1
|
Oh M, Honhar P, Carson RE, Hillmer AT, Varrone A. Correcting SUVR bias by accounting for radiotracer clearance in tissue: A validation study with [ 18F]FE-PE2I PET in cross-sectional, test-retest and longitudinal cohorts. J Cereb Blood Flow Metab 2025:271678X251322407. [PMID: 39981611 PMCID: PMC11846093 DOI: 10.1177/0271678x251322407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/03/2025] [Accepted: 02/02/2025] [Indexed: 02/22/2025]
Abstract
Quantification of dopamine transporter (DAT) with [18F]FE-PE2I PET is an important progression marker for Parkinson's disease (PD). This study aimed to validate a novel correction (SUVRc) for a less-biased estimate of SUVR by accounting for [18F]FE-PE2I clearance-rate, in independent cross-sectional (38 PD, 38 controls), test-retest (9 PD) and longitudinal cohorts (21 PD). SUVRc was calculated as SUVR 1 - β ref k 2 , ref + β tar SUVR k 2 , ref R 1 . βtar and βref are the clearance rates from the target and reference tissues. Bias relative to DVR, discriminative power, test-retest variability (TRV) and annual longitudinal change (ALC) were used to compare SUVR50-80 min, SUVRc50-80 min, SUVR15-45 min and DVR. SUVR50-80 min showed high bias across all regions (HC: mean: 48.31 ± 20.49% [range: 28.32-53.80%]; PD: 29.91 ± 13.95% [20.45-39.80%]) that was corrected by SUVRc50-80 min (HC: -0.80 ± 12.72% [-9.69-11.64%]; PD: -0.13 ± 7.41% [-5.04-2.97%]), p < 0.001 for both groups compared to mean bias of SUVR50-80 min, similar to SUVR15-45 min. For the striatum, Cohen's d was similar for all measures. TRV were 3.2 ± 2.5% (DVR), 6.4 ± 5.7% (SUVR50-80 min), 6.8 ± 5.9% (SUVRc50-80 min) and 3.9 ± 3.2% (SUVR15-45 min). Higher TRV of SUVRc50-80 min was due to TRV of 9.2 ± 5.1% [1.1-19.4] for βtar. ALC was 4.5 ± 4.2% (DVR), 5.2 ± 6.5% (SUVR50-80 min), 4.4 ± 4.1% (SUVRc50-80 min) and 4.2 ± 4.1% (SUVR15-45 min). SUVRc50-80 min reduced bias compared to SUVR50-80 min, as previously reported. SUVRc50-80 min was sensitive to small changes of βtar, with higher TRV compared to DVR, but with similar ALC, suggesting that it can reliably assess longitudinal DAT changes.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Praveen Honhar
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ansel T Hillmer
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
2
|
Oh M, Brumberg J, Sossi V, Varrone A. Preserved Serotonin Transporter Availability in Parkinson Disease Measured with Either [ 11C]MADAM or [ 11C]DASB: A Study Including 2 Separate Cohorts of Nondepressed Patients. J Nucl Med 2025; 66:309-314. [PMID: 39746753 DOI: 10.2967/jnumed.124.268233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025] Open
Abstract
Serotonin transporter (SERT) availability was assessed using 2 tracers, [11C]N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ([11C]DASB) and [11C]N,N-dimethyl-2-(2-amino-4-fluoromethylphenylthio)benzylamine) ([11C]MADAM), in independent cohorts of patients and controls. This study aimed to independently confirm whether SERT remains intact in nondepressed individuals with early-stage Parkinson disease (PD), because the use of diverse methodologies could potentially yield disparate results. Methods: Seventeen PD patients (5 women and 12 men; age, 64 ± 7 y; Unified Parkinson's Disease Rating Scale motor score, 23 ± 5; Beck Depression Inventory score, 5 ± 4) and 20 age- and sex-matched healthy controls underwent [11C]MADAM PET at Karolinska Institutet. Fifteen PD patients (5 women and 10 men; age, 59 ± 9 y; Unified Parkinson's Disease Rating Scale motor score, 15 ± 7; Beck Depression Inventory score, 4 ± 4) and 8 controls were examined with [11C]DASB PET at the University of British Columbia. PET scans were performed at both institutions using a high-resolution research tomograph. A simplified reference tissue model and Logan graphical analysis were used to calculate the regional nondisplaceable binding potential (BPND), using the cerebellum as the reference. Parametric BPND images were generated using wavelet-aided parametric imaging. MRI-defined volumes of interest included cortical and subcortical regions, as well as brain stem nuclei. Results: There were no significant differences between controls and early-stage PD patients in either the [11C]DASB or the [11C]MADAM cohort, regardless of the analysis method. Group differences (Cohen d) in the [11C]DASB cohort ranged from 0.34 to 0.86 in brain stem nuclei, 0.09 to 0.61 in subcortical regions, and 0.28 to 0.70 in cortical regions. In the [11C]MADAM cohort, they ranged from 0.16 to 0.40, 0.19 to 0.55, and 0.32 to 0.61, respectively. Logan BPND highly correlated with simplified reference tissue model BPND for both tracers in each group (P < 0.001). Conclusion: SERT availability is relatively preserved in nondepressed patients with PD. This study suggests that serotonergic degeneration is not a major feature of the disease in nondepressed patients with nonadvanced disease.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden;
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joachim Brumberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Freiburg, Germany; and
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
3
|
Gärde M, Matheson GJ, Varnäs K, Svenningsson P, Hedman-Lagerlöf E, Lundberg J, Farde L, Tiger M. Altered Serotonin 1B Receptor Binding After Escitalopram for Depression Is Correlated With Treatment Effect. Int J Neuropsychopharmacol 2024; 27:pyae021. [PMID: 38695786 PMCID: PMC11119883 DOI: 10.1093/ijnp/pyae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is commonly treated with selective serotonin reuptake inhibitors (SSRIs). SSRIs inhibit the serotonin transporter (5-HTT), but the downstream antidepressant mechanism of action of these drugs is poorly understood. The serotonin 1B (5-HT1B) receptor is functionally linked to 5-HTT and 5-HT1B receptor binding and 5-HT1B receptor mRNA is reduced in the raphe nuclei after SSRI administration in primates and rodents, respectively. The effect of SSRI treatment on 5-HT1B receptor binding in patients with MDD has not been examined previously. This positron emission tomography (PET) study aimed to quantify brain 5-HT1B receptor binding changes in vivo after SSRI treatment for MDD in relation to treatment effect. METHODS Eight unmedicated patients with moderate to severe MDD underwent PET with the 5-HT1B receptor radioligand [11C]AZ10419369 before and after 3 to 4 weeks of treatment with the SSRI escitalopram 10 mg daily. Depression severity was assessed at time of PET and after 6 to 7 weeks of treatment with the Montgomery-Åsberg Depression Rating Scale. RESULTS We observed a significant reduction in [11C]AZ10419369 binding in a dorsal brainstem (DBS) region containing the median and dorsal raphe nuclei after escitalopram treatment (P = .036). Change in DBS [11C]AZ10419369 binding correlated with Montgomery-Åsberg Depression Rating Scale reduction after 3-4 (r = 0.78, P = .021) and 6-7 (r = 0.94, P < .001) weeks' treatment. CONCLUSIONS Our findings align with the previously reported reduction of 5-HT1B receptor binding in the raphe nuclei after SSRI administration and support future studies testing change in DBS 5-HT1B receptor binding as an SSRI treatment response marker.
Collapse
Affiliation(s)
- M Gärde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - G J Matheson
- Department of Psychiatry, Columbia University, New York, USA
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - K Varnäs
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - P Svenningsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - E Hedman-Lagerlöf
- Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - J Lundberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - L Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - M Tiger
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
4
|
Brumberg J, Aarnio R, Forsberg A, Marjamäki P, Kerstens V, Moein MM, Nag S, Wahlroos S, Kassiou M, Windhorst AD, Halldin C, Haaparanta-Solin M, Fazio P, Oikonen V, Rinne JO, Varrone A. Quantification of the purinergic P2X 7 receptor with [ 11C]SMW139 improves through correction for brain-penetrating radiometabolites. J Cereb Blood Flow Metab 2023; 43:258-268. [PMID: 36163685 PMCID: PMC9903223 DOI: 10.1177/0271678x221126830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The membrane-based purinergic 7 receptor (P2X7R) is expressed on activated microglia and the target of the radioligand [11C]SMW139 for in vivo assessment of neuroinflammation. This study investigated the contribution of radiolabelled metabolites which potentially affect its quantification. Ex vivo high-performance liquid chromatography with a radio detector (radioHPLC) was used to evaluate the parent and radiometabolite fractions of [11C]SMW139 in the brain and plasma of eleven mice. Twelve healthy humans underwent 90-min [11C]SMW139 brain PET with arterial blood sampling and radiometabolite analysis. The volume of distribution was estimated by using one- and two- tissue compartment (TCM) modeling with single (VT) and dual (VTp) input functions. RadioHPLC showed three major groups of radiometabolite peaks with increasing concentrations in the plasma of all mice and humans. Two radiometabolite peaks were also visible in mice brain homogenates and therefore considered for dual input modeling in humans. 2TCM with single input function provided VT estimates with a wide range (0.10-10.74) and high coefficient of variation (COV: 159.9%), whereas dual input function model showed a narrow range of VTp estimates (0.04-0.24; COV: 33.3%). In conclusion, compartment modeling with correction for brain-penetrant radiometabolites improves the in vivo quantification of [11C]SMW139 binding to P2X7R in the human brain.
Collapse
Affiliation(s)
- Joachim Brumberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Nuclear Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Richard Aarnio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Anton Forsberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Päivi Marjamäki
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Vera Kerstens
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Mohammad M Moein
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Sangram Nag
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Saara Wahlroos
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, Australia
| | - Albert D Windhorst
- Department of Radiology and Nuclear Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Brain Imaging, Amsterdam, The Netherlands
| | - Christer Halldin
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | | | - Patrik Fazio
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Vesa Oikonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
5
|
In vivo correlation of serotonin transporter and 1B receptor availability in the human brain: a PET study. Neuropsychopharmacology 2022; 47:1863-1868. [PMID: 35821068 PMCID: PMC9372190 DOI: 10.1038/s41386-022-01369-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Synaptic serotonin levels in the brain are regulated by active transport into the bouton by the serotonin transporter, and by autoreceptors, such as the inhibitory serotonin (5-HT) 1B receptor which, when activated, decreases serotonin release. Animal studies have shown a regulatory link between the two proteins. Evidence of such coupling could translate to an untapped therapeutic potential in augmenting the effect of selective serotonin reuptake inhibitors through pharmacological modulation of 5-HT1B receptors. Here we will for the first time in vivo examine the relationship between 5-HT1B receptors and serotonin transporters in the living human brain. Seventeen healthy individuals were examined with PET twice, using the radioligands [11C]AZ10419369 and [11C]MADAM for quantification of the 5-HT1B receptor and the 5-HT transporter, respectively. The binding potential was calculated for a set of brain regions, and the correlations between the binding estimates of the two radioligands were studied. [11C]AZ10419369 and [11C]MADAM binding was positively correlated in all examined brain regions. In most cortical regions the correlation was strong, e.g., frontal cortex, r(15) = 0.64, p = 0.01 and parietal cortex, r(15) = 0.8, p = 0.0002 while in most subcortical regions, negligible correlations was observed. Though the correlation estimates in cortex should be interpreted with caution due to poor signal to noise ratio of [11C]MADAM binding in these regions, it suggests a link between two key proteins involved in the regulation of synaptic serotonin levels. Our results indicate a need for further studies to address the functional importance of 5-HT1B receptors in treatment with drugs that inhibit serotonin reuptake.
Collapse
|
6
|
Veldman ER, Varrone A, Varnäs K, Svedberg MM, Cselényi Z, Tiger M, Gulyás B, Halldin C, Lundberg J. Serotonin 1B receptor density mapping of the human brainstem using positron emission tomography and autoradiography. J Cereb Blood Flow Metab 2022; 42:630-641. [PMID: 34644198 PMCID: PMC8943614 DOI: 10.1177/0271678x211049185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The serotonin 1B (5-HT1B) receptor has lately received considerable interest in relation to psychiatric and neurological diseases, partly due to findings based on quantification using Positron Emission Tomography (PET). Although the brainstem is an important structure in this regard, PET radioligand binding quantification in brainstem areas often shows poor reliability. This study aims to improve PET quantification of 5-HT1B receptor binding in the brainstem.Volumes of interest (VOIs) were selected based on a 3D [3H]AZ10419369 Autoradiography brainstem model, which visualized 5-HT1B receptor distribution in high resolution. Two previously developed VOI delineation methods were tested and compared to a conventional manual method. For a method based on template data, a [11C]AZ10419369 PET template was created by averaging parametric binding potential (BPND) images of 52 healthy subjects. VOIs were generated based on a predefined volume and BPND thresholding and subsequently applied to test-retest [11C]AZ10419369 parametric BPND images of 8 healthy subjects. For a method based on individual subject data, VOIs were generated directly on each individual parametric image.Both methods showed improved reliability compared to a conventional manual VOI. The VOIs created with [11C]AZ10419369 template data can be automatically applied to future PET studies measuring 5-HT1B receptor binding in the brainstem.
Collapse
Affiliation(s)
- Emma R Veldman
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Marie M Svedberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Department of Health Promotion Science, Sophiahemmet University, Stockholm, Sweden
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,PET Science Centre, Personalized Medicine and Biosamples, R&D, AstraZeneca, Stockholm, Sweden
| | - Mikael Tiger
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Balázs Gulyás
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
7
|
Brumberg J, Kerstens V, Cselényi Z, Svenningsson P, Sundgren M, Fazio P, Varrone A. Simplified quantification of [ 18F]FE-PE2I PET in Parkinson's disease: Discriminative power, test-retest reliability and longitudinal validity during early peak and late pseudo-equilibrium. J Cereb Blood Flow Metab 2021; 41:1291-1300. [PMID: 32955955 PMCID: PMC8138335 DOI: 10.1177/0271678x20958755] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantification of dopamine transporter (DAT) availability with [18F]FE-PE2I PET enables the detection of presynaptic dopamine deficiency and provides a potential progression marker for Parkinson`s disease (PD). Simplified quantification is feasible, but the time window of short acquisition protocols may have a substantial impact on the reliability of striatal binding estimates. Dynamic [18F]FE-PE2I PET data of cross-sectional (33 PD patients, 24 controls), test-retest (9 patients), and longitudinal (12 patients) cohorts were used to assess the variability and reliability of specific binding ratios (SBR) measured during early peak and late pseudo-equilibrium. Receiver operating characteristics area under the curve (PD vs. controls) was high for early (0.996) and late (0.991) SBR. Early SBR provided more favourable effect size, absolute variability, and standard error of measurement than late SBR (caudate: 1.29 vs. 1.23; 6.9% vs. 9.8%; 0.09 vs. 0.20; putamen: 1.75 vs. 1.67; 7.7% vs. 14.0%; 0.08 vs. 0.17). The annual percentage change was comparable for both time windows (-7.2%-8.5%), but decline was significant only for early SBR. Whereas early and late [18F]FE-PE2I PET acquisitions have similar discriminative power to separate PD patients and controls, the early peak equilibrium acquisition can be recommended if [18F]FE-PE2I is used to measure longitudinal changes of DAT availability.
Collapse
Affiliation(s)
- Joachim Brumberg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Vera Kerstens
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| | - Zsolt Cselényi
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,AstraZeneca Translational Science Centre at Karolinska Institutet PET CoE, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Section Neuro, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Mathias Sundgren
- Department of Clinical Neuroscience, Section Neuro, Karolinska Institutet, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Patrik Fazio
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden.,Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrea Varrone
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
8
|
Serotonin transporter availability increases in patients recovering from a depressive episode. Transl Psychiatry 2021; 11:264. [PMID: 33972499 PMCID: PMC8110529 DOI: 10.1038/s41398-021-01376-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/24/2021] [Accepted: 04/13/2021] [Indexed: 02/03/2023] Open
Abstract
Molecular imaging studies have shown low cerebral concentration of serotonin transporter in patients suffering from depression, compared to healthy control subjects. Whether or not this difference also is present before disease onset and after remission (i.e. a trait), or only at the time of the depressive episode (i.e. a state) remains to be explored. We examined 17 patients with major depressive disorder with positron emission tomography using [11C]MADAM, a radioligand that binds to the serotonin transporter, before and after treatment with internet-based cognitive behavioral therapy. In all, 17 matched healthy control subjects were examined once. Cerebellum was used as reference to calculate the binding potential. Differences before and after treatment, as well as between patients and controls, were assessed in a composite cerebral region and in the median raphe nuclei. All image analyses and confirmatory statistical tests were preregistered. Depression severity decreased following treatment (p < 0.001). [11C]MADAM binding in patients increased in the composite region after treatment (p = 0.01), while no change was observed in the median raphe (p = 0.51). No significant difference between patients at baseline and healthy controls were observed in the composite region (p = 0.97) or the median raphe (p = 0.95). Our main finding was that patients suffering from a depressive episode show an overall increase in cerebral serotonin transporter availability as symptoms are alleviated. Our results suggest that previously reported cross-sectional molecular imaging findings of the serotonin transporter in depression most likely reflect the depressive state, rather than a permanent trait. The finding adds new information on the pathophysiology of major depressive disorder.
Collapse
|
9
|
Braun DJ, Van Eldik LJ. In vivo Brainstem Imaging in Alzheimer's Disease: Potential for Biomarker Development. Front Aging Neurosci 2018; 10:266. [PMID: 30254583 PMCID: PMC6141632 DOI: 10.3389/fnagi.2018.00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
The dearth of effective treatments for Alzheimer's disease (AD) is one of the largest public health issues worldwide, costing hundreds of billions of dollars per year. From a therapeutic standpoint, research efforts to date have met with strikingly little clinical success. One major issue is that trials begin after substantial pathological change has occurred, and it is increasingly clear that the most effective treatment regimens will need to be administered earlier in the disease process. In order to identify individuals within the long preclinical phase of AD who are likely to progress to dementia, improvements are required in biomarker development. One potential area of research that might prove fruitful in this regard is the in vivo detection of brainstem pathology. The brainstem is known to undergo pathological changes very early and progressively in AD. With an updated and harmonized AD research framework, and emerging advances in neuroimaging technology, the potential to leverage knowledge of brainstem pathology into biomarkers for AD will be discussed.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Nigrostriatal dopamine transporter availability in early Parkinson's disease. Mov Disord 2018; 33:592-599. [DOI: 10.1002/mds.27316] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 11/07/2022] Open
|
11
|
Tangen Ä, Borg J, Tiger M, Varnäs K, Sorjonen K, Lindefors N, Halldin C, Lundberg J. Associations between cognition and serotonin receptor 1B binding in patients with major depressive disorder - A pilot study. Psychiatry Res Neuroimaging 2017; 267:15-21. [PMID: 28688337 DOI: 10.1016/j.pscychresns.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Ämma Tangen
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Mikael Tiger
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Kimmo Sorjonen
- Department of Clinical Neuroscience, Divison of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Nils Lindefors
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
12
|
Schain M, Fazio P, Mrzljak L, Amini N, Al-Tawil N, Fitzer-Attas C, Bronzova J, Landwehrmeyer B, Sampaio C, Halldin C, Varrone A. Revisiting the Logan plot to account for non-negligible blood volume in brain tissue. EJNMMI Res 2017; 7:66. [PMID: 28822101 PMCID: PMC5561763 DOI: 10.1186/s13550-017-0314-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/08/2017] [Indexed: 11/23/2022] Open
Abstract
Background Reference tissue-based quantification of brain PET data does not typically include correction for signal originating from blood vessels, which is known to result in biased outcome measures. The bias extent depends on the amount of radioactivity in the blood vessels. In this study, we seek to revisit the well-established Logan plot and derive alternative formulations that provide estimation of distribution volume ratios (DVRs) that are corrected for the signal originating from the vasculature. Results New expressions for the Logan plot based on arterial input function and reference tissue were derived, which included explicit terms for whole blood radioactivity. The new methods were evaluated using PET data acquired using [11C]raclopride and [18F]MNI-659. The two-tissue compartment model (2TCM), with which signal originating from blood can be explicitly modeled, was used as a gold standard. DVR values obtained for [11C]raclopride using the either blood-based or reference tissue-based Logan plot were systematically underestimated compared to 2TCM, and for [18F]MNI-659, a proportionality bias was observed, i.e., the bias varied across regions. The biases disappeared when optimal blood-signal correction was used for respective tracer, although for the case of [18F]MNI-659 a small but systematic overestimation of DVR was still observed. Conclusions The new method appears to remove the bias introduced due to absence of correction for blood volume in regular graphical analysis and can be considered in clinical studies. Further studies are however required to derive a generic mapping between plasma and whole-blood radioactivity levels. Electronic supplementary material The online version of this article (doi:10.1186/s13550-017-0314-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Martin Schain
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | - Patrik Fazio
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Nabil Al-Tawil
- Karolinska Trial Alliance, Karolinska University Hospital, M62, SE-141-86, Stockholm, Sweden
| | | | | | | | | | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
13
|
Yang KC, Stepanov V, Amini N, Martinsson S, Takano A, Nielsen J, Bundgaard C, Bang-Andersen B, Grimwood S, Halldin C, Farde L, Finnema SJ. Characterization of [ 11C]Lu AE92686 as a PET radioligand for phosphodiesterase 10A in the nonhuman primate brain. Eur J Nucl Med Mol Imaging 2016; 44:308-320. [PMID: 27817159 PMCID: PMC5215309 DOI: 10.1007/s00259-016-3544-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/03/2016] [Indexed: 11/28/2022]
Abstract
Purpose [11C]Lu AE92686 is a positron emission tomography (PET) radioligand that has recently been validated for examining phosphodiesterase 10A (PDE10A) in the human striatum. [11C]Lu AE92686 has high affinity for PDE10A (IC50 = 0.39 nM) and may also be suitable for examination of the substantia nigra, a region with low density of PDE10A. Here, we report characterization of regional [11C]Lu AE92686 binding to PDE10A in the nonhuman primate (NHP) brain. Methods A total of 11 PET measurements, seven baseline and four following pretreatment with unlabeled Lu AE92686 or the structurally unrelated PDE10A inhibitor MP-10, were performed in five NHPs using a high resolution research tomograph (HRRT). [11C]Lu AE92686 binding was quantified using a radiometabolite-corrected arterial input function and compartmental and graphical modeling approaches. Results Regional time-activity curves were best described with the two-tissue compartment model (2TCM). However, the distribution volume (VT) values for all regions were obtained by the Logan plot analysis, as reliable cerebellar VT values could not be derived by the 2TCM. For cerebellum, a proposed reference region, VT values increased by ∼30 % with increasing PET measurement duration from 63 to 123 min, while VT values in target regions remained stable. Both pretreatment drugs significantly decreased [11C]Lu AE92686 binding in target regions, while no significant effect on cerebellum was observed. Binding potential (BPND) values, derived with the simplified reference tissue model (SRTM), were 13–17 in putamen and 3–5 in substantia nigra and correlated well to values from the Logan plot analysis. Conclusions The method proposed for quantification of [11C]Lu AE92686 binding in applied studies in NHP is based on 63 min PET data and SRTM with cerebellum as a reference region. The study supports that [11C]Lu AE92686 can be used for PET examinations of PDE10A binding also in substantia nigra. Electronic supplementary material The online version of this article (doi:10.1007/s00259-016-3544-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai-Chun Yang
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Vladimir Stepanov
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nahid Amini
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Martinsson
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Nielsen
- Synaptic Transmission, H. Lundbeck A/S, Valby, Denmark
| | | | | | - Sarah Grimwood
- Neuroscience and Pain Research Unit, Pfizer Inc., Cambridge, MA, USA
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Personalized Health Care and Biomarkers, AstraZeneca PET Science Center at Karolinska Institutet, Stockholm, Sweden
| | - Sjoerd J Finnema
- Department of Clinical Neuroscience, Center for Psychiatric Research, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
14
|
Fazio P, Schain M, Varnäs K, Halldin C, Farde L, Varrone A. Mapping the distribution of serotonin transporter in the human brainstem with high-resolution PET: Validation using postmortem autoradiography data. Neuroimage 2016; 133:313-320. [DOI: 10.1016/j.neuroimage.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/28/2022] Open
|
15
|
Self-transcendence trait and its relationship with in vivo serotonin transporter availability in brainstem raphe nuclei: An ultra-high resolution PET-MRI study. Brain Res 2015; 1629:63-71. [PMID: 26459992 DOI: 10.1016/j.brainres.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/08/2015] [Accepted: 10/01/2015] [Indexed: 01/12/2023]
Abstract
Self-transcendence is an inherent human personality trait relating to the experience of spiritual aspects of the self. We examined the relationship between self-transcendence and serotonin transporter (SERT) availability in brainstem raphe nuclei, which are collections of five different serotonergic nuclei with rostro-caudal extension, using ultra-high resolution magnetic resonance imaging (MRI) and positron emission tomography (PET) with (11)C-3-amino-4-(2-dimethylaminomethylphenylthio)benzonitrile ([(11)C]DASB) to elucidate potential roles of serotonergic neuronal activities in this personality trait. Sixteen healthy subjects completed 7.0T MRI and High Resolution Research Tomograph (HRRT) PET. The regions of interest (ROIs) included the dorsal raphe nucleus (R1), median raphe nucleus (R2), raphe pontis (R3), and the caudal raphe nuclei (R4 and R5). For the estimation of SERT availability, the binding potential (BPND) was derived using the simplified reference tissue model (SRTM2). The Temperament and Character Inventory was used to measure self-transcendence. The analysis revealed that the self-transcendence total score had a significant negative correlation with the [(11)C]DASB BPND in the caudal raphe (R5). The subscale score for spiritual acceptance was significantly negatively correlated with the [(11)C]DASB BPND in the median raphe nucleus (R2). The results indicate that the self-transcendence trait is associated with SERT availability in specific raphe subnuclei, suggesting that the serotonin system may serve as an important biological basis for human self-transcendence. Based on the connections of these nuclei with cortico-limbic and visceral autonomic structures, the functional activity of these nuclei and their related neural circuitry may play a crucial role in the manifestation of self-transcendence.
Collapse
|
16
|
Collste K, Forsberg A, Varrone A, Amini N, Aeinehband S, Yakushev I, Halldin C, Farde L, Cervenka S. Test-retest reproducibility of [(11)C]PBR28 binding to TSPO in healthy control subjects. Eur J Nucl Med Mol Imaging 2015; 43:173-183. [PMID: 26293827 DOI: 10.1007/s00259-015-3149-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/20/2015] [Indexed: 11/30/2022]
Abstract
PURPOSE The PET radioligand [(11)C]PBR28 binds to the translocator protein (TSPO), a marker of brain immune activation. We examined the reproducibility of [(11)C]PBR28 binding in healthy subjects with quantification on a regional and voxel-by-voxel basis. In addition, we performed a preliminary analysis of diurnal changes in TSPO availability. METHODS Twelve subjects were examined using a high-resolution research tomograph and [(11)C]PBR28, six in the morning and afternoon of the same day, and six in the morning on two separate days. Regional volumes of distribution (V T) were derived using a region-of-interest based two-tissue compartmental analysis (2TCM), as well as a parametric approach. Metabolite-corrected arterial plasma was used as input function. RESULTS For the whole sample, the mean absolute variability in V T in the grey matter (GM) was 18.3 ± 12.7 %. Intraclass correlation coefficients in GM regions ranged from 0.90 to 0.94. Reducing the time of analysis from 91 to 63 min yielded a variability of 16.9 ± 14.9 %. There was a strong correlation between the parametric and 2TCM-derived GM values (r = 0.99). A significant increase in GM V T was observed between the morning and afternoon examinations when using secondary methods of quantification (p = 0.028). In the subjects examined at the same time of the day, the absolute variability was 15.9 ± 12.2 % for the 91-min 2TCM data. CONCLUSION V T of [(11)C]PBR28 binding showed medium reproducibility and high reliability in GM regions. Our findings support the use of parametric approaches for determining [(11)C]PBR28 V T values, and indicate that the acquisition time could be shortened. Diurnal changes in TSPO binding in the brain may be a potential confounder in clinical studies and should be investigated further.
Collapse
Affiliation(s)
- K Collste
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.
| | - A Forsberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - A Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - N Amini
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - S Aeinehband
- Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden
| | - I Yakushev
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden.,Department of Nuclear Medicine and TUM Neuroimaging Center (TUM-NIC), Technische Universität München, Munich, Germany
| | - C Halldin
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - L Farde
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| | - S Cervenka
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Beliveau V, Svarer C, Frokjaer VG, Knudsen GM, Greve DN, Fisher PM. Functional connectivity of the dorsal and median raphe nuclei at rest. Neuroimage 2015; 116:187-95. [PMID: 25963733 DOI: 10.1016/j.neuroimage.2015.04.065] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/31/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022] Open
Abstract
Serotonin (5-HT) is a neurotransmitter critically involved in a broad range of brain functions and implicated in the pathophysiology of neuropsychiatric illnesses including major depression, anxiety and sleep disorders. Despite being widely distributed throughout the brain, there is limited knowledge on the contribution of 5-HT to intrinsic brain activity. The dorsal raphe (DR) and median raphe (MR) nuclei are the source of most serotonergic neurons projecting throughout the brain and thus provide a compelling target for a seed-based probe of resting-state activity related to 5-HT. Here we implemented a novel multimodal neuroimaging approach for investigating resting-state functional connectivity (FC) between DR and MR and cortical, subcortical and cerebellar target areas. Using [(11)C]DASB positron emission tomography (PET) images of the brain serotonin transporter (5-HTT) combined with structural MRI from 49 healthy volunteers, we delineated DR and MR and performed a seed-based resting-state FC analysis. The DR and MR seeds produced largely similar FC maps: significant positive FC with brain regions involved in cognitive and emotion processing including anterior cingulate, amygdala, insula, hippocampus, thalamus, basal ganglia and cerebellum. Significant negative FC was observed within pre- and postcentral gyri for the DR but not for the MR seed. We observed a significant association between DR and MR FC and regional 5-HTT binding. Our results provide evidence for a resting-state network related to DR and MR and comprising regions receiving serotonergic innervation and centrally involved in 5-HT related behaviors including emotion, cognition and reward processing. These findings provide a novel advance in estimating resting-state FC related to 5-HT signaling, which can benefit our understanding of its role in behavior and neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Vincent Beliveau
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Patrick M Fisher
- Neurobiology Research Unit and Center for Integrated Molecular Brain Imaging, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
18
|
Fazio P, Svenningsson P, Forsberg A, Jönsson EG, Amini N, Nakao R, Nag S, Halldin C, Farde L, Varrone A. Quantitative Analysis of 18F-(E)-N-(3-Iodoprop-2-Enyl)-2β-Carbofluoroethoxy-3β-(4′-Methyl-Phenyl) Nortropane Binding to the Dopamine Transporter in Parkinson Disease. J Nucl Med 2015; 56:714-20. [DOI: 10.2967/jnumed.114.152421] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/25/2015] [Indexed: 01/27/2023] Open
|
19
|
Tiger M, Rück C, Forsberg A, Varrone A, Lindefors N, Halldin C, Farde L, Lundberg J. Reduced 5-HT(1B) receptor binding in the dorsal brain stem after cognitive behavioural therapy of major depressive disorder. Psychiatry Res 2014; 223:164-70. [PMID: 24916155 DOI: 10.1016/j.pscychresns.2014.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/08/2014] [Accepted: 05/19/2014] [Indexed: 12/15/2022]
Abstract
Major depression is a significant contributor to the global burden of disease, and its pathophysiology is largely unknown. The serotonin hypothesis is, however, the model with most supporting data, although the details are only worked out to some extent. Recent clinical imaging measurements indeed imply a role in major depressive disorder (MDD) for the inhibitory serotonin autoreceptor 5-hydroxytryptamine1B (5-HT1B). The aim of the current study was to examine 5-HT1B receptor binding in the brain of MDD patients before and after psychotherapy. Ten patients with an ongoing untreated moderate depressive episode were examined with positron emission tomography (PET) and the 5-HT1B receptor selective radioligand [(11)C]AZ10419369, before and after treatment with internet-based cognitive behavioural therapy. All of the patients examined responded to treatment, and 70% were in remission by the time of the second PET measurement. A statistically significant 33% reduction of binding potential (BPND) was found in the dorsal brain stem (DBS) after treatment. No other significant changes in BPND were found. The DBS contains the raphe nuclei, which regulate the serotonin system. This study gives support for the importance of serotonin and the 5-HT1B receptor in the biological response to psychological treatment of MDD.
Collapse
Affiliation(s)
- Mikael Tiger
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden.
| | - Christian Rück
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden
| | - Anton Forsberg
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden
| | - Nils Lindefors
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Karolinska Institutet, Centrum för psykiatriforskning, R5:0, Karolinska Universitetssjukhuset i Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
20
|
Arterial input function derived from pairwise correlations between PET-image voxels. J Cereb Blood Flow Metab 2013; 33:1058-65. [PMID: 23571279 PMCID: PMC3705432 DOI: 10.1038/jcbfm.2013.47] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 11/08/2022]
Abstract
A metabolite corrected arterial input function is a prerequisite for quantification of positron emission tomography (PET) data by compartmental analysis. This quantitative approach is also necessary for radioligands without suitable reference regions in brain. The measurement is laborious and requires cannulation of a peripheral artery, a procedure that can be associated with patient discomfort and potential adverse events. A non invasive procedure for obtaining the arterial input function is thus preferable. In this study, we present a novel method to obtain image-derived input functions (IDIFs). The method is based on calculation of the Pearson correlation coefficient between the time-activity curves of voxel pairs in the PET image to localize voxels displaying blood-like behavior. The method was evaluated using data obtained in human studies with the radioligands [(11)C]flumazenil and [(11)C]AZ10419369, and its performance was compared with three previously published methods. The distribution volumes (VT) obtained using IDIFs were compared with those obtained using traditional arterial measurements. Overall, the agreement in VT was good (∼3% difference) for input functions obtained using the pairwise correlation approach. This approach performed similarly or even better than the other methods, and could be considered in applied clinical studies. Applications to other radioligands are needed for further verification.
Collapse
|