamin Johnston
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States of America
| | - Justin Brown
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, United States of America
| | - Jim Wu
- Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| | - Darryl Sneag
- Department of Radiology, Hospital for Special Surgery, New York, NY 10021, United States of America
| | - Seward Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, United States of America
| |
Collapse
|
9
|
Deshmukh S, Sun K, Komarraju A, Singer A, Wu JS. Peripheral Nerve Imaging. Magn Reson Imaging Clin N Am 2023; 31:181-191. [PMID: 37019545 DOI: 10.1016/j.mric.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Magnetic resonance (MR) neurography and high-resolution ultrasound are complementary modalities for imaging peripheral nerves. Advances in imaging technology and optimized techniques allow for detailed assessment of nerve anatomy and nerve pathologic condition. Diagnostic accuracy of imaging modalities likely reflects local expertise and availability of the latest imaging technology.
Collapse
Affiliation(s)
- Swati Deshmukh
- Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA.
| | - Kevin Sun
- Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Aparna Komarraju
- Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| | - Adam Singer
- Radiology Partners/Northside Radiology Associates
| | - Jim S Wu
- Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
10
|
Kim SG, Jung JY. Role of MR Neurography for Evaluation of the Lumbosacral Plexus: A Scoping Review. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:1273-1285. [PMID: 36545407 PMCID: PMC9748467 DOI: 10.3348/jksr.2022.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
Purpose MR neurography (MRN) is an imaging technique optimized to visualize the peripheral nerves. This review aimed to discover an optimized protocol for MRN of the lumbosacral plexus (LSP) and identify evidence for the clinical benefit of lumbosacral plexopathies. Materials and Methods We performed a systematic search of the two medical databases until September 2021. 'Magnetic resonance imaging', 'lumbosacral plexus', 'neurologic disease', or equivalent terms were used to search the literature. We extracted information on indications, MRN protocols for LSP, and clinical efficacy from 55 studies among those searched. Results MRN of the LSP is useful for displaying the distribution of peripheral nerve disease, guiding perineural injections, and assessing extraspinal causes of sciatica. Three-dimensional short-tau inversion recovery turbo spin-echo combined with vascular suppression is the mainstay of MRN. Conclusion Future work on the MRN of LSP should be directed to technical maturation and clinical validation of efficacy.
Collapse
|