1
|
Zirakchian Zadeh M. PET/CT in assessment of colorectal liver metastases: a comprehensive review with emphasis on 18F-FDG. Clin Exp Metastasis 2023; 40:465-491. [PMID: 37682423 DOI: 10.1007/s10585-023-10231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/09/2023]
Abstract
Approximately 25% of those who are diagnosed with colorectal cancer will develop colorectal liver metastases (CRLM) as their illness advances. Despite major improvements in both diagnostic and treatment methods, the prognosis for patients with CRLM is still poor, with low survival rates. Accurate employment of imaging methods is critical in identifying the most effective treatment approach for CRLM. Different imaging modalities are used to evaluate CRLM, including positron emission tomography (PET)/computed tomography (CT). Among the PET radiotracers, fluoro-18-deoxyglucose (18F-FDG), a glucose analog, is commonly used as the primary radiotracer in assessment of CRLM. As the importance of 18F-FDG-PET/CT continues to grow in assessment of CRLM, developing a comprehensive understanding of this subject becomes imperative for healthcare professionals from diverse disciplines. The primary aim of this article is to offer a simplified and comprehensive explanation of PET/CT in the evaluation of CRLM, with a deliberate effort to minimize the use of technical nuclear medicine terminology. This approach intends to provide various healthcare professionals and researchers with a thorough understanding of the subject matter.
Collapse
Affiliation(s)
- Mahdi Zirakchian Zadeh
- Molecular Imaging and Therapy and Interventional Radiology Services, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Dzaye O, Cornelis FH, Kunin HS, Sofocleous CT. Advancements and Future Outlook of PET/CT-Guided Interventions. Tech Vasc Interv Radiol 2023; 26:100916. [PMID: 38071029 DOI: 10.1016/j.tvir.2023.100916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Advancements in minimally invasive technology, coupled with imaging breakthroughs, have empowered the field of interventional radiology to achieve unparalleled precision in image-guided diagnosis and treatment while simultaneously reducing periprocedural morbidity. Molecular imaging, which provides valuable physiological and metabolic information alongside anatomical localization, can expand the capabilities of image-guided interventions. Among various molecular imaging techniques, positron emission tomography (PET) stands out for its superior spatial resolution and ability to acquire quantitative data. PET has emerged as a crucial tool for oncologic imaging and plays a pivotal role in both staging and the assessment of treatment responses. Typically used in combination with computed tomography (CT) (PET/CT) and occasionally with magnetic resonance imaging MRI (PET/MRI), PET as a hybrid imaging approach offers enhanced insights into disease progression and response. In recent years, PET has also found its way into image-guided interventions, especially within the rapidly expanding field of interventional oncology. This review aims to explore the current and evolving role of metabolic imaging, specifically PET, in interventional oncology. By delving into the unique advantages and applications of PET in guiding oncological interventions and assessing response, we seek to highlight the increasing significance of this modality in the realm of interventional radiology.
Collapse
Affiliation(s)
- Omar Dzaye
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY; Molecular Imaging & Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Francois H Cornelis
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Henry S Kunin
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
3
|
Vulasala SSR, Sutphin PD, Kethu S, Onteddu NK, Kalva SP. Interventional radiological therapies in colorectal hepatic metastases. Front Oncol 2023; 13:963966. [PMID: 37324012 PMCID: PMC10266282 DOI: 10.3389/fonc.2023.963966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Colorectal malignancy is the third most common cancer and one of the prevalent causes of death globally. Around 20-25% of patients present with metastases at the time of diagnosis, and 50-60% of patients develop metastases in due course of the disease. Liver, followed by lung and lymph nodes, are the most common sites of colorectal cancer metastases. In such patients, the 5-year survival rate is approximately 19.2%. Although surgical resection is the primary mode of managing colorectal cancer metastases, only 10-25% of patients are competent for curative therapy. Hepatic insufficiency may be the aftermath of extensive surgical hepatectomy. Hence formal assessment of future liver remnant volume (FLR) is imperative prior to surgery to prevent hepatic failure. The evolution of minimally invasive interventional radiological techniques has enhanced the treatment algorithm of patients with colorectal cancer metastases. Studies have demonstrated that these techniques may address the limitations of curative resection, such as insufficient FLR, bi-lobar disease, and patients at higher risk for surgery. This review focuses on curative and palliative role through procedures including portal vein embolization, radioembolization, and ablation. Alongside, we deliberate various studies on conventional chemoembolization and chemoembolization with irinotecan-loaded drug-eluting beads. The radioembolization with Yttrium-90 microspheres has evolved as salvage therapy in surgically unresectable and chemo-resistant metastases.
Collapse
Affiliation(s)
- Sai Swarupa R. Vulasala
- Department of Radiology, University of Florida College of Medicine, Jacksonville, FL, United States
| | - Patrick D. Sutphin
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Samira Kethu
- Department of Microbiology and Immunology, College of Arts and Sciences, University of Miami, Coral Gables, FL, United States
| | - Nirmal K. Onteddu
- Department of Hospital Medicine, Flowers Hospital, Dothan, AL, United States
| | - Sanjeeva P. Kalva
- Division of Interventional Radiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Mosconi C, Cacioppa LM, Cappelli A, Gramenzi AG, Vara G, Modestino F, Renzulli M, Golfieri R. Update of the Bologna Experience in Radioembolization of Intrahepatic cholangiocarcinoma. Technol Cancer Res Treat 2023; 22:15330338231155690. [PMID: 36927302 PMCID: PMC10026142 DOI: 10.1177/15330338231155690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is the second most common primitive liver cancer and is rising in incidence worldwide. Given its low survival and resectability rates, locoregional therapies such as Yttrium-90 transarterial radioembolization (Y-TARE) are increasingly being employed. This retrospective study aim was to confirm and update our previous results about overall survival (OR), safety, and efficacy of Y-TARE in patients with unresectable/recurrent ICC. MATERIALS AND METHODS OS was evaluated as primary endpoint while radiological tumor response at 3 months, based on Response Evaluation Criteria in Solid Tumors (RECIST) 1.1, was considered as secondary endpoint. RESULTS Over a total of 49 patients, the overall median survival was 16 months (27-41 months, 95% confidence interval [CI]) from Y-TARE procedure. A significantly longer survival was recorded in naive patients compared to patients previously submitted to any type of liver-directed treatment and radical surgery (18 vs 14 months, P=.015 and 28 vs 14 months, P=.001, respectively). Target lesion and overall objective response for RECIST 1.1 criteria were 64.6% and 52.1%, respectively. Low rates of postprocedural and late complications were recorded. CONCLUSIONS In unresectable and recurrent ICC, Y-TARE confirms its safety and its potential in increasing OS, especially in naive patients.
Collapse
Affiliation(s)
- Cristina Mosconi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Maria Cacioppa
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alberta Cappelli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Giulia Gramenzi
- Division of Semeiotic, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulio Vara
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Modestino
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
5
|
Deipolyi AR, Johnson CB, Riedl CC, Kunin H, Solomon SB, Oklu R, Hsu M, Moskowitz CS, Kombak FE, Bhanot U, Erinjeri JP. Prospective Evaluation of Immune Activation Associated with Response to Radioembolization Assessed with PET/CT in Women with Breast Cancer Liver Metastasis. Radiology 2023; 306:279-287. [PMID: 35972356 PMCID: PMC9772064 DOI: 10.1148/radiol.220158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
Background The impact of transarterial radioembolization (TARE) of breast cancer liver metastasis (BCLM) on antitumor immunity is unknown, which hinders the optimal selection of candidates for TARE. Purpose To determine whether response to TARE at PET/CT in participants with BCLM is associated with specific immune markers (cytokines and immune cell populations). Materials and Methods This prospective pilot study enrolled 23 women with BCLM who planned to undergo TARE (June 2018 to February 2020). Peripheral blood and liver tumor biopsies were collected at baseline and 1-2 months after TARE. Monocyte, myeloid-derived suppressor cell (MDSC), interleukin (IL), and tumor-infiltrating lymphocyte (TIL) levels were assessed with use of gene expression studies and flow cytometry, and immune checkpoint and cell surface marker levels with immunohistochemistry. Modified PET Response Criteria in Solid Tumors was used to determine complete response (CR) in treated tissue. After log-transformation, immune marker levels before and after TARE were compared using paired t tests. Association with CR was assessed with Wilcoxon rank-sum or unpaired t tests. Results Twenty women were included. After TARE, peripheral IL-6 (geometric mean, 1.0 vs 1.6 pg/mL; P = .02), IL-10 (0.2 vs 0.4 pg/mL; P = .001), and IL-15 (1.9 vs 2.4 pg/mL; P = .01) increased. In biopsy tissue, lymphocyte activation gene 3-positive CD4+ TILs (15% vs 31%; P < .001) increased. Eight of 20 participants (40% [exact 95% CI: 19, 64]) achieved CR. Participants with CR had lower baseline peripheral monocytes (10% vs 29%; P < .001) and MDSCs (1% vs 5%; P < .001) and higher programmed cell death protein (PD) 1-positive CD4+ TILs (59% vs 26%; P = .006) at flow cytometry and higher PD-1+ staining in tumor (2% vs 1%; P = .046). Conclusion Complete response to transarterial radioembolization was associated with lower baseline cytokine, monocyte, and myeloid-derived suppressor cell levels and higher programmed cell death protein 1-positive tumor-infiltrating lymphocyte levels. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Amy R. Deipolyi
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - C. Bryce Johnson
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Christopher C. Riedl
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Henry Kunin
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Stephen B. Solomon
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Rahmi Oklu
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Meier Hsu
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Chaya S. Moskowitz
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Faruk E. Kombak
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Umesh Bhanot
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| | - Joseph P. Erinjeri
- From the Department of Surgery, West Virginia University/Charleston
Division, Charleston Area Medical Center, 3200 MacCorkle Ave SE, Charleston, WV
25304 (A.R.D.); Department of Radiation Oncology, Inova Schar Cancer Institute,
Fairfax, Va (C.B.J.); imagingwest, Hawthorne, NY (C.C.R.); Interventional
Radiology Service (H.K., S.B.S., J.P.E.), Department of Epidemiology and
Biostatistics (M.H., C.S.M.), and Department of Pathology, Precision Pathology
Center (F.E.K., U.B.), Memorial Sloan-Kettering Cancer Center, New York, NY; and
Vascular & Interventional Radiology, Laboratory for Patient Inspired
Engineering, Mayo Clinic, Scottsdale, Ariz (R.O.)
| |
Collapse
|
6
|
Entezari P, Gabr A, Salem R, Lewandowski RJ. Yttrium-90 for colorectal liver metastasis - the promising role of radiation segmentectomy as an alternative local cure. Int J Hyperthermia 2022; 39:620-626. [DOI: 10.1080/02656736.2021.1933215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Pouya Entezari
- Department of Radiology, Section of Interventional Radiology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Ahmed Gabr
- Department of Radiology, Section of Interventional Radiology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Riad Salem
- Department of Radiology, Section of Interventional Radiology, Northwestern Memorial Hospital, Chicago, IL, USA
- Department of Surgery, Division of Transplantation, Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| | - Robert J. Lewandowski
- Department of Radiology, Section of Interventional Radiology, Northwestern Memorial Hospital, Chicago, IL, USA
- Department of Surgery, Division of Transplantation, Comprehensive Transplant Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
7
|
Hunt S, Zandifar A, Alavi A. Molecular imaging in management of colorectal metastases by the interventional oncologist. Int J Hyperthermia 2022; 39:675-681. [DOI: 10.1080/02656736.2021.1998657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Stephen Hunt
- Penn Image-Guided Interventions Lab, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Abass Alavi
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Weber M, Lam M, Chiesa C, Konijnenberg M, Cremonesi M, Flamen P, Gnesin S, Bodei L, Kracmerova T, Luster M, Garin E, Herrmann K. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2022; 49:1682-1699. [PMID: 35146577 PMCID: PMC8940802 DOI: 10.1007/s00259-021-05600-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022]
Abstract
Primary liver tumours (i.e. hepatocellular carcinoma (HCC) or intrahepatic cholangiocarcinoma (ICC)) are among the most frequent cancers worldwide. However, only 10-20% of patients are amenable to curative treatment, such as resection or transplant. Liver metastases are most frequently caused by colorectal cancer, which accounts for the second most cancer-related deaths in Europe. In both primary and secondary tumours, radioembolization has been shown to be a safe and effective treatment option. The vast potential of personalized dosimetry has also been shown, resulting in markedly increased response rates and overall survival. In a rapidly evolving therapeutic landscape, the role of radioembolization will be subject to changes. Therefore, the decision for radioembolization should be taken by a multidisciplinary tumour board in accordance with the current clinical guidelines. The purpose of this procedure guideline is to assist the nuclear medicine physician in treating and managing patients undergoing radioembolization treatment. PREAMBLE: The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association that facilitates communication worldwide among individuals pursuing clinical and research excellence in nuclear medicine. The EANM was founded in 1985. These guidelines are intended to assist practitioners in providing appropriate nuclear medicine care for patients. They are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals taking into account the unique circumstances of each case. Thus, there is no implication that an approach differing from the guidelines, standing alone, is below the standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set out in the guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines. The practice of medicine involves not only the science but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible to always reach the most appropriate diagnosis or to predict with certainty a particular response to treatment. Therefore, it should be recognised that adherence to these guidelines will not ensure an accurate diagnosis or a successful outcome. All that should be expected is that the practitioner will follow a reasonable course of action based on current knowledge, available resources and the needs of the patient to deliver effective and safe medical care. The sole purpose of these guidelines is to assist practitioners in achieving this objective.
Collapse
Affiliation(s)
- M Weber
- Department of Nuclear medicine, University clinic Essen, Essen, Germany.
| | - M Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - C Chiesa
- Nuclear Medicine, Foundation IRCCS National Tumour Institute, Milan, Italy
| | - M Konijnenberg
- Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands
| | - M Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - P Flamen
- Department of Nuclear Medicine, Institut Jules Bordet-Université Libre de Bruxelles (ULB), 1000, Brussels, Belgium
| | - S Gnesin
- Institute of Radiation physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - L Bodei
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - T Kracmerova
- Department of Medical Physics, Motol University Hospital, Prague, Czech Republic
| | - M Luster
- Department of Nuclear medicine, University hospital Marburg, Marburg, Germany
| | - E Garin
- Department of Nuclear Medicine, Cancer, Institute Eugène Marquis, Rennes, France
| | - K Herrmann
- Department of Nuclear medicine, University clinic Essen, Essen, Germany
| |
Collapse
|
9
|
The Value of 18F-FDG-PET-CT Imaging in Treatment Evaluation of Colorectal Liver Metastases: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12030715. [PMID: 35328267 PMCID: PMC8947194 DOI: 10.3390/diagnostics12030715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Up to 50% of patients with colorectal cancer either have synchronous colorectal liver metastases (CRLM) or develop CRLM over the course of their disease. Surgery and thermal ablation are the most common local treatment options of choice. Despite development and improvement in local treatment options, (local) recurrence remains a significant clinical problem. Many different imaging modalities can be used in the follow-up after treatment of CRLM, lacking evidence-based international consensus on the modality of choice. In this systematic review, we evaluated 18F-FDG-PET-CT performance after surgical resection, thermal ablation, radioembolization, and neoadjuvant and palliative chemotherapy based on current published literature. (2) Methods: A systematic literature search was performed on the PubMed database. (3) Results: A total of 31 original articles were included in the analysis. Only one suitable study was found describing the role of 18F-FDG-PET-CT after surgery, which makes it hard to draw a firm conclusion. 18F-FDG-PET-CT showed to be of additional value in the follow-up after thermal ablation, palliative chemotherapy, and radioembolization. 18F-FDG-PET-CT was found to be a poor to moderate predictor of pathologic response after neoadjuvant chemotherapy. (4) Conclusions: 18F-FDG-PET-CT is superior to conventional morphological imaging modalities in the early detection of residual disease after thermal ablation and in the treatment evaluation and prediction of prognosis during palliative chemotherapy and after radioembolization, and 18F-FDG-PET-CT could be considered in selected cases after neoadjuvant chemotherapy and surgical resection.
Collapse
|
10
|
Combined use of 177Lu-DOTATATE and metronomic capecitabine (Lu-X) in FDG-positive gastro-entero-pancreatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2021; 48:3260-3267. [PMID: 33604690 DOI: 10.1007/s00259-021-05236-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 01/27/2023]
Abstract
PURPOSE FDG-positive neuroendocrine tumors (NETs) have a poorer prognosis and exhibit shorter response duration to peptide receptor radionuclide therapy (PRRT). The aim of this prospective phase II study was to evaluate the efficacy and toxicity of PRRT with 177Lu-DOTATATE associated with metronomic capecitabine as a radiosensitizer agent in patients with advanced progressive FDG-positive gastro-entero-pancreatic (GEP) NETs. PATIENTS AND METHODS Patients with advanced somatostatin receptor- and FDG-positive G1-G3 GEP-NETs (Ki67 < 55%) were treated with a cumulative activity of 27.5 GBq of 177Lu-DOTATATE divided in five cycles of 5.5 GBq each every 8 weeks. Capecitabine (1000-1500 mg daily) was administered orally in the inter-cycle period between 177Lu-DOTATATE treatments. Prior to commencing capecitabine, all patients were triaged with the dihydropyrimidine dehydrogenase (DPD) test. Only DPD-proficient individuals were enrolled. The primary objectives were disease control rate (DCR) and safety. Secondary aims included progression-free (PFS) and overall survival (OS). Treatment response was assessed per Response Evaluation Criteria in Solid Tumors, version 1.1 (RECIST 1.1). Toxicity was assessed by Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. RESULTS From August 2015 to December 2016, 37 subjects were consecutively enrolled. A total of 25 (68%) were affected by pancreatic neuroendocrine tumors (P-NETs), and 12 (32%) had gastrointestinal neuroendocrine tumors (GI-NETs). By grading (WHO 2010 classification), 12 patients (32%) had G1 (Ki67 ≤ 2%), 22 (59%) had G2 (3% < Ki67 ≤ 20%), and 3 patients (9%) had G3 (Ki67 > 20%) NETs. Grade 3 (G3) or 4 (G4) hematological toxicity occurred in 16.2% of patients. Other G3-G4 adverse events were diarrhea in 5.4% of cases and asthenia in 5.4%. No renal toxicity was observed for the duration of follow-up. In 37 patients, 33 were evaluable for response. Objective responses included partial response (PR) in 10 patients (30%) and stable disease (SD) in 18 patients (55%), with a DCR of 85%. The median follow-up was 38 months (range 4.6-51.1 months). The median PFS was 31.4 months (17.6-45.4), and mOS was not reached. CONCLUSIONS This study demonstrated that the combination of PRRT with 177Lu-DOTATATE and metronomic capecitabine is active and well tolerated in patients with aggressive FDG-positive G1-G3 GEP-NETs. These data constitute the basis for a randomized study of PPRT alone vs. PRRT plus metronomic capecitabine.
Collapse
|
11
|
Binderup T, Knigge U, Johnbeck CB, Loft A, Berthelsen AK, Oturai P, Mortensen J, Federspiel B, Langer SW, Kjaer A. 18F-FDG PET is Superior to WHO Grading as a Prognostic Tool in Neuroendocrine Neoplasms and Useful in Guiding PRRT: A Prospective 10-Year Follow-up Study. J Nucl Med 2020; 62:808-815. [PMID: 33067340 DOI: 10.2967/jnumed.120.244798] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Accurate grading of patients with neuroendocrine neoplasms (NENs) is essential for risk stratification and optimal choice of therapy. Currently, grading is based on histologically assessed degree of tumor proliferation. The aim of the present study was to assess the long-term prognostic value of 18F-FDG PET imaging for risk stratification of NENs and compare it with tumor grading (World Health Organization 2010 classification). Methods: We conducted a prospective cohort study evaluating the prognostic value of 18F-FDG PET imaging and compared it with histologic grading. Enrolled were 166 patients of all grades and with histologically confirmed NENs of gastroenteropancreatic origin. The primary endpoint was overall survival (OS). Progression-free survival (PFS) was a secondary endpoint. In addition, OS in relation to peptide receptor radionuclide therapy (PRRT) was analyzed as an exploratory endpoint. The median follow-up time was 9.8 y. Results: Analysis of the whole cohort revealed that a positive 18F-FDG PET scan was associated with a shorter OS than a negative 18F-FDG PET scan (hazard ratio: 3.8; 95% CI: 2.4-5.9; P < 0.001). In G1 and G2 patients (n = 140), a positive 18F-FDG PET scan was the only identifier of high risk for death (hazard ratio: 3.6; 95% CI, 2.2-5.9; P < 0.001). In multivariate analysis, 18F-FDG PET, G3 tumor, ≥2 liver metastases, and ≥2 prior therapies were independent prognostic factors for OS, and 18F-FDG PET, G3 tumor, and ≥3 liver metastases were independent prognostic factors for PFS. For patients receiving PRRT, 18F-FDG-negative cases had a significantly longer survival than 18F-FDG-positive cases, whereas no difference was identified for tumor grading. 18F-FDG-positive patients receiving PRRT had a significantly longer median survival than patients not receiving PRRT (4.4 vs. 1.4 y, P = 0.001), whereas no difference was seen for 18F-FDG-negative patients. Conclusion: 18F-FDG PET is useful for risk stratification of all NEN grades and is superior to histologic grading. 18F-FDG PET could differentiate G1 and G2 tumors into low- and high-risk groups. In the selection of therapy and for risk stratification of NEN patients, 18F-FDG PET status should be considered.
Collapse
Affiliation(s)
- Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet & University of Copenhagen, Copenhagen, Denmark.,European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Knigge
- European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark.,Department of Surgical Gastroenterology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Camilla Bardram Johnbeck
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet & University of Copenhagen, Copenhagen, Denmark.,European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet & University of Copenhagen, Copenhagen, Denmark.,European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Anne Kiil Berthelsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet & University of Copenhagen, Copenhagen, Denmark.,European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Peter Oturai
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet & University of Copenhagen, Copenhagen, Denmark.,European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Jann Mortensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet & University of Copenhagen, Copenhagen, Denmark.,European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark
| | - Birgitte Federspiel
- European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen, Denmark; and
| | - Seppo W Langer
- European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark.,Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Rigshospitalet & University of Copenhagen, Copenhagen, Denmark .,European Neuroendocrine Tumors Society Center of Excellence, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
van Roekel C, Jongen JMJ, Smits MLJ, Elias SG, Koopman M, Kranenburg O, Borel Rinkes IHM, Lam MGEH. Mode of progression after radioembolization in patients with colorectal cancer liver metastases. EJNMMI Res 2020; 10:107. [PMID: 32960390 PMCID: PMC7509032 DOI: 10.1186/s13550-020-00697-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
Background Radioembolization is an established treatment modality in colorectal cancer patients with liver-dominant disease in a salvage setting. Selection of patients who will benefit most is of vital importance. The aim of this study was to assess response (and mode of progression) at 3 months after radioembolization and the impact of baseline characteristics. Methods Three months after radioembolization with either yttrium-90 resin/glass or holmium-166, anatomic response, according to RECIST 1.1, was evaluated in 90 patients. Correlations between baseline characteristics and efficacy were evaluated. For more detailed analysis of progressive disease as a dismal clinical entity, distinction was made between intra- and extrahepatic progression, and between progression of existing metastases and new metastases. Results Forty-two patients (47%) had extrahepatic disease (up to five ≥ 1 cm lung nodules, and ≤ 2 cm lymph nodes) at baseline. No patients showed complete response, 5 (5.5%) patients had partial response, 16 (17.8%) had stable disease, and 69 (76.7%) had progressive disease. Most progressive patients (67/69; 97%) had new metastases (intra-hepatic N = 11, extrahepatic N = 32; or both N = 24). Significantly fewer patients had progressive disease in the group of patients presenting without extrahepatic metastases at baseline (63% versus 93%; p = 0.0016). Median overall survival in patients with extrahepatic disease was 6.5 months, versus 10 months in patients without extrahepatic disease at baseline (hazard ratio 1.79, 95%CI 1.24–2.57). Conclusions Response at 3-month follow-up and survival were heavily influenced by new metastases. Patients with extrahepatic disease at baseline had a worse outcome compared to patients without.
Collapse
Affiliation(s)
- Caren van Roekel
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
| | - Jennifer M J Jongen
- Department of Surgical Oncology, Endocrine and GI Surgery, Cancer Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Maarten L J Smits
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, Cancer Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Onno Kranenburg
- Division of Biomedical Genetics, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Inne H M Borel Rinkes
- Department of Surgical Oncology, Endocrine and GI Surgery, Cancer Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Marnix G E H Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, University Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
13
|
Kishore SA, Drabkin MJ, Sofocleous CT. Fluorodeoxyglucose-PET for Ablation Treatment Planning, Intraprocedural Monitoring, and Response. PET Clin 2020; 14:427-436. [PMID: 31472740 DOI: 10.1016/j.cpet.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PET has become an essential tool for staging and response assessment in oncologic imaging. Over the past decade it has also evolved into a tool for image-guided interventions, specifically in the rapidly growing field of interventional oncology. PET-guided biopsies have greater sensitivity and diagnostic yield for fluorodeoxyglucose-avid lesions. Real-time PET imaging can also provide valuable image guidance during therapeutic minimally invasive procedures such as ablation of PET-avid tumors. The increasing use of PET in the assessment of therapeutic response results in earlier identification of disease that is amenable to image-guided therapies.
Collapse
Affiliation(s)
- Sirish A Kishore
- Interventional Radiology Service, Memorial Sloan Kettering Cancer, 1275 York, IR Suite H118, New York City, NY 10065, USA
| | - Michael J Drabkin
- Interventional Radiology Service, Memorial Sloan Kettering Cancer, New York City, NY, USA
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Memorial Sloan Kettering Cancer, 1275 York, IR Suite H118, New York City, NY 10065, USA.
| |
Collapse
|
14
|
Evangelista L, Ravelli I, Bignotto A, Cecchin D, Zucchetta P. Ga-68 DOTA-peptides and F-18 FDG PET/CT in patients with neuroendocrine tumor: A review. Clin Imaging 2020; 67:113-116. [PMID: 32559681 DOI: 10.1016/j.clinimag.2020.05.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The aim of the present review was to assess the role of combined 18F-Fluorodeoxyglucose (F-18 FDG) and Ga-68 DOTA-peptides positron emission tomography (PET)-computed tomography (CT) in neuroendocrine tumors (NETs). METHODS We have searched MEDLINE databases, including PubMed and Scopus, for studies about the combined FDG and Ga-68 DOTA-peptides PET-CT or PET/Magnetic Resonance Imaging (MRI) in NETs in the last 15 years (from 2004 to November 2019). No limits were applied to the search strategy. Abstracts, reviews, letters to editors, and editorials were excluded. RESULTS Seven studies met the inclusion criteria. In total 236 patients received both 68Ga-DOTA-peptides and F-18 FDG PET-CT for the characterization of NETs. In particular, 84 patients had a neuroendocrine lung tumor while the others mainly a gastroenteropancreatic NET. The combined use of F-18 FDG and Ga-68 DOTA-peptides (mainly TOC) PET studies provides complementary information regarding different biological characteristics of the lesions, thus enabling a more accurate selection of patients for targeted radionuclide therapy and a better stratification of the prognosis. CONCLUSIONS Ga-68 DOTA-peptides and F-18 FDG PET should be considered complementary in patients with NETs. They should be both performed in the initial staging and during follow-up, with a specific selection of patients and in a multidisciplinary vision.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy.
| | - Ilaria Ravelli
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Antonio Bignotto
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine - DIMED, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Deipolyi AR, England RW, Ridouani F, Riedl CC, Kunin HS, Boas FE, Yarmohammadi H, Sofocleous CT. PET/CT Imaging Characteristics After Radioembolization of Hepatic Metastasis from Breast Cancer. Cardiovasc Intervent Radiol 2019; 43:488-494. [PMID: 31732778 DOI: 10.1007/s00270-019-02375-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE To define positron emission tomography/computed tomography (PET/CT) imaging characteristics during follow-up of patients with metastatic breast cancer (MBC) treated with yttrium-90 (Y90) radioembolization (RE). MATERIALS AND METHODS From January 2011 to October 2017, 30 MBC patients underwent 38 Y90 glass or resin RE treatments. Pre-RE PET/CT was performed on average 51 days before RE. There were 68 PET/CTs performed after treatment. Response was assessed using modified PERCIST criteria focusing on the hepatic territory treated with RE, normalizing SUVpeak to the mean SUV of liver uninvolved by tumor. An objective response (OR) was defined as a decrease in SUVpeak by at least 30%. RESULTS Of the 68 post-RE scans, 6 were performed at 0-30 days, 15 at 31-60 days, 9 at 61-90 days, 13 at 91-120 days, 14 scans at 121-180 days, and 11 scans at > 180 days after RE. Of the 30 patients, 25 (83%) achieved OR on at least one follow-up. Median survival was 15 months after the first RE administration. Highest response rates occurred at 30-90 days, with over 75% of cases demonstrating OR at that time. After 180 days, OR was seen in only 25%. There was a median TTP of 169 days among responders. CONCLUSION In MBC, follow-up PET/CT after RE demonstrates optimal response rates at 30-90 days, with progression noted after 180 days. These results help to guide the timing of imaging and also to inform patients of expected outcomes after RE.
Collapse
Affiliation(s)
- Amy R Deipolyi
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ryan W England
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fourat Ridouani
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher C Riedl
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Henry S Kunin
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - F Edward Boas
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | |
Collapse
|
16
|
|
17
|
Zhen Y, Liu B, Chang Z, Ren H, Liu Z, Zheng J. A pooled analysis of transarterial radioembolization with yttrium-90 microspheres for the treatment of unresectable intrahepatic cholangiocarcinoma. Onco Targets Ther 2019; 12:4489-4498. [PMID: 31239717 PMCID: PMC6560193 DOI: 10.2147/ott.s202875] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Purpose: The aim of this pooled analysis was to evaluate the clinical efficacy and safety of transarterial radioembolization (TARE) with yttrium-90 (90Y) microspheres for the treatment of unresectable intrahepatic cholangiocarcinoma (ICC). Methods: We searched the Cochrane Library, Embase, PubMed, SCI with the English language from inception to October 2018. A pooled analysis was conducted using Stata software. Results: There were 16 eligible studies included in this pooled analysis. The pooled median overall survival (OS) from 12 studies was 14.3 (95% CI: 11.9-17.1) months. Based on Response Evaluation Criteria in Solid Tumors (RECIST), no complete response was reported, and the median of partial response, stable disease and progressive disease were 11.5% (range: 4.8-35.3%), 61.5% (range: 42.9-81.3%) and 22.7% (range: 12.5-52.4%) respectively. The pooled disease control rate (DCR) from nine studies was 77.2% (95% CI: 70.2-84.2%). According to the type of microspheres, subgroup analysis was performed, the median OS in the glass microspheres group was 14.0 (95% CI: 9.1-21.4) months, and 14.3 (95% CI: 11.5-17.8) months in the resin microspheres group. The DCR was 77.3% (95% CI: 63.5-91.1%) and 77.4% (95% CI: 66.8-87.9%) in the glass and resin microspheres groups respectively. Most of the side effects reported in the included studies were mild and did not require intervention. Conclusion: TARE with 90Y microspheres is safe and effective for patients with unresectable ICC with acceptable side effects. And it seems that the type of microsphere has no influence on therapeutic efficacy.
Collapse
Affiliation(s)
- Yanhua Zhen
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Bin Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhihui Chang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Haiyan Ren
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Zhaoyu Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Jiahe Zheng
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
18
|
Rojas JD, Dayton PA. In Vivo Molecular Imaging Using Low-Boiling-Point Phase-Change Contrast Agents: A Proof of Concept Study. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:177-191. [PMID: 30318123 DOI: 10.1016/j.ultrasmedbio.2018.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/26/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Sub-micron phase-change contrast agents (PCCAs) have been proposed as a tool for ultrasound molecular imaging based on their potential to extravasate and target extravascular markers and also because of the potential to image these contrast agents with a high contrast-to-tissue ratio. We compare in vivo ultrasound molecular imaging with targeted low-boiling-point PCCAs and targeted microbubble contrast agents. Both agents were targeted to the intravascular (endothelial) integrin αvß3via a cyclic RGD peptide (cyclo-Arg-Gly-Asp-D-Tyr-Cys) mechanism and imaged in vivo in a rodent fibrosarcoma model, which exhibits angiogenic microvasculature. Signal intensity was measured using two different techniques, conventional contrast-specific imaging (amplitude/phase modulation) and a droplet vaporization imaging sequence, which detects the unique signature of vaporizing PCCAs. Data indicate that PCCA-specific imaging is more sensitive to small numbers of bound agents than conventional contrast imaging. However, data also revealed that contrast from targeted microbubbles was greater than that provided by PCCAs. Both control and targeted PCCAs were observed to be retained in tissue post-vaporization, which was expected for targeted agents but not expected for control agents. The exact mechanism underlying this observation remains unknown.
Collapse
Affiliation(s)
- Juan D Rojas
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, North Carolina, USA.
| |
Collapse
|
19
|
Deipolyi AR, Riedl CC, Bromberg J, Chandarlapaty S, Klebanoff CA, Sofocleous CT, Yarmohammadi H, Brody LA, Boas FE, Ziv E. Association of PI3K Pathway Mutations with Early Positron-Emission Tomography/CT Imaging Response after Radioembolization for Breast Cancer Liver Metastases: Results of a Single-Center Retrospective Pilot Study. J Vasc Interv Radiol 2018; 29:1226-1235. [PMID: 30078647 DOI: 10.1016/j.jvir.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To describe imaging response and survival after radioembolization for metastatic breast cancer and to delineate genetic predictors of imaging responses and outcomes. MATERIALS AND METHODS This retrospective study included 31 women (average age, 52 y) with liver metastasis from invasive ductal carcinoma who underwent resin and glass radioembolization (average cumulative dose, 2.0 GBq ± 1.8) between January 2011 and September 2017 after receiving ≥ 3 lines of chemotherapy. Twenty-four underwent genetic profiling with MSK-IMPACT or Sequenom; 26 had positron-emission tomography (PET)/CT imaging before and after treatment. Survival after the first radioembolization and 2-4-month PET/CT imaging response were assessed. Laboratory and imaging features were assessed to determine variables predictive of outcomes. Unpaired Student t tests and Fisher exact tests were used to compare responders and nonresponders categorized by changes in fluorodeoxyglucose avidity. Kaplan-Meier survival analysis was used to determine the impact of predictors on survival after radioembolization. RESULTS Median survival after radioembolization was 11 months (range, 1-49 mo). Most patients (18 of 26; 69%) had complete or partial response based on changes in fluorodeoxyglucose avidity. Imaging response was associated with longer survival (P = .005). Whereas 100% of patients with PI3K pathway mutations showed an imaging response, only 45% of wild-type patients showed a response (P = .01). Median survival did not differ between PI3K pathway wild-type (10.9 mo) and mutant (undefined) patients (P = .50). CONCLUSIONS These preliminary data suggest that genomic profiling may predict which patients with metastatic breast cancer benefit most from radioembolization. PI3K pathway mutations are associated with improved imaging response, which is associated with longer survival.
Collapse
Affiliation(s)
- Amy R Deipolyi
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York.
| | - Christopher C Riedl
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Jacqueline Bromberg
- Department of Radiology, Breast Medicine Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Sarat Chandarlapaty
- Department of Radiology, Breast Medicine Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Hooman Yarmohammadi
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Lynn A Brody
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - F Edward Boas
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| | - Etay Ziv
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, 1275 York Ave., H118-A, New York, NY 10065; Weill Cornell Medical College, New York, New York
| |
Collapse
|
20
|
Rojas JD, Papadopoulou V, Czernuszewicz TJ, Rajamahendiran RM, Chytil A, Chiang YC, Chong DC, Bautch VL, Rathmell WK, Aylward S, Gessner RC, Dayton PA. Ultrasound Measurement of Vascular Density to Evaluate Response to Anti-Angiogenic Therapy in Renal Cell Carcinoma. IEEE Trans Biomed Eng 2018; 66:873-880. [PMID: 30059292 DOI: 10.1109/tbme.2018.2860932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Functional and molecular changes often precede gross anatomical changes, so early assessment of a tumor's functional and molecular response to therapy can help reduce a patient's exposure to the side effects of ineffective chemotherapeutics or other treatment strategies. OBJECTIVE Our intent was to test the hypothesis that an ultrasound microvascular imaging approach might provide indications of response to therapy prior to assessment of tumor size. METHODS Mice bearing clear-cell renal cell carcinoma xenograft tumors were treated with antiangiogenic and Notch inhibition therapies. An ultrasound measurement of microvascular density was used to serially track the tumor response to therapy. RESULTS Data indicated that ultrasound-derived microvascular density can indicate response to therapy a week prior to changes in tumor volume and is strongly correlated with physiological characteristics of the tumors as measured by histology ([Formula: see text]). Furthermore, data demonstrated that ultrasound measurements of vascular density can determine response to therapy and classify between-treatment groups with high sensitivity and specificity. CONCLUSION/SIGNIFICANCE Results suggests that future applications utilizing ultrasound imaging to monitor tumor response to therapy may be able to provide earlier insight into tumor behavior from metrics of microvascular density rather than anatomical tumor size measurements.
Collapse
|
21
|
Grut H, Revheim ME, Line PD, Dueland S. Importance of 18F-FDG PET/CT to select patients with nonresectable colorectal liver metastases for liver transplantation. Nucl Med Commun 2018; 39:621-627. [PMID: 29683930 DOI: 10.1097/mnm.0000000000000843] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT for the selection of patients with nonresectable colorectal liver metastases (NCLM) for liver transplantation (LT). In the secondary cancer study, we reported an improved 5-year overall survival in patients treated with LT for NCLM (56%) compared with chemotherapy (9%). However, many patients were rejected for LT owing to the detection of extrahepatic disease at preoperative imaging. PATIENTS AND METHODS F-FDG PET/CT and contrast-enhanced computed tomography (ceCT) examinations before tentative LT for NCLM were assessed, and findings contraindicating LT were registered. Maximum, mean and peak standardized uptake values; tumor-to-background ratio; metabolic tumor volume; and total lesion glycolysis were measured and calculated for all liver metastases. Overall survival was calculated by the Kaplan-Meier method. RESULTS Thirty-two patients excluded by F-FDG PET/CT and/or ceCT before tentative LT for NCLM were identified. F-FDG PET/CT from 20 of the 32 excluded patients revealed extrahepatic disease. Eight of the other 12 patients had a negative F-FDG PET/CT finding but were excluded by ceCT. Ten patients were excluded by F-FDG PET/CT only. Four patients were excluded owing to detected malignancy from frozen sections at the start of the intended transplant operation. Tumor-to-background ratio of the liver metastases was significantly higher in patients where F-FDG PET/CT detected extrahepatic disease (P=0.03). The median (range) survival after exclusion was 16 (0-52) months. CONCLUSION The ability of F-FDG PET/CT to detect extrahepatic disease before LT for NCLM is vital to establish LT as a treatment option.
Collapse
Affiliation(s)
- Harald Grut
- Department of Radiology and Nuclear Medicine
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Department of Radiology and Nuclear Medicine
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål-Dag Line
- Department of Transplantation Medicine
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
22
|
Czernuszewicz TJ, Papadopoulou V, Rojas JD, Rajamahendiran RM, Perdomo J, Butler J, Harlacher M, O’Connell G, Zukić D, Aylward SR, Dayton PA, Gessner RC. A new preclinical ultrasound platform for widefield 3D imaging of rodents. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:075107. [PMID: 30068108 PMCID: PMC6045495 DOI: 10.1063/1.5026430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Noninvasive in vivo imaging technologies enable researchers and clinicians to detect the presence of disease and longitudinally study its progression. By revealing anatomical, functional, or molecular changes, imaging tools can provide a near real-time assessment of important biological events. At the preclinical research level, imaging plays an important role by allowing disease mechanisms and potential therapies to be evaluated noninvasively. Because functional and molecular changes often precede gross anatomical changes, there has been a significant amount of research exploring the ability of different imaging modalities to track these aspects of various diseases. Herein, we present a novel robotic preclinical contrast-enhanced ultrasound system and demonstrate its use in evaluating tumors in a rodent model. By leveraging recent advances in ultrasound, this system favorably compares with other modalities, as it can perform anatomical, functional, and molecular imaging and is cost-effective, portable, and high throughput, without using ionizing radiation. Furthermore, this system circumvents many of the limitations of conventional preclinical ultrasound systems, including a limited field-of-view, low throughput, and large user variability.
Collapse
Affiliation(s)
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Juan D. Rojas
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | - Jonathan Perdomo
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - James Butler
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Max Harlacher
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Graeme O’Connell
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
| | - Dženan Zukić
- Kitware, Inc., Carrboro, North Carolina 27510, USA
| | | | - Paul A. Dayton
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | - Ryan C. Gessner
- SonoVol, Inc., Research Triangle Park, North Carolina 27709, USA
- Author to whom correspondence should be addressed: . Current address: First Flight Venture Center, 2 Davis Dr., Research Triangle Park, NC 27709-3169. Telephone: 844-766-6865 x707
| |
Collapse
|
23
|
Anatomic versus Metabolic Tumor Response Assessment after Radioembolization Treatment. J Vasc Interv Radiol 2018; 29:244-253.e2. [DOI: 10.1016/j.jvir.2017.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 02/01/2023] Open
|
24
|
Grut H, Dueland S, Line PD, Revheim ME. The prognostic value of 18F-FDG PET/CT prior to liver transplantation for nonresectable colorectal liver metastases. Eur J Nucl Med Mol Imaging 2018; 45:218-225. [PMID: 29026950 DOI: 10.1007/s00259-017-3843-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE The main objective of this study was to evaluate the prognostic value of volumetric and metabolic information derivied from F-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) in combination with computed tomography (CT) prior to liver transplantation (LT) in patients with nonresectable colorectal liver metastases (CLM). Due to scarcity of liver grafts, prognostic information enabling selection of candidates who will gain the highest survival after LT is of vital importance. 18F-FDG PET/CT was a part of the preoperative study protocol. Patients without evidence of extrahepatic malignant disease on 18F-FDG PET/CT who also fulfilled all the other inclusion criteria underwent LT. METHODS The preoperative 18F-FDG PET/CT examinations of all patients included in the SECA (secondary cancer) study were retrospectively assessed. Maximum, mean and peak standardized uptake values (SUVmax, SUVmean and SUVpeak), tumor to background (T/B) ratio, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were measured and calculated for all liver metastases. Total MTV and TLG were calculated for each patient. Cut-off values were determined for each of these parameters by using receiver operating characteristic (ROC) analysis dividing the patients into two groups. One, three and five-year overall survival (OS) and disease free survival (DFS) for patients over and under the cut-off value were compared by using the Kaplan-Meier method and log rank test. RESULTS Twenty-three patients underwent LT in the SECA study. Total MTV and TLG under the cut-off values were significantly correlated to improved OS at three and five years (p = 0.027 and 0.026) and DFS (p = 0.01). One, three and five-year OS and DFS were not significantly related to SUVmax, SUVmean, SUVpeak or T/B-ratio. CONCLUSION Total MTV and TLG from 18F FDG PET/CT prior to LT for nonresectable CLM were significantly correlated to improved three and five-year OS and DFS and can potentially improve the patient selection for LT.
Collapse
Affiliation(s)
- Harald Grut
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.o.box 4950, Nydalen, 0424, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Svein Dueland
- Division of Oncology, Oslo University Hospital, Oslo, Norway
| | - Pål Dag Line
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Mona Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, P.o.box 4950, Nydalen, 0424, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Aarntzen EH, Heijmen L, Oyen WJ. 18F-FDG PET/CT in Local Ablative Therapies: A Systematic Review. J Nucl Med 2018; 59:551-556. [DOI: 10.2967/jnumed.117.198184] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022] Open
|
26
|
Dendy MS, Ludwig JM, Kim HS. Predictors and prognosticators for survival with Yttrium-90 radioembolization therapy for unresectable colorectal cancer liver metastasis. Oncotarget 2017; 8:37912-37922. [PMID: 28415671 PMCID: PMC5514961 DOI: 10.18632/oncotarget.16007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023] Open
Abstract
This critical review aims to explore predictive and prognostic biomarkers of Yttrium-90 (Y90) radioembolization therapy of colorectal liver metastases. A brief overview of established predictive and prognostic molecular and genetic biomarkers in colorectal cancer therapies will be discussed. A review of the literature on imaging modalities, genetic, metabolic and other molecular markers and the subsequent outcomes in post-Y90 treatment will be presented. How these biomarkers and future biomarker research can inform locoregional treatment decisions in the clinical setting of metastatic colorectal cancer lesions of the liver will be explored. There are opportunities for personalized cancer treatment in the setting of Y90 radioembolization. The ability to predict tumor response after Ytrium-90 radioembolization therapy can greatly impact clinical decision making and enhance treatment outcomes, therefore further research into the field is needed.
Collapse
Affiliation(s)
- Meaghan S. Dendy
- Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Johannes M. Ludwig
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Hyun S. Kim
- Department of Radiology and Biomedical Imaging, Division of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
27
|
Swinburne NC, Biederman DM, Besa C, Tabori NE, Fischman AM, Patel RS, Nowakowski FS, Gunasekaran G, Schwartz ME, Lookstein RA, Kim E. Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma: Review of Safety, Response Evaluation Criteria in Solid Tumors 1.1 Imaging Response and Survival. Cancer Biother Radiopharm 2017; 32:161-168. [DOI: 10.1089/cbr.2017.2189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Derek M. Biederman
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Besa
- Division of Body Imaging, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nora E. Tabori
- Division of Interventional Radiology, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aaron M. Fischman
- Division of Interventional Radiology, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rahul S. Patel
- Division of Interventional Radiology, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Francis Scott Nowakowski
- Division of Interventional Radiology, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ganesh Gunasekaran
- Department of Liver Surgery, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Myron E. Schwartz
- Department of Liver Surgery, Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert A. Lookstein
- Division of Interventional Radiology, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Edward Kim
- Division of Interventional Radiology, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
28
|
Obrzut S, McCammack K, Badran KW, Balistreri A, Ou E, Nguyen BJ, Hoh CK, Rose SC. Prognostic value of post-Yttrium 90 radioembolization therapy 18F-fluorodeoxyglucose positron emission tomography in patients with liver tumors. Clin Imaging 2017; 42:43-49. [DOI: 10.1016/j.clinimag.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/31/2016] [Accepted: 11/15/2016] [Indexed: 12/23/2022]
|
29
|
Dimitrova EG, Chaushev BG, Conev NV, Kashlov JK, Zlatarov AK, Petrov DP, Popov HB, Stefanova NT, Klisarova AD, Bratoeva KZ, Donev IS. Role of the pretreatment 18F-fluorodeoxyglucose positron emission tomography maximal standardized uptake value in predicting outcomes of colon liver metastases and that value's association with Beclin-1 expression. Biosci Trends 2017; 11:221-228. [PMID: 28250335 DOI: 10.5582/bst.2016.01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current study sought to evaluate the predictive and prognostic performance of the maximum standardized uptake value (SUVmax) prior to treatment in 43 patients with colon cancer and unresectable liver metastases. Patients with colon cancer who underwent 18F-FDG-PET/computed tomography (CT) scans for staging before the start of first-line 5-fluorouracil-based chemotherapy were retrospectively analyzed. Expression of Beclin-1 in cancer cells was evaluated in primary tumors using immunohistochemical staining. The pretreatment SUVmax for liver metastases was not able to predict progression-free survival but was significantly associated with poorer overall survival, with a hazard ratio of 2.05 (95 % CI, 1.016-4.155). Moreover, a negative correlation was noted between SUVmax and expression of a marker of autophagy - Beclin-1 (rho = -0.42, p = 0.006). This suggests that the pretreatment SUVmax in 18F-FDG PET/CT is a useful tool to help predict survival outcome in patients with colon cancer and unresectable liver metastases and may significantly distinguish between patients with low and high levels of Beclin-1 expression (AUC = 0.809, 95% CI: 0.670-0.948, p = 0.001).
Collapse
Affiliation(s)
- Eleonora G Dimitrova
- Clinic of Medical Oncology, UMHAT "St. Marina".,Department of Propedeutics of Internal Diseases, Medical University of Varna
| | | | - Nikolay V Conev
- Clinic of Medical Oncology, UMHAT "St. Marina".,Department of Propedeutics of Internal Diseases, Medical University of Varna
| | - Javor K Kashlov
- Department of Propedeutics of Internal Diseases, Medical University of Varna
| | - Aleksandar K Zlatarov
- Clinic of Surgery, UMHAT "St. Marina".,Department of General and Operative Surgery, Medical University of Varna
| | - Dilyan P Petrov
- Clinic of Surgery, UMHAT "St. Marina".,Department of General and Operative Surgery, Medical University of Varna
| | | | | | | | | | - Ivan S Donev
- Clinic of Medical Oncology, UMHAT "St. Marina".,Department of Propedeutics of Internal Diseases, Medical University of Varna
| |
Collapse
|
30
|
Jreige M, Mitsakis P, Van Der Gucht A, Pomoni A, Silva-Monteiro M, Gnesin S, Boubaker A, Nicod-Lalonde M, Duran R, Prior JO, Denys A, Schaefer N. 18F-FDG PET/CT predicts survival after 90Y transarterial radioembolization in unresectable hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2017; 44:1215-1222. [PMID: 28233086 DOI: 10.1007/s00259-017-3653-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/08/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE To compare the value of pretreatment functional and morphological imaging parameters for predicting survival in patients undergoing transarterial radioembolization using yttrium-90 (90Y-TARE) for unresectable hepatocellular carcinoma (uHCC). METHODS We analysed data from 48 patients in our prospective database undergoing 90Y-TARE treatment for uHCC (31 resin, 17 glass). All patients underwent 18F-FDG PET/CT and morphological imaging (CT and MRI scans) as part of a pretherapeutic work-up. Patients did not receive any treatment between these imaging procedures and 90Y-TARE. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) were used to assess the prognostic value of 18F-FDG PET/CT metabolic parameters, including SUVmax, tumour-to-liver (T/L) uptake ratio and SUVmean of healthy liver, and morphological data, including number and size of lesions, portal-venous infiltration (PVI). Relevant prognostic factors for HCC including Child-Pugh class, Barcelona Clinic Liver Cancer (BCLC) stage, tumour size, PVI and serum AFP level were compared with metabolic parameters in univariate and multivariate analyses. RESULTS The median follow-up in living patients was 16.2 months (range 11.4-50.1 months). Relapse occurred in 34 patients (70.8%) at a median of 7.4 months (range 1.4-27.9 months) after 90Y-TARE, and relapse occurred in 24 of 34 patients (70.8%) who died from their disease at a median of 8.1 months (range 2.2-35.2 months). Significant prognostic markers for PFS were the mean and median lesion SUVmax (both P = 0.01; median PFS 10.2 vs. 7.4 months), and significant prognostic markers for OS were the first quarter (Q1) cut-off values for lesion SUVmax and T/L uptake ratio (both P = 0.02; median OS 30.9 vs. 9 months). The multivariate analysis confirmed that lesion SUVmax and T/L uptake ratio were independent negative predictors of PFS (hazard ratio, HR, 2.7, 95% CI 1.2-6.1, P = 0.02, for mean SUVmax; HR 2.6, 95% CI 1.1-5.9, P = 0.02, for median SUVmax:) and OS (HR 3.2, 95% CI 1-10.9, P = 0.04 for Q1 SUVmax; HR 3.7, 95% CI 1.1-12.2, P = 0.03, for Q1 T/L uptake ratio), respectively, when testing with either the BCLC staging system or serum AFP level. CONCLUSION Lesion SUVmax and T/L uptake ratio as assessed by 18F-FDG PET/CT, but not morphological imaging, were predictive markers of survival in patients undergoing 90Y-TARE for uHCC.
Collapse
Affiliation(s)
- Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Periklis Mitsakis
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Axel Van Der Gucht
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Anastasia Pomoni
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Marina Silva-Monteiro
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, Lausanne, Switzerland
| | - Ariane Boubaker
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Marie Nicod-Lalonde
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Rafael Duran
- Department of Radiodiagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland
| | - Alban Denys
- Department of Radiodiagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Rue du Bugnon 46, CH-1011, Lausanne, Switzerland.
| |
Collapse
|
31
|
Soydal C, Kucuk NO, Balci D, Gecim E, Bilgic S, Elhan AH. Prognostic Importance of the Presence of Early Metabolic Response and Absence of Extrahepatic Metastasis After Selective Internal Radiation Therapy in Colorectal Cancer Liver Metastasis. Cancer Biother Radiopharm 2017; 31:342-346. [PMID: 27831761 DOI: 10.1089/cbr.2016.2105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS In this study, the authors aimed to identify prognostic factors after selective internal radiation therapy (SIRT) for colorectal cancer (CRC) liver metastasis. METHODS Forty-nine (28 male, 21 female; mean age: 64.6 ± 10.8) patients who received SIRT for CRC liver metastasis were studied. Effects of number (<5 vs. ≥5), maximum dimension, and standardized uptake value (SUV) of liver metastases, liver tumor load (<25% vs. 26%-50% vs. 51%-75%), presence of extrahepatic disease, and metabolic early response on overall survival were analyzed. RESULTS Mean follow-up time was 44.1 ± 27.5 months. Overall survival time was calculated as 10.03 ± 1.61 (95% CI; 6.86-13.20) months. SUV (0.004) of liver metastases, early metabolic response (p = 0.015), and presence of extrahepatic metastasis (p = 0.001) were identified as significant factors influencing overall survival. The hazard ratio was 1:2.3 for the presence of extrahepatic metastasis and 1:2.7 for the absence of early metabolic response. CONCLUSION These findings suggest that patients with CRC liver metastasis who have lower SUV at presentation and early metabolic response have better outcomes after SIRT.
Collapse
Affiliation(s)
- Cigdem Soydal
- 1 Department of Nuclear Medicine, Ankara University Medical School , Ankara, Turkey
| | - Nuriye Ozlem Kucuk
- 1 Department of Nuclear Medicine, Ankara University Medical School , Ankara, Turkey
| | - Deniz Balci
- 2 Department of Surgery, Ankara University Medical School , Ankara, Turkey
| | - Ethem Gecim
- 2 Department of Surgery, Ankara University Medical School , Ankara, Turkey
| | - Sadik Bilgic
- 3 Department of Radiology, Ankara University Medical School , Ankara, Turkey
| | - Atilla Halil Elhan
- 4 Department of Biostatistics, Ankara University Medical School , Ankara, Turkey
| |
Collapse
|
32
|
Magnetta MJ, Ghodadra A, Lahti SJ, Xing M, Zhang D, Kim HS. Connecting cancer biology and clinical outcomes to imaging in KRAS mutant and wild-type colorectal cancer liver tumors following selective internal radiation therapy with yttrium-90. Abdom Radiol (NY) 2017; 42:451-459. [PMID: 27600383 DOI: 10.1007/s00261-016-0875-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To determine whether pathologic colorectal tumor KRAS mutation status is correlated with progression-free survival (PFS) by imaging after selective internal radiation therapy with Yttrium-90 (SIRT Y90) for metastatic colorectal cancer in the liver (mCRC). MATERIALS AND METHODS This was an IRB approved, HIPAA compliant retrospective cohort study. Consecutive patients with unresectable mCRC with documented KRAS mutation status treated at a single center from 2002 to 2013 with SIRT Y90 were investigated. Treatment response was compared between KRAS wild-type (wt) and mutant (mut) using an anatomic tumor response criteria based on RECIST 1.0. Kaplan-Meier estimation and Cox regression analysis were used to measure progression-free survival (PFS) and to assess independent prognostic factors for PFS. RESULTS 82 of 186 patients met review criteria. 33 (40.2%) patients were identified as KRAS mut. PFS was longer in KRAS wt (median 166 days [95% CI 96-258 days]) vs. mut (median 91 days [95% CI 79-104 days], p = 0.002). KRAS mut patients were 1.48 times more likely to progress at first follow-up imaging than wt (95% CI 1.06-2.08, p = 0.024). Univariate analysis identified high pre-SIRT Y90 INR, KRAS wt, any use of anti-EGFR therapy, and post-SIRT Y90 chemotherapy as prognostic factors for longer PFS. In multivariate analysis, only KRAS wt was an independent prognostic factor for longer PFS (RR: 1.80 [95% CI 1.08-2.99], p = 0.024). CONCLUSION Longer PFS is associated with KRAS wt vs. mut following SIRT Y90.
Collapse
Affiliation(s)
- Michael J Magnetta
- Division of Interventional Radiology, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anish Ghodadra
- Division of Interventional Radiology, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven J Lahti
- Division of Interventional Radiology, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Minzhi Xing
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale Cancer Center, 330 Cedar Street TE 2-224, New Haven, CT, 06510, USA
| | - Di Zhang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hyun S Kim
- Division of Interventional Radiology, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, Yale Cancer Center, 330 Cedar Street TE 2-224, New Haven, CT, 06510, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
33
|
Cingarlini S, Ortolani S, Salgarello M, Butturini G, Malpaga A, Malfatti V, DʼOnofrio M, Davì MV, Vallerio P, Ruzzenente A, Capelli P, Citton E, Grego E, Trentin C, De Robertis R, Scarpa A, Bassi C, Tortora G. Role of Combined 68Ga-DOTATOC and 18F-FDG Positron Emission Tomography/Computed Tomography in the Diagnostic Workup of Pancreas Neuroendocrine Tumors: Implications for Managing Surgical Decisions. Pancreas 2017; 46:42-47. [PMID: 27906872 DOI: 10.1097/mpa.0000000000000745] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Ga-DOTATOC (Ga) positron emission tomography (PET)/computed tomography (CT) is recommended in the workup of pancreas neuroendocrine tumors (PanNETs); evidence suggests that F-FDG (F) PET/CT can also provide prognostic information. Aims of this study were to assess the role of combined Ga- and F-PET/CT in the evaluation of grade (G) 1-2 PanNETs and to test the correlation between F-PET/CT positivity and tumor grade. METHODS Preoperative Ga- and F-PET/CT of 35 patients with surgically resected G1-2 PanNETs were evaluated. For grading, the 2010 World Health Organization Classification was used; an ancillary analysis with Ki67 cutoffs at 5% to 20% was conducted. Correlation between F-PET/CT positivity (SUVmax > 3.5) and grade was assessed. RESULTS Of 35 PanNETs, 28.6% and 71.4% were G1 and G2 as per World Health Organization. Ga-PET/CT showed high sensitivity (94.3%) in detecting G1-2 PanNETs. F-PET/CT was positive in 20% and 76% G1 and G2 tumors (P = 0.002). F-PET/CT identified G2 PanNETs with high positive predictive value (PPV, 90.5%). F-PET/CT correlated with tumor grade also in the ancillary analysis (P = 0.009). CONCLUSIONS The high sensitivity of Ga-PET/CT in NET detection is known. The high PPV of F-PET/CT in the identification of G2 forms suggests its potential role in PanNETs prognostication and risk stratification.
Collapse
Affiliation(s)
- Sara Cingarlini
- From the *Department of Oncology, Comprehensive Cancer Center, G.B. Rossi University Hospital of Verona; †Department of Nuclear Medicine, Sacro Cuore Don Calabria Hospital, Negrar; ‡Hepato-Biliary and Pancreas Unit, Pederzoli Hospital, Peschiera; Departments of §Pancreatic Surgery, ∥Radiology, ¶Internal Medicine, #Hepatobiliary Surgery, and **Pathology, Comprehensive Cancer Center, G.B. Rossi University Hospital of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Padia SA, Lewandowski RJ, Johnson GE, Sze DY, Ward TJ, Gaba RC, Baerlocher MO, Gates VL, Riaz A, Brown DB, Siddiqi NH, Walker TG, Silberzweig JE, Mitchell JW, Nikolic B, Salem R. Radioembolization of Hepatic Malignancies: Background, Quality Improvement Guidelines, and Future Directions. J Vasc Interv Radiol 2017; 28:1-15. [DOI: 10.1016/j.jvir.2016.09.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 02/09/2023] Open
|
35
|
Standardized Added Metabolic Activity Predicts Survival After Intra-arterial Resin-Based 90Y Radioembolization Therapy in Unresectable Chemorefractory Metastatic Colorectal Cancer to the Liver. Clin Nucl Med 2016; 41:e76-81. [PMID: 26447380 DOI: 10.1097/rlu.0000000000000991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Standardized added metabolic (SAM) activity is a functional objective measurement of the total tumoral metabolic activity that avoids partial volume effect and thresholding, which limit conventional PET parameters. The purpose of this study is to investigate the role of SAM in predicting survival in unresectable, chemorefractory colorectal hepatic metastatic disease treated with resin-based Y radioembolization. MATERIALS AND METHODS This is a prospective correlative study of patients with unresectable, chemorefractory colorectal liver metastasis who underwent F-FDG PET/CT and CT/MRI before and after Y. Target RECIST, PERCIST, change in total glycolytic activity (ΔTGA), and ΔSAM treatment response were assessed. Percentage changes in diameter, SUVpeak, TGA, and SAM were calculated pre- and post-Y therapy and objective response was defined as >30% change (responders). Survival analysis by Kaplan-Meier, log-rank, and Cox proportional hazard models were performed and significance was set at <0.05. RESULTS Sixteen patients (mean age of 61.6) were enrolled and performed a total of 20 Y therapies. After Y, target ΔSAM showed an objective response rate of 40% vs. 35%, 30%, and 22.2% based on target ΔTGA, PERCIST, and RECIST criteria, respectively. Median overall survival (OS) of the cohort after Y was 9.2 months (CI 95% 2.2-16.2). Patients demonstrating objective response based on ΔSAM had a median OS of 22.7 months (CI 95% 12.4-33.0) vs. 6.7 (CI 95% 4.2-9.2) in non-responders (P = 0.007). On multivariate analysis, hazard ratios for the objective response group based on target ΔSAM were 0.01 (P = 0.03) vs. 0.05 (P = 0.08), 0.20 (P = 0.29), and 0.91 (P = 0.98) based on target ΔTGA, PERCIST, and RECIST criteria, respectively. CONCLUSIONS In unresectable colorectal liver metastatic disease refractory to standard chemotherapy, ΔSAM predicted OS for assessment of response following Y radioembolization therapy, whereas RECIST, PERCIST, and ΔTGA did not.
Collapse
|
36
|
Yttrium-90 Microsphere Brachytherapy for Liver Metastases From Uveal Melanoma: Clinical Outcomes and the Predictive Value of Fluorodeoxyglucose Positron Emission Tomography. Am J Clin Oncol 2016; 39:189-95. [PMID: 24441583 DOI: 10.1097/coc.0000000000000033] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To report outcomes after yttrium-90 microsphere brachytherapy for unresectable liver metastases from uveal melanoma and to evaluate factors predictive for overall survival (OS) and hepatic progression-free survival (PFS). METHODS A total of 71 patients were consecutively treated with microsphere brachytherapy for unresectable liver metastases from uveal melanoma between 2007 and 2012. Clinical, radiographic, and positron emission tomography-derived, functional tumor parameters were evaluated by log-rank test in univariate analysis and backwards stepwise multivariate Cox proportional hazards regression. OS and hepatic PFS were estimated by Kaplan-Meier analysis. RESULTS A total of 134 procedures were performed in 71 patients with a median age of 63 years (range, 23 to 91 y). Fifty-eight patients (82%) received microsphere brachytherapy as a salvage therapy. Median hepatic PFS and OS after microsphere brachytherapy were 5.9 months (range, 1.3 to 19.1 mo) and 12.3 months (range, 1.9 to 49.3 mo), respectively. Median OS times after diagnosis of liver metastases was 23.9 months (range, 6.2 to 69.0 mo). In univariate analysis, female sex, pretreatment metabolic tumor volume, and total glycolic activity (TGA) were significantly correlated with hepatic PFS and OS. In multivariate analysis, female sex and TGA retained significance as independent predictors of hepatic PFS and OS. A low pretreatment TGA (<225 g) was associated with a significantly longer median OS than was a TGA≥225 g (17.2 vs. 9.7 mo, P=0.01). CONCLUSIONS Yttrium-90 microsphere brachytherapy provided favorable survival times in patients with unresectable liver metastases from uveal melanoma. Metabolic tumor volume and TGA are predictive functional tumor parameters, which may aid patient selection and risk stratification.
Collapse
|
37
|
Surrogate Imaging Biomarkers of Response of Colorectal Liver Metastases After Salvage Radioembolization Using 90Y-Loaded Resin Microspheres. AJR Am J Roentgenol 2016; 207:661-70. [PMID: 27384594 DOI: 10.2214/ajr.15.15202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of the present study is to evaluate Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, tumor attenuation criteria, Choi criteria, and European Organization for Research and Treatment of Cancer (EORTC) PET criteria as measures of response and subsequent predictors of liver progression-free survival (PFS) after radioembolization (RE) of colorectal liver metastases (CLM). The study also assesses interobserver variability for measuring tumor attenuation using a single 2D ROI on a simple PACS workstation. MATERIALS AND METHODS We performed a retrospective review of the clinical RE database at our institution, to identify patients treated in the salvage setting for CLM between December 2009 and March 2013. Response was evaluated on FDG PET scans, with the use of EORTC PET criteria, and on portal venous phase CT scans, with the use of RECIST 1.1, tumor attenuation criteria, and Choi criteria. Two independent blinded observers measured tumor attenuation using a single 2D ROI. The intraclass correlation coefficient (ICC) for interobserver variability was assessed. Kaplan-Meier methodology was used to calculate liver PFS, and the log-rank test was used to assess the response criteria as predictors of liver PFS. RESULTS A total of 25 patients with 46 target tumors were enrolled in the study. The ICC was 0.95 at baseline and 0.98 at response evaluation. Among the 25 patients, more responders (i.e., partial response) were identified on the basis of EORTC PET criteria (n = 14), Choi criteria (n = 15), and tumor attenuation criteria (n = 13) than on the basis of RECIST 1.1 (n = 2). The median liver PFS was 3.0 months (95% CI, 2.1-4.0 months). Response identified on the basis of EORTC PET criteria (p < 0.001), Choi criteria (p < 0.001), or tumor attenuation criteria (p = 0.01) predicted liver PFS; however, response identified by RECIST 1.1 did not (p = 0.1). CONCLUSION RECIST 1.1 has poor sensitivity for detecting metabolic responses classified by EORTC PET criteria. EORTC PET criteria, Choi criteria, and tumor attenuation criteria appear to be equally reliable surrogate imaging biomarkers of liver PFS after RE in patients with CLM.
Collapse
|
38
|
Shady W, Kishore S, Gavane S, Do RK, Osborne JR, Ulaner GA, Gonen M, Ziv E, Boas FE, Sofocleous CT. Metabolic tumor volume and total lesion glycolysis on FDG-PET/CT can predict overall survival after (90)Y radioembolization of colorectal liver metastases: A comparison with SUVmax, SUVpeak, and RECIST 1.0. Eur J Radiol 2016; 85:1224-31. [PMID: 27161074 DOI: 10.1016/j.ejrad.2016.03.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE To compare the performance of 4 metrics of metabolic response on FDG-PET/CT against RECIST 1.0 for determining response and predicting overall survival (OS) following (90)Y resin microspheres radioembolization of colorectal liver metastases (CLM). METHODS We conducted an IRB-waived retrospective review of our radioembolization database to identify patients with unresectable CLM treated between December 2009 and December 2013. We included patients who had both PET/CT and contrast enhanced CT (CECT) available at baseline and on the first follow-up post-radioembolization. On baseline CECT up to five target tumors were chosen per patient according to RECIST 1.0. Four metrics of FDG-avidity (SUVmax, SUVpeak, metabolic tumor volume (MTV), and total lesion glycolysis (TLG)) on PET/CT were measured for the same target tumors. Using RECIST 1.0, patients were classified as no progression (partial response or stable disease) and progression. For each PET metric, a cut-off point of ≥30% decrease was chosen to define response. OS was calculated from the time of radioembolization using Kaplan-Meier methodology. The log-rank test was used for univariate analysis to identify predictors of OS. RESULTS The study enrolled 49 patients with 119 target tumors; a median of 2 (range: 1-5) tumors were selected per patient. Median OS was 12.7 months (95%CI: 7.2-16.7). Response by MTV (P=0.035) and TLG (P=0.044) reached statistical significance in predicting OS. Response by SUVmax (P=0.21), SUVpeak (P=0.20) or no progression by RECIST 1.0 (P=0.44) did not predict OS. CONCLUSION Metabolic response based on changes in MTV and TLG can predict OS post-radioembolization of CLM.
Collapse
Affiliation(s)
- Waleed Shady
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Sirish Kishore
- Department of Nuclear medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Somali Gavane
- Department of Nuclear medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Joseph R Osborne
- Department of Nuclear medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Gary A Ulaner
- Department of Nuclear medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Etay Ziv
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Franz E Boas
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States
| | - Constantinos T Sofocleous
- Section of Interventional Radiology, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
39
|
Tong AKT, Kao YH, Too CW, Chin KFW, Ng DCE, Chow PKH. Yttrium-90 hepatic radioembolization: clinical review and current techniques in interventional radiology and personalized dosimetry. Br J Radiol 2016; 89:20150943. [PMID: 26943239 DOI: 10.1259/bjr.20150943] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In recent years, yttrium-90 ((90)Y) microsphere radioembolization has been establishing itself as a safe and efficacious treatment for both primary and metastatic liver cancers. This extends to both first-line therapies as well as in the salvage setting. In addition, radioembolization appears efficacious for patients with portal vein thrombosis, which is currently a contraindication for surgery, transplantation and transarterial chemoembolization. This article reviews the efficacy and expanding use of (90)Y microsphere radioembolization with an added emphasis on recent advances in personalized dosimetry and interventional radiology techniques. Directions for future research into combination therapies with radioembolization and expansion into sites other than the liver are also explored.
Collapse
Affiliation(s)
- Aaron K T Tong
- 1 Department of Nuclear Medicine and PET, Singapore General Hospital, Singapore
| | - Yung Hsiang Kao
- 2 Department of Nuclear Medicine, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Chow Wei Too
- 3 Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | | | - David C E Ng
- 1 Department of Nuclear Medicine and PET, Singapore General Hospital, Singapore
| | - Pierce K H Chow
- 5 Department of Hepato-Pancreato-Biliary (HPB) and Transplant Surgery, Singapore General Hospital Surgical Oncology, National Cancer Centre, Singapore
| |
Collapse
|
40
|
Kennedy AS, Ball DS, Cohen SJ, Cohn M, Coldwell DM, Drooz A, Ehrenwald E, Kanani S, Nutting CW, Moeslein FM, Putnam SG, Rose SC, Savin MA, Schirm S, Sharma NK, Wang EA. Hepatic imaging response to radioembolization with yttrium-90-labeled resin microspheres for tumor progression during systemic chemotherapy in patients with colorectal liver metastases. J Gastrointest Oncol 2015; 6:594-604. [PMID: 26697190 DOI: 10.3978/j.issn.2078-6891.2015.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND To assess response and the impact of imaging artifacts following radioembolization with yttrium-90-labeled resin microspheres ((90)Y-RE) based on the findings from a central independent review of patients with liver-dominant metastatic colorectal cancer (mCRC). METHODS Patients with mCRC who received (90)Y-RE (SIR-Spheres(®); Sirtex Medical, Sydney, Australia) at nine US institutions between July 2002 and December 2011 were included in the analysis. Tumor response was assessed at baseline and 3 months using either the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.0 or 1.1. For each lesion, known artifacts affecting the interpretation of response (peri-tumoral edema and necrosis) were documented. Survivals (Kaplan-Meier analyses) were compared in responders [partial response (PR)] and non-responders [stable (SD) or progressive disease (PD)]. RESULTS Overall, 195 patients (mean age 62 years) received (90)Y-RE after a median of 2 (range, 1-6) lines of prior chemotherapy. Using RECIST 1.0 and RECIST 1.1, 7.6% and 6.9% of patients were partial responders, 47.3% and 48.1% had SD, and 55.0% and 55.0% PD, respectively. RECIST 1.0 and RECIST 1.1 showed excellent agreement {Kappa =0.915 [95% confidence interval (CI): 0.856-0.975]}. Peri-tumoral edema was documented in 32.8%, necrosis in 48.1% and both in 57.3% of cases (using RECIST 1.0). Although baseline characteristics were similar in responders and non-responders (P>0.05), responders survived significantly longer in an analysis according to RECIST 1.0: PR median (95% CI) 25.2 (range, 9.2-49.4) months vs. SD 15.8 (range, 9.3-21.1) months vs. PD 7.1 (range, 6.0-9.5) months (P<0.0001). CONCLUSIONS RECIST 1.0 and RECIST 1.1 imaging responses provide equivalent interpretations in the assessment of hepatic tumors following (90)Y-RE. Radiologic lesion responses at 3 months must be interpreted with caution due to the significant proportion of patients with peri-tumoral edema and necrosis, which may lead to an under-estimation of PR/SD. Nevertheless, 3-month radiologic responses were predictive of prolonged survival.
Collapse
Affiliation(s)
- Andrew S Kennedy
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - David S Ball
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Steven J Cohen
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Michael Cohn
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Douglas M Coldwell
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Alain Drooz
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Eduardo Ehrenwald
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Samir Kanani
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Charles W Nutting
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Fred M Moeslein
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Samuel G Putnam
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Steven C Rose
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Michael A Savin
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Sabine Schirm
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Navesh K Sharma
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| | - Eric A Wang
- 1 Cancer Centers of North Carolina, Cary, NC, USA ; 2 Sarah Cannon Research Institute, Nashville, TN, USA ; 3 Fox Chase Cancer Center, Philadelphia, PA, USA ; 4 Radiology Associates of Hollywood, Pembroke Pines, FL, USA ; 5 James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA ; 6 Fairfax Radiological Consultants, Fairfax, VA, USA ; 7 Abbot Northwestern Hospital, Minneapolis, MN, USA ; 8 Inova Fairfax Hospital, Annandale, VA, USA ; 9 Radiology Imaging Associates, Englewood, CO, USA ; 10 University of Maryland Medical Center, Baltimore, MD, USA ; 11 University of California, San Diego Health Sciences, San Diego, CA, USA ; 12 Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA ; 13 University of Maryland School of Medicine, Baltimore, MD, USA ; 14 Charlotte Radiology, Charlotte, NC, USA
| |
Collapse
|
41
|
Xia Q, Liu J, Wu C, Song S, Tong L, Huang G, Feng Y, Jiang Y, Liu Y, Yin T, Ni Y. Prognostic significance of (18)FDG PET/CT in colorectal cancer patients with liver metastases: a meta-analysis. Cancer Imaging 2015; 15:19. [PMID: 26589835 PMCID: PMC4654916 DOI: 10.1186/s40644-015-0055-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 11/15/2015] [Indexed: 12/19/2022] Open
Abstract
Background The role of 18-fluorodeoxyglucose positron emission tomography CT (18FDG PET/CT), as a prognostic factor for survival in colorectal cancer patients with liver metastases, is still controversial. We sought to perform a meta-analysis of the literature to address this issue. Methods A systematic literature search was performed to identify the studies that associated 18FDG PET/CT to clinical survival outcomes of patients with liver metastases. Methodological qualities of the included studies were also assessed. The summarized hazard ratio (HR) was estimated by using fixed- or random-effect model according to heterogeneity between trails. Results By analyzing a total of 867 patients from 15 studies, we found that PET/CT for metabolic response to the therapy was capable of predicting event-free survival (EFS) and overall survival (OS) with statistical significance, and the HR was 0.45 (95 % confidence interval [CI], 0.26–0.78) and 0.36 (95 % CI, 0.18–0.71), respectively. Furthermore, pre-treatment 18FDG PET/CT with high standardized uptake value (SUV) was also significantly associated with poorer OS HR, 1.24; (95 % CI, 1.06–1.45). However, we did not find a statistically significant effect of post-treatment SUV for predicting OS HR, 1.68; (95 % CI, 0.63–4.52). Conclusions The present meta-analysis confirms that 18FDG PET/CT is a useful tool to help predict survival outcomes in patients with liver metastases. Electronic supplementary material The online version of this article (doi:10.1186/s40644-015-0055-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qian Xia
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pu Jian road, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pu Jian road, Shanghai, 200127, China.
| | - Cheng Wu
- Department of Health Statistics, Second Military Medical University, No. 800, Xiang Yin road, Shanghai, 200433, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pu Jian road, Shanghai, 200127, China.
| | - Linjun Tong
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pu Jian road, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No.160, Pu Jian road, Shanghai, 200127, China.
| | - Yuanbo Feng
- Department of Imaging and Pathology, University Hospitals, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Yansheng Jiang
- Department of Imaging and Pathology, University Hospitals, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Yewei Liu
- Department of Imaging and Pathology, University Hospitals, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Ting Yin
- Department of Imaging and Pathology, University Hospitals, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Yicheng Ni
- Department of Imaging and Pathology, University Hospitals, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.
| |
Collapse
|
42
|
Performance of tumor growth kinetics as an imaging biomarker for response assessment in colorectal liver metastases: correlation with FDG PET. ACTA ACUST UNITED AC 2015; 40:3043-51. [DOI: 10.1007/s00261-015-0546-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Camacho JC, Kokabi N, Xing M, Schuster DM, Kim HS. PET response criteria for solid tumors predict survival at three months after intra-arterial resin-based 90Yttrium radioembolization therapy for unresectable intrahepatic cholangiocarcinoma. Clin Nucl Med 2015; 39:944-50. [PMID: 25140563 DOI: 10.1097/rlu.0000000000000557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE PET Response Criteria for Solid Tumors (PERCIST) were assessed and correlated with survival analysis after resin-based 90Yttrium (90Y) radioembolization therapy for intrahepatic cholangiocarcinoma (ICC). PATIENTS AND METHODS Target and overall PERCIST and Response Criteria for Solid Tumors (RECIST) treatment responses were assessed in consecutive patients treated with Y radioembolization for ICC refractory to standard chemotherapy. Significant measurable tumor was defined as 1 cm or greater in diameter and SUVpeak of 2.5 or greater in targeted and nontargeted lesions. The PERCIST defines complete response as resolution of 18F-FDG uptake within measurable lesions, and partial response as 30% reduction in 18F-FDG peak standardized uptake value in measurable lesions. Objective response included partial response and complete response. Survival analysis by Kaplan-Meier and log-rank proportional models was performed using SPSS software version 20.0 (IBM, Armonk, NY), and significance was set at P < 0.05. RESULTS Median overall survival (OS) of 9 consecutive patients (56% women; mean age, 58 years) from 90Y therapy was 21.7 months. At 3 months, PERCIST objective response rate of target lesions was 77.7%, and target objective response on PERCIST correlated significantly to prolonged OS (P = 0.022). Overall objective PERCIST response at 3 months had significant correlation with OS (P = 0.011). Probability of death was significantly higher in overall nonresponders by PERCIST (hazard ratio, 12.3). No objective response was seen with RECIST. CONCLUSIONS In patients with unresectable ICC refractory to standard chemotherapy, PERCIST at 3 months for assessment of imaging response after 90Y radioembolization therapy predict OS.
Collapse
Affiliation(s)
- Juan C Camacho
- From the *Interventional Radiology and Image-guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA; †Division of Interventional Radiology, Department of Radiology, Universityof Pittsburgh School of Medicine, Pittsburgh, PA; and ‡Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA; §Cancer TherapeuticsProgram of University of Pittsburgh Cancer Institute, Pittsburgh, PA
| | | | | | | | | |
Collapse
|
44
|
Sofocleous CT, Violari EG, Sotirchos VS, Shady W, Gonen M, Pandit-Taskar N, Petre EN, Brody LA, Alago W, Do RK, D'Angelica MI, Osborne JR, Segal NH, Carrasquillo JA, Kemeny NE. Radioembolization as a Salvage Therapy for Heavily Pretreated Patients With Colorectal Cancer Liver Metastases: Factors That Affect Outcomes. Clin Colorectal Cancer 2015; 14:296-305. [PMID: 26277696 DOI: 10.1016/j.clcc.2015.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND In this study we assessed the efficacy and factors that affect outcomes of radioembolization (RE) using yttrium-90 resin microspheres in patients with unresectable and chemorefractory colorectal cancer liver metastases (CLM). PATIENTS AND METHODS After an institutional review board waiver of approval, a review of a Health Insurance Portability and Accountability Act-registered, prospectively created and maintained database was performed. Data on patient demographic and disease characteristics, RE treatment parameters, and additional treatments were evaluated for significance in predicting overall survival (OS) and liver progression-free survival (LPFS). Complications were evaluated according to the National Cancer Institute Common Terminology Criteria for adverse events. RESULTS From September 2009 to September 2013, 53 patients underwent RE at a median of 35 months after CLM diagnosis. Median OS was 12.7 months. Multivariate analysis showed that carcinoembryonic antigen levels at the time of RE ≥ 90 ng/mL (P = .004) and microscopic lymphovascular invasion of the primary (P = .002) were independent predictors of decreased OS. Median LPFS was 4.7 months. At 4 to 8 and 12 to 16 weeks after RE, most patients (80% and 61%, respectively) according to Response Evaluation Criteria in Solid Tumors (RECIST) had stable disease; additional evaluation using PET Response Criteria in Solid Tumors (PERCIST) led to reclassification in 77% of these cases (response or progression). No deaths were noted within the first 30 days. Within the first 90 days after RE, 4 patients (8%) developed liver failure and 5 patients (9%) died, all with evidence of disease progression. CONCLUSION RE in the salvage setting was well-tolerated, and permitted the administration of additional therapies and led to a median OS of 12.7 months. Evaluation using PERCIST was more likely than RECIST to document response or progression compared with the baseline assessment before RE.
Collapse
Affiliation(s)
| | - Elena G Violari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vlasios S Sotirchos
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Waleed Shady
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neeta Pandit-Taskar
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elena N Petre
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lynn A Brody
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - William Alago
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Joseph R Osborne
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Neil H Segal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Nancy E Kemeny
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
45
|
Al-Naamani K, Al-Sinani S. (18)F-Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in the Management of Metastatic Colorectal Cancer: Are we there yet? Sultan Qaboos Univ Med J 2015; 15:e152-4. [PMID: 26052445 PMCID: PMC4450775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023] Open
Affiliation(s)
| | - Siham Al-Sinani
- Oman Medical Specialty Board, Muscat, Oman
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
46
|
Vouche M, Salem R, Miller FH, Lemort M, Vanderlinden B, De Becker D, Hendlisz A, Flamen P. Y90 radioembolization of colorectal cancer liver metastases: response assessment by contrast-enhanced computed tomography with or without PET-CT guidance. Clin Imaging 2015; 39:454-62. [PMID: 25724225 DOI: 10.1016/j.clinimag.2014.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/10/2014] [Accepted: 12/28/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE To compare various computed tomography (CT) parameters to the positron emission tomography with computed tomography (PET-CT) response, with or without PET guidance for the response assessment of colorectal cancer (CRC) metastases treated by Y90 radioembolization. METHODS Thirty-six CRC metastases were retrospectively evaluated on 18F-Fluoro-Deoxy-Glucose PET-CT and contrast-enhanced computed tomography (CECT) performed at baseline and 2-3 months after Y90 radioembolization. RESULTS Median SUVmax values decreased from 11.39 to 6.71 after radioembolization (P<.001), and 23/36 (64%) metastases were categorized metabolic responses according to European Organisation for Research and Treatment of Cancer criteria. Only a decrease of the mean attenuation in the structural (P<.001) and metabolic active volume (P<.001) was observed. The change in these criteria was correlated with the change of SUVmax.
Collapse
Affiliation(s)
- Michael Vouche
- Department of Radiology, Section of Interventional Radiology and Division of Interventional Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL.
| | - Riad Salem
- Department of Radiology, Section of Interventional Radiology and Division of Interventional Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago IL; Department of Medicine, Division of Hematology and Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL; Department of Surgery, Division of Transplantation, Comprehensive Transplant Center, Northwestern University, Chicago, IL
| | - Frank H Miller
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Marc Lemort
- Department of Radiology, Jules Bordet Institute, Brussels, Belgium
| | - Bruno Vanderlinden
- Department of Nuclear Medicine, Jules Bordet Institute, Brussels, Belgium
| | - Daniel De Becker
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago IL
| | - Alain Hendlisz
- Department of Digestive Oncology and Gastroenterology, Jules Bordet Institute, Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Jules Bordet Institute, Brussels, Belgium
| |
Collapse
|
47
|
Sabet A, Ahmadzadehfar H, Bruhman J, Sabet A, Meyer C, Wasmuth JC, Pieper CC, Biersack HJ, Ezziddin S. Survival in patients with hepatocellular carcinoma treated with 90Y-microsphere radioembolization. Prediction by 18F-FDG PET. Nuklearmedizin 2014; 53:39-45. [PMID: 24777354 DOI: 10.3413/nukmed-0622-13-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/05/2013] [Indexed: 02/06/2023]
Abstract
AIM This retrospective study aims to evaluate the predictive value of FDG PET/CT in patients with unresectable hepatocellular carcinoma (HCC) undergoing radioembolization with yttrium-90 labeled microspheres (RE). PATIENTS, METHODS The study cohort comprised 33 patients who were treated with RE at our institution and underwent FDG PET/CT at baseline and four weeks after radioembolization. According to the baseline FDG metabolic status of the HCC lesions, patients were divided into two groups: FDG-negative (n = 12) and FDG-positive (n = 21) HCC. FDG-positive patients were further divided into early metabolic responders and non-responders according to the relative change in SUVmax of the treated lesions. Survival analyses were performed with the Kaplan-Meier method (log-rank test, p < 0.05). Multivariate analysis was performed to assess the influence of prognostic factors on overall survival (OS). RESULTS FDG-negative patients had a significantly longer OS (13 months, 95%CI 7-19) than FDG-positive patients (9 months, 95%CI 7-11; p = 0.010). Among FDG-positive patients, metabolic responders survived significantly longer than metabolic non-responders (10 months, 95%CI 8-12 vs. 5 months, 95%CI 4-6; p = 0.003). From the other baseline factors (including performance status, hepatic tumour burden, presence of extra-hepatic disease, administered activity) only the BCLC stage had a significant impact on OS (p = 0.028). CONCLUSION Pre- and post-therapeutic FDG PET independently predicts overall survival in patients with HCC undergoing radioembolization. Interestingly, early metabolic response seems to be assessable as early as four weeks post-treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - S Ezziddin
- Samer Ezziddin, MD, Department of Nuclear Medicine University Hospital, Sigmund-Freud-Str. 25, 53105 Bonn, Germany, Tel. +49/(0)228/28 71 91 74, Fax +49/(0)228/28 79 01 91 74, E-mail:
| |
Collapse
|
48
|
18F-FDG PET-derived parameters as prognostic indices in hepatic malignancies after 90Y radioembolization: is there a role? Eur J Nucl Med Mol Imaging 2014; 42:367-9. [PMID: 25476259 DOI: 10.1007/s00259-014-2966-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
|
49
|
Sachpekidis C, Larribere L, Pan L, Haberkorn U, Dimitrakopoulou-Strauss A, Hassel JC. Predictive value of early 18F-FDG PET/CT studies for treatment response evaluation to ipilimumab in metastatic melanoma: preliminary results of an ongoing study. Eur J Nucl Med Mol Imaging 2014; 42:386-96. [PMID: 25359635 DOI: 10.1007/s00259-014-2944-y] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Ipilimumab is a newly approved immunotherapeutic agent that has been shown to provide a survival benefit in patients with metastatic melanoma. (18)F-FDG PET/CT has demonstrated very satisfying results in detecting melanoma metastases in general. Using (18)F-FDG PET/CT we monitored patients with metastatic melanoma undergoing ipilimumab therapy during the course of treatment. The aim of our study was to evaluate the role of (18)F-FDG PET/CT performed after two cycles of ipilimumab in predicting the final response to therapy. METHODS In 22 patients suffering from unresectable metastatic melanoma, scheduled for ipilimumab treatment PET/CT scanning was performed before the start of treatment (baseline scan), after two cycles of treatment (early response) and at the end of treatment after four cycles (late response). Evaluation of the patient response to treatment on PET was based on the European Organization for Research and Treatment of Cancer 1999 criteria. Progression-free survival (PFS) and overall survival (OS) data are presented. RESULTS After the end of treatment, 15 patients were characterized as having progressive metabolic disease (PMD) and five as having stable metabolic disease (SMD), and two patients showed a partial metabolic response (PMR). Early PET/CT performed after two ipilimumab cycles predicted treatment response in 13 of the 15 PMD patients, in five of the five SMD patients and in neither of the two PMR patients. Both patients with PMR showed pseudoprogression after the second cycle and were therefore wrongly classified. According to the patients' clinical outcome, patients with late PMD had a median PFS of 3.6 months (mean 5.6 months), while patients with late SMD had a median PFS of 9.8 months (mean 9.0 months). In comparison, patients with early PMD had a median PFS of 2.7 months (mean 5.5 months) and patients with early SMD had a median PFS of 6.3 months (mean 7.5 months). The difference in PFS between the two groups was statistically significant for both early and late responses (log-rank p < 0.001). Median OS among patients with late PMD was 9.1 months (mean 11.2 months) and among those with late SMD 9.8 months (mean 10.7 months). The difference in OS between the two groups was statistically significant (log-rank p = 0.013). The median OS among patients with early PMD was 8.8 months (mean 12.0 months) and among those with early SMD 9.8 months (mean 10.0 months). The difference in OS between the two groups was statistically significant (log-rank p < 0.001). CONCLUSION (18)F-FDG PET/CT after two cycles of ipilimumab is highly predictive of the final treatment outcome in patients with PMD and SMD.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany,
| | | | | | | | | | | |
Collapse
|
50
|
Early post-treatment FDG PET predicts survival after 90Y microsphere radioembolization in liver-dominant metastatic colorectal cancer. Eur J Nucl Med Mol Imaging 2014; 42:370-6. [PMID: 25351506 DOI: 10.1007/s00259-014-2935-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE The aim of this study was to evaluate the predictive value of early metabolic response 4 weeks post-treatment using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in patients with unresectable hepatic metastases of colorectal cancer (CRC) undergoing radioembolization (RE) with (90)Y-labelled microspheres. METHODS A total of 51 consecutive patients with liver-dominant metastases of CRC were treated with RE and underwent (18)F-FDG PET/CT at baseline and 4 weeks after RE. In each patient, three hepatic metastases with the highest maximum standardized uptake value (SUVmax) were selected as target lesions. Metabolic response was defined as >50 % reduction of tumour to liver ratios. Survival analyses using Kaplan-Meier and multivariate analyses were performed to identify prognostic factors for overall survival (OS). Investigated baseline characteristics included age (>60 years), performance status (Eastern Cooperative Oncology Group >1), bilirubin (>1.0 mg/dl), hepatic tumour burden (>25 %) and presence of extrahepatic disease. RESULTS The median OS after RE was 7 months [95 % confidence interval (CI) 5-8]; early metabolic responders (n = 33) survived longer than non-responders (p < 0.001) with a median OS of 10 months (95 % CI 3-16) versus 4 months (95 % CI 2-6). Hepatic tumour burden also had significant impact on treatment outcome (p < 0.001) with a median OS of 5 months (95 % CI, 3-7) for patients with >25 % metastatic liver replacement vs 14 months (95 % CI 6-22) for the less advanced patients. Both factors (early metabolic response and low hepatic tumour burden) remained as independent predictors of improved survival on multivariate analysis. CONCLUSION These are the first findings to show that molecular response assessment in CRC using (18)F-FDG PET/CT appears feasible as early as 4 weeks post-RE, allowing risk stratification and potentially facilitating early response-adapted treatment strategies.
Collapse
|