1
|
Rohan T, Hložanka P, Dostál M, Kopřivová T, Macek T, Vybíhal V, Martin HJ, Šprláková-Puková A, Keřkovský M. The relationship between gadolinium enhancement and [18 F]fluorothymidine uptake in brain lesions with the use of hybrid PET/MRI. Cancer Imaging 2024; 24:110. [PMID: 39160578 PMCID: PMC11331680 DOI: 10.1186/s40644-024-00761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND To evaluate and compare the diagnostic power of [18F]FLT-PET with ceMRI in patients with brain tumours or other focal lesions. METHODS 121 patients with suspected brain tumour or those after brain tumour surgery were enroled in this retrospective study (61 females, 60 males, mean age 37.3 years, range 1-80 years). All patients underwent [18F]FLT-PET/MRI with gadolinium contrast agent application. In 118 of these patients, a final diagnosis was made, verified by histopathology or by follow-up. Agreement between ceMRI and [18F]FLT-PET of the whole study group was established. Further, sensitivity and specificity of ceMRI and [18F]FLT-PET were calculated for differentiation of high-grade vs. low-grade tumours, high-grade vs. low-grade tumours together with non-tumour lesions and for differentiation of high-grade tumours from all other verified lesions. RESULTS [18F]FLT-PET and ceMRI findings were concordant in 119 cases (98%). On closer analysis of a subset of 64 patients with verified gliomas, the sensitivity and specificity of both PET and ceMRI were identical (90% and 84%, respectively) for differentiating low-grade from high-grade tumours, if the contrast enhancement and [18F]FLT uptake were considered as hallmarks of high-grade tumour. For differentiation of high-grade tumours from low-grade tumours and lesions of nontumorous aetiology (e.g., inflammatory lesions or post-therapeutic changes) in a subgroup of 93 patients by visual evaluation, the sensitivity of both PET and ceMRI was 90%, whereas the specificity of PET was slightly higher (61%) compared to ceMRI (57%). By receiver operating characteristic analysis, the sensitivity and specificity were 82% and 74%, respectively, when the threshold of SUVmax in the tumour was set to 0.9 g/ml. CONCLUSION We demonstrated a generally very high correlation of [18F]FLT accumulation with contrast enhancement visible on ceMRI and a comparable diagnostic yield in both modalities for differentiating high-grade tumours from low-grade tumours and lesions of other aetiology.
Collapse
Affiliation(s)
- Tomáš Rohan
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Petr Hložanka
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Marek Dostál
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic.
- Department of Biophysics, Medical Faculty, Masaryk University, Brno, 625 00, Czechia.
| | - Tereza Kopřivová
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Tomáš Macek
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Václav Vybíhal
- Clinic of Neurosurgery, University Hospital Brno, Brno, 625 00, Czechia
- Clinic of Neurosurgery, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Hiroko Jeannette Martin
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
| | - Andrea Šprláková-Puková
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| | - Miloš Keřkovský
- Department of Radiology and Nuclear Medicine, University Hospital Brno, Jihlavská 20, Brno, 625 00, Czech Republic
- Department of Radiology and Nuclear Medicine, Medical Faculty, Masaryk University, Brno, 625 00, Czechia
| |
Collapse
|
2
|
Kim D, Lee SH, Hwang HS, Kim SJ, Yun M. Recent Update on PET/CT Radiotracers for Imaging Cerebral Glioma. Nucl Med Mol Imaging 2024; 58:237-245. [PMID: 38932755 PMCID: PMC11196511 DOI: 10.1007/s13139-024-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 06/28/2024] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) has dramatically altered the landscape of noninvasive glioma evaluation, offering complementary insights to those gained through magnetic resonance imaging (MRI). PET/CT scans enable a multifaceted analysis of glioma biology, supporting clinical applications from grading and differential diagnosis to mapping the full extent of tumors and planning subsequent treatments and evaluations. With a broad array of specialized radiotracers, researchers and clinicians can now probe various biological characteristics of gliomas, such as glucose utilization, cellular proliferation, oxygen deficiency, amino acid trafficking, and reactive astrogliosis. This review aims to provide a recent update on the application of versatile PET/CT radiotracers in glioma research and clinical practice.
Collapse
Affiliation(s)
- Dongwoo Kim
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| | - Suk-Hyun Lee
- Department of Radiology, Hallym University Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, 07441 Republic of Korea
| | - Hee Sung Hwang
- Department of Nuclear Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, 14068 Republic of Korea
| | - Sun Jung Kim
- Department of Nuclear Medicine, National Health Insurance Service Ilsan Hospital, Goyang, 10444 Republic of Korea
| | - Mijin Yun
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 Republic of Korea
| |
Collapse
|
3
|
Schwenck J, Sonanini D, Cotton JM, Rammensee HG, la Fougère C, Zender L, Pichler BJ. Advances in PET imaging of cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00576-4. [PMID: 37258875 DOI: 10.1038/s41568-023-00576-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 06/02/2023]
Abstract
Molecular imaging has experienced enormous advancements in the areas of imaging technology, imaging probe and contrast development, and data quality, as well as machine learning-based data analysis. Positron emission tomography (PET) and its combination with computed tomography (CT) or magnetic resonance imaging (MRI) as a multimodality PET-CT or PET-MRI system offer a wealth of molecular, functional and morphological data with a single patient scan. Despite the recent technical advances and the availability of dozens of disease-specific contrast and imaging probes, only a few parameters, such as tumour size or the mean tracer uptake, are used for the evaluation of images in clinical practice. Multiparametric in vivo imaging data not only are highly quantitative but also can provide invaluable information about pathophysiology, receptor expression, metabolism, or morphological and functional features of tumours, such as pH, oxygenation or tissue density, as well as pharmacodynamic properties of drugs, to measure drug response with a contrast agent. It can further quantitatively map and spatially resolve the intertumoural and intratumoural heterogeneity, providing insights into tumour vulnerabilities for target-specific therapeutic interventions. Failure to exploit and integrate the full potential of such powerful imaging data may lead to a lost opportunity in which patients do not receive the best possible care. With the desire to implement personalized medicine in the cancer clinic, the full comprehensive diagnostic power of multiplexed imaging should be utilized.
Collapse
Affiliation(s)
- Johannes Schwenck
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jonathan M Cotton
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
| | - Hans-Georg Rammensee
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Department of Immunology, IFIZ Institute for Cell Biology, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Lars Zender
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany
- Medical Oncology and Pulmonology, Department of Internal Medicine, Eberhard Karls University of Tübingen, Tübingen, Germany
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumour Therapies', Eberhard Karls University, Tübingen, Germany.
- German Cancer Research Center, German Cancer Consortium DKTK, Partner Site Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Galldiks N, Langen KJ, Albert NL, Law I, Kim MM, Villanueva-Meyer JE, Soffietti R, Wen PY, Weller M, Tonn JC. Investigational PET tracers in neuro-oncology-What's on the horizon? A report of the PET/RANO group. Neuro Oncol 2022; 24:1815-1826. [PMID: 35674736 DOI: 10.1093/neuonc/noac131] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many studies in patients with brain tumors evaluating innovative PET tracers have been published in recent years, and the initial results are promising. Here, the Response Assessment in Neuro-Oncology (RANO) PET working group provides an overview of the literature on novel investigational PET tracers for brain tumor patients. Furthermore, newer indications of more established PET tracers for the evaluation of glucose metabolism, amino acid transport, hypoxia, cell proliferation, and others are also discussed. Based on the preliminary findings, these novel investigational PET tracers should be further evaluated considering their promising potential. In particular, novel PET probes for imaging of translocator protein and somatostatin receptor overexpression as well as for immune system reactions appear to be of additional clinical value for tumor delineation and therapy monitoring. Progress in developing these radiotracers may contribute to improving brain tumor diagnostics and advancing clinical translational research.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937 Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Düsseldorf, Germany.,Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians-University of Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center University Hospital and University of Zurich, Zurich, Switzerland
| | - Joerg C Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
5
|
Valtorta S, Lo Dico A, Raccagni I, Martelli C, Pieri V, Rainone P, Todde S, Zinnhardt B, De Bernardi E, Coliva A, Politi LS, Viel T, Jacobs AH, Galli R, Ottobrini L, Vaira V, Moresco RM. Imaging Metformin Efficacy as Add-On Therapy in Cells and Mouse Models of Human EGFR Glioblastoma. Front Oncol 2021; 11:664149. [PMID: 34012924 PMCID: PMC8126706 DOI: 10.3389/fonc.2021.664149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a highly aggressive tumor of the brain. Despite the efforts, response to current therapies is poor and 2-years survival rate ranging from 6-12%. Here, we evaluated the preclinical efficacy of Metformin (MET) as add-on therapy to Temozolomide (TMZ) and the ability of [18F]FLT (activity of thymidine kinase 1 related to cell proliferation) and [18F]VC701 (translocator protein, TSPO) Positron Emission Tomography (PET) radiotracers to predict tumor response to therapy. Indeed, TSPO is expressed on the outer mitochondrial membrane of activated microglia/macrophages, tumor cells, astrocytes and endothelial cells. TMZ-sensitive (Gli36ΔEGFR-1 and L0627) or -resistant (Gli36ΔEGFR-2) GBM cell lines representative of classical molecular subtype were tested in vitro and in vivo in orthotopic mouse models. Our results indicate that in vitro, MET increased the efficacy of TMZ on TMZ-sensitive and on TMZ-resistant cells by deregulating the balance between pro-survival (bcl2) and pro-apoptotic (bax/bad) Bcl-family members and promoting early apoptosis in both Gli36ΔEGFR-1 and Gli36ΔEGFR-2 cells. In vivo, MET add-on significantly extended the median survival of tumor-bearing mice compared to TMZ-treated ones and reduced the rate of recurrence in the TMZ-sensitive models. PET studies with the cell proliferation radiopharmaceutical [18F]FLT performed at early time during treatment were able to distinguish responder from non-responder to TMZ but not to predict the duration of the effect. On the contrary, [18F]VC701 uptake was reduced only in mice treated with MET plus TMZ and levels of uptake negatively correlated with animals’ survival. Overall, our data showed that MET addition improved TMZ efficacy in GBM preclinical models representative of classical molecular subtype increasing survival time and reducing tumor relapsing rate. Finally, results from PET imaging suggest that the reduction of cell proliferation represents a common mechanism of TMZ and combined treatment, whereas only the last was able to reduce TSPO. This reduction was associated with the duration of treatment response. TSPO-ligand may be used as a complementary molecular imaging marker to predict tumor microenvironment related treatment effects.
Collapse
Affiliation(s)
- Silvia Valtorta
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Lo Dico
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Isabella Raccagni
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,SYSBIO Centre of Systems Biology ISBE.ITALY, University of Milano - Bicocca, Milan, Italy
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Valentina Pieri
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Rainone
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sergio Todde
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany.,Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Elisabetta De Bernardi
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy
| | - Angela Coliva
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Department of Neuroradiology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Thomas Viel
- PARCC, INSERM, Université de Paris, Paris, France
| | - Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Ottobrini
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rosa Maria Moresco
- Department of Medicine and Surgery and Tecnomed Foundation, University of Milano - Bicocca, Monza, Italy.,Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Segrate, Italy.,Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Ma H, Zhao J, Liu S, Xie D, Zhang Z, Nie D, Wen F, Yang Z, Tang G. 18F-Trifluoromethylated D-Cysteine as a Promising New PET Tracer for Glioma Imaging: Comparative Analysis With MRI and Histopathology in Orthotopic C6 Models. Front Oncol 2021; 11:645162. [PMID: 33996562 PMCID: PMC8117348 DOI: 10.3389/fonc.2021.645162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
Comparing MRI and histopathology, this study aims to comprehensively explore the potential application of 18F-trifluoromethylated D-cysteine (S-[18F]CF3-D-CYS) in evaluating glioma by using orthotopic C6 glioma models. Sprague-Dawley (SD) rats (n = 9) were implanted with C6 glioma cells. Tumor growth was monitored every week by multiparameter MRI [including dynamic contrast-enhanced MRI (DCE-MRI)], [18F]FDG, S-[18F]CF3-D-CYS, and [18F]FDOPA PET imaging. Repeated scans of the same rat with the two or three [18F]-labeled radiotracers were investigated. Initial regions of interest were manually delineated on T2WI and set on the same level of PET images, and tumor-to-normal brain uptake ratios (TNRs) were calculated to semiquantitatively assess the tracer accumulation in the tumor. The tumor volume in PET and histopathology was calculated. HE and Ki67 immunohistochemical staining were further performed. The correlations between the uptake of S-[18F]CF3-D-CYS and Ki67 were analyzed. Dynamic S-[18F]CF3-D-CYS PET imaging showed tumor uptake rapidly reached a peak, maintained plateau during 10-30 min after injection, then decreased slowly. Compared with [18F]FDG and [18F]FDOPA PET imaging, S-[18F]CF3-D-CYS PET demonstrated the highest TNRs (P < 0.05). There were no significant differences in the tumor volume measured on S-[18F]CF3-D-CYS PET or HE specimen. Furthermore, our results showed that the uptake of S-[18F]CF3-D-CYS was significantly positively correlated with tumor Ki67, and the poor accumulated S-[18F]CF3-D-CYS was consistent with tumor hemorrhage. There was no significant correlation between the S-[18F]CF3-D-CYS uptakes and the Ktrans values derived from DCE-MRI. In comparison with MRI and histopathology, S-[18F]CF3-D-CYS PET performs well in the diagnosis and evaluation of glioma. S-[18F]CF3-D-CYS PET may serve as a valuable tool in the clinical management of gliomas.
Collapse
Affiliation(s)
- Hui Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dingxiang Xie
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhanwen Zhang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Nuclear Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dahong Nie
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fuhua Wen
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ganghua Tang
- Department of Nuclear Medicine, Guangdong Engineering Research Center for Translational Application of Medical Radiopharmaceuticals, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Nanfang PET Center, Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Solnes LB, Jacobs AH, Coughlin JM, Du Y, Goel R, Hammoud DA, Pomper MG. Central Nervous System Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Miyake K, Suzuki K, Ogawa T, Ogawa D, Hatakeyama T, Shinomiya A, Kudomi N, Yamamoto Y, Nishiyama Y, Tamiya T. Multiple positron emission tomography tracers for use in the classification of gliomas according to the 2016 World Health Organization criteria. Neurooncol Adv 2020; 3:vdaa172. [PMID: 33681765 PMCID: PMC7920529 DOI: 10.1093/noajnl/vdaa172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background The molecular diagnosis of gliomas such as isocitrate dehydrogenase (IDH) status (wild-type [wt] or mutation [mut]) is especially important in the 2016 World Health Organization (WHO) classification. Positron emission tomography (PET) has afforded molecular and metabolic diagnostic imaging. The present study aimed to define the interrelationship between the 2016 WHO classification of gliomas and the integrated data from PET images using multiple tracers, including 18F-fluorodeoxyglucose (18F-FDG), 11C-methionine (11C-MET), 18F-fluorothymidine (18F-FLT), and 18F-fluoromisonidazole (18F-FMISO). Methods This retrospective, single-center study comprised 113 patients with newly diagnosed glioma based on the 2016 WHO criteria. Patients were divided into 4 glioma subtypes (Mut, Codel, Wt, and glioblastoma multiforme [GBM]). Tumor standardized uptake value (SUV) divided by mean normal cortical SUV (tumor–normal tissue ratio [TNR]) was calculated for 18F-FDG, 11C-MET, and 18F-FLT. Tumor–blood SUV ratio (TBR) was calculated for 18F-FMISO. To assess the diagnostic accuracy of PET tracers in distinguishing glioma subtypes, a comparative analysis of TNRs and TBR as well as the metabolic tumor volume (MTV) were calculated by Scheffe's multiple comparison procedure for each PET tracer following the Kruskal–Wallis test. Results The differences in mean 18F-FLT TNR and 18F-FMISO TBR were significant between GBM and other glioma subtypes (P < .001). Regarding the comparison between Gd-T1WI volumes and 18F-FLT MTVs or 18F-FMISO MTVs, we identified significant differences between Wt and Mut or Codel (P < .01). Conclusion Combined administration of 4 PET tracers might aid in the preoperative differential diagnosis of gliomas according to the 2016 WHO criteria.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Kenta Suzuki
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Tomoya Ogawa
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Daisuke Ogawa
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Aya Shinomiya
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Nobuyuki Kudomi
- Department of Medical Physics, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Yuka Yamamoto
- Department of Radiology, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Kagawa University, Faculty of Medicine, Ikenobe, Miki-Cho, Kita-gun, Kagawa, Japan
| |
Collapse
|
9
|
Diagnostic value of PET/CT with 11C-methionine (MET) and 18F-fluorothymidine (FLT) in newly diagnosed glioma based on the 2016 WHO classification. EJNMMI Res 2020; 10:44. [PMID: 32382870 PMCID: PMC7205963 DOI: 10.1186/s13550-020-00633-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background The molecular features of isocitrate dehydrogenase (IDH) mutation and chromosome 1p and 19q (1p/19q) codeletion status have pivotal role for differentiating gliomas and have been integrated in the World Health Organization (WHO) classification in 2016. Positron emission tomography (PET) with 3′-deoxy-3′-[18F]fluorothymidine (FLT) has been used to evaluate tumour grade and proliferative activity and compared with l-[methyl-11C]-methionine (MET) in glioma patients. Herein, we evaluated tracer uptakes of MET-PET/CT and FLT-PET/CT for differentiating glioma based on the 2016 WHO classification especially in relation to IDH1 mutation status. Methods In total, 81 patients with newly diagnosed supratentorial glioma were enrolled in this study. They underwent PET/CT studies with MET and FLT before surgery. The molecular features and histopathological diagnosis based on the 2016 WHO classification were determined using surgical specimens. The ratios of the maximum standardized uptake value (SUV) of the tumours to the mean SUV of the contralateral cortex (T/N ratios) were calculated on MET-PET/CT and FLT-PET/CT images. Results The mean T/N ratios of MET-PET/CT and FLT-PET/CT in IDH1-wildtype tumours were significantly higher than those in IDH1-mutant tumours (P < 0.001 and P < 0.001, respectively). Receiver operating characteristic analysis for differentiating IDH1 mutation status showed that the area under the curve of the FLT T/N ratio was significantly larger than that of the MET T/N ratio (P < 0.01). The mean T/N ratio of FLT-PET/CT in IDH1-wildtype tumours was significantly higher than that in IDH1-mutant tumours among grade II and III gliomas (P = 0.005), but this was not the case for MET-PET/CT. Both MET-PET/CT and FLT-PET/CT were able to distinguish between grade II and III gliomas in IDH1-mutant tumours (P = 0.002 and P < 0.001, respectively), but only FLT-PET/CT was able to distinguish between grade III and IV gliomas in IDH1-wildtype tumours (P = 0.029). Conclusion This study showed that FLT-PET/CT can be used to determine the IDH1 mutation status and evaluate glioma grade more accurately than MET-PET/CT. FLT-PET/CT can improve glioma differentiation based on the 2016 WHO classification, but caution must be paid for tumours without contrast enhancement and further studies should be conducted with more cases.
Collapse
|
10
|
Yeh R, Trager MH, Rizk EM, Finkel GG, Barker LW, Carvajal RD, Geskin LJ, Schwartz GK, Schwartz L, Dercle L, Saenger YM. FLT-PET At 6 Weeks Predicts Response Assessed by CT at 12 Weeks in Melanoma Patients Treated With Pembrolizumab. Clin Nucl Med 2020; 45:267-275. [PMID: 32108700 PMCID: PMC8190674 DOI: 10.1097/rlu.0000000000002967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Investigate the ability of F-fluorothymidine (FLT) PET combined with CT at 6 weeks to predict treatment response at 12 weeks after treatment with pembrolizumab. METHODS Five patients with unresectable stage IV melanoma were included in this single-institution pilot study. Patients underwent FLT-PET/CT (baseline and 6 weeks) and CT (baseline and 12 weeks). FLT-PET/CT response and CT response were assessed using PET Response Criteria in Solid Tumors and immune Response Evaluation Criteria in Solid Tumors, respectively. Patients were categorized as responders (complete response, partial response) and nonresponders (stable disease, progressive disease). Agreement between 6-week FLT-PET/CT and 12-week CT was calculated using Cohen kappa's agreement. Eight baseline FLT-PET/CT parameters were extracted: SUVmax, SUVpeak, SUVSD, SUVmean, proliferative tumor volume, total lesion proliferation, bone marrow-to-liver SUVmax ratio, and spleen-to-liver SUVmax ratio. Eight delta-parameters were extracted at 6 weeks by calculating variation in FLT uptake as percentage change from baseline. RESULTS Agreement between 6-week FLT-PET/CT and 12-week CT was kappa = 0.615, P = 0.025. Three of 5 patients were categorized as responders on CT by immune Response Evaluation Criteria in Solid Tumors. At baseline, responders had a lower mean proliferative tumor volume and a higher bone marrow-to-liver SUVmax ratio. At 6 weeks, responders demonstrated a decrease in tumor volume and tumor proliferation. CONCLUSIONS Our study illustrates the potential for FLT-PET/CT as an early predictor of response for patients with metastatic melanoma on anti-PD1 immunotherapy. Larger studies are indicated to confirm these findings.
Collapse
Affiliation(s)
| | - Megan H Trager
- Vagelos College of Physicians and Surgeons, Columbia University
| | | | - Grace G Finkel
- Vagelos College of Physicians and Surgeons, Columbia University
| | - Luke W Barker
- Vagelos College of Physicians and Surgeons, Columbia University
| | | | - Larisa J Geskin
- Dermatology, Columbia University Medical Center, New York, NY
| | | | | | - Laurent Dercle
- Department of Radiology, Columbia University Medical Center
| | | |
Collapse
|
11
|
Bashir A, Binderup T, Vestergaard MB, Broholm H, Marner L, Ziebell M, Fugleholm K, Kjær A, Law I. In vivo imaging of cell proliferation in meningioma using 3'-deoxy-3'-[ 18F]fluorothymidine PET/MRI. Eur J Nucl Med Mol Imaging 2020; 47:1496-1509. [PMID: 32047966 DOI: 10.1007/s00259-020-04704-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE Positron emission tomography (PET) with 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) provides a noninvasive assessment of tumour proliferation in vivo and could be a valuable imaging modality for assessing malignancy in meningiomas. We investigated a range of static and dynamic [18F]FLT metrics by correlating the findings with cellular biomarkers of proliferation and angiogenesis. METHODS Seventeen prospectively recruited adult patients with intracranial meningiomas underwent a 60-min dynamic [18F]FLT PET following surgery. Maximum and mean standardized uptake values (SUVmax, SUVmean) with and without normalization to healthy brain tissue and blood radioactivity obtained from 40 to 60 min summed dynamic images (PET40-60) and ~ 60-min blood samples were calculated. Kinetic modelling using a two-tissue reversible compartmental model with a fractioned blood volume (VB) was performed to determine the total distribution volume (VT). Expressions of proliferation and angiogenesis with key parameters including Ki-67 index, phosphohistone-H3 (phh3), MKI67, thymidine kinase 1 (TK1), proliferating cell nuclear antigen (PCNA), Kirsten RAt Sarcoma viral oncogene homolog (KRAS), TIMP metallopeptidase inhibitor 3 (TIMP3), and vascular endothelial growth factor A (VEGFA) were determined by immunohistochemistry and/or quantitative polymerase chain reaction. RESULTS Immunohistochemistry revealed 13 World Health Organization (WHO) grade I and four WHO grade II meningiomas. SUVmax and SUVmean normalized to blood radioactivity from PET40-60 and blood sampling, and VT were able to significantly differentiate between WHO grades with the best results for maximum and mean tumour-to-whole-blood ratios (sensitivity 100%, specificity 94-95%, accuracy 99%; P = 0.003). Static [18F]FLT metrics were significantly correlated with proliferative biomarkers, especially Ki-67 index, phh3, and TK1, while no correlations were found with VEGFA or VB. Using Ki-67 index with a threshold > 4%, the majority of [18F]FLT metrics showed a high ability to identify aggressive meningiomas with SUVmean demonstrating the best performance (sensitivity 80%, specificity 81%, accuracy 80%; P = 0.024). CONCLUSION [18F]FLT PET could be a useful imaging modality for assessing cellular proliferation in meningiomas.
Collapse
Affiliation(s)
- Asma Bashir
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Mark Bitsch Vestergaard
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| | - Helle Broholm
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark.,Cluster for Molecular Imaging, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
12
|
Yang Y, He MZ, Li T, Yang X. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis. Neurosurg Rev 2019; 42:185-195. [PMID: 28918564 PMCID: PMC6503074 DOI: 10.1007/s10143-017-0906-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 12/18/2022]
Abstract
Based on studies focusing on positron emission tomography (PET)-computed tomography (CT) combined with magnetic resonance imaging (MRI) in the diagnosis of glioma, we conducted a systematic review and meta-analysis evaluating the pros and cons and the accuracy of different examinations. PubMed and Cochrane Library were searched. The search was conducted until April 2017. Two reviewers independently conducted the literature search according to the criteria set initially. Based on the exclusion criteria, 15 articles are included in this study. Of all studies that used MRI examination, there are five involving 18F-fluorodeoxyglucose-PET, five involving 11C-methionine-PET, five involving 18F-fluoro-ethyl-tyrosine-PET, and three involving 18F-fluorothymidine-PET. Due to the limitations such as lack of data, small sample size, and unrepresentative studies, we use a non-quantitative methodology. MRI examination can provide the anatomy information of glioma more clearly. PET-CT examinations based on tumor metabolism using different tracers have more advantages in determining the degree of glioma malignancy and boundaries. However, information provided by PET-CT of different tracers is not the same. With respect to the novel hybrid MRI/PET examination equipment proposed in recent years, the combination of MRI and PET-CT can definitively improve the diagnostic accuracy of glioma.
Collapse
Affiliation(s)
- Yihan Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Mike Z He
- Columbia University Mailman School of Public Health, New York, NY, USA
| | - Tao Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xuejun Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
13
|
Evaluation of the Performance of 18F-Fluorothymidine Positron Emission Tomography/Computed Tomography (18F-FLT-PET/CT) in Metastatic Brain Lesions. Diagnostics (Basel) 2019; 9:diagnostics9010017. [PMID: 30691084 PMCID: PMC6468407 DOI: 10.3390/diagnostics9010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/28/2022] Open
Abstract
18F-fluorothymidine (18F-FLT) is a radiolabeled thymidine analog that has been reported to help monitor tumor proliferation and has been studied in primary brain tumors; however, knowledge about 18F-FLT positron emission tomography/computed tomography (PET/CT) in metastatic brain lesions is limited. The purpose of this study is to evaluate the performance of 18F-FLT-PET/CT in metastatic brain lesions. A total of 20 PET/CT examinations (33 lesions) were included in the study. Semiquantitative analysis was performed: standard uptake value (SUV) with the utilization of SUVmax, tumor-to-background ratio (T/B), SUVpeak, SUV1cm3, SUV0.5cm3, SUV50%, SUV75%, PV50% (volume × SUV50%), and PV75% (volume × SUV75%) were calculated. Sensitivity, specificity, and accuracy for each parameter were calculated. Optimal cutoff values for each parameter were obtained. Using a receiver operating characteristic (ROC) curve analysis, the optimal cutoff values of SUVmax, T/B, and SUVpeak for discriminating active from non-active lesions were found to be 0.615, 4.21, and 0.425, respectively. In an ROC curve analysis, the area under the curve (AUC) is higher for SUVmax (p-value 0.017) compared to the rest of the parameters, while using optimal cutoff T/B shows the highest sensitivity and accuracy. PVs (proliferation × volumes) did not show any significance in discriminating positive from negative lesions. 18F-FLT-PET/CT can detect active metastatic brain lesions and may be used as a complementary tool. Further investigation should be performed.
Collapse
|
14
|
Takami Y, Yamamoto Y, Ueno M, Chiba Y, Norikane T, Hatakeyama T, Miyake K, Toyohara J, Nishiyama Y. Correlation of 4'-[methyl- 11C]-thiothymidine uptake with human equilibrative nucleoside transporter-1 and thymidine kinase-1 expressions in patients with newly diagnosed gliomas. Ann Nucl Med 2018; 32:634-641. [PMID: 30039191 DOI: 10.1007/s12149-018-1285-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE We examined expressions of human equilibrative nucleoside transporter-1 (hENT1) and thymidine kinase-1 (TK1), the key enzyme in 4'-[methyl-11C]-thiothymidine (4DST) phosphorylation, to elucidate the mechanism of 4DST uptake in patients with newly diagnosed gliomas. METHODS A total of 19 patients with newly diagnosed gliomas were examined with 4DST PET. Tumor lesions were identified as areas of focally increased uptake, exceeding that of normal brain background. For semi-quantitative analysis, tumor-to-contralateral normal brain tissue (T/N) ratio was determined by dividing the maximal standardized uptake value (SUV) for tumor by that of the mean SUV for reference tissue. The expressions of hENT1, TK1 and Ki-67 in tumor specimens were examined by immunohistochemistry and compared with 4DST T/N ratio. RESULTS All but two gliomas showed focally increased 4DST uptake. All gliomas showed hENT1 staining, except one grade II glioma, which was also not visualized on 4DST PET. A significant correlation was observed between T/N ratio and hENT1 score (ρ = 0.90, p < 0.001). All gliomas showed TK1 staining, except two gliomas which were also not visualized on 4DST PET. There was a significant correlation between T/N ratio and TK1 score (ρ = 0.92, p < 0.001). There was a significant correlation between T/N ratio and Ki-67 index (ρ = 0.50, p < 0.03). CONCLUSION Results of this preliminary study indicate that expressions of hENT1 and TK1 appear to be important determinants of 4DST uptake in newly diagnosed gliomas.
Collapse
Affiliation(s)
- Yasukage Takami
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan.
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Norikane
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurosurgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Keisuke Miyake
- Department of Neurosurgery, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0793, Japan
| |
Collapse
|
15
|
Ponto LLB, Walsh S, Huang J, Mundt C, Thede-Reynolds K, Leonard Watkins G, Sunderland J, Acevedo M, Donovan M. Pharmacoimaging of Blood-Brain Barrier Permeable (FDG) and Impermeable (FLT) Substrates After Intranasal (IN) Administration. AAPS JOURNAL 2017; 20:15. [PMID: 29218424 DOI: 10.1208/s12248-017-0157-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/21/2017] [Indexed: 01/07/2023]
Abstract
To illustrate the use of imaging to quantify the transfer of materials from the nasal cavity to other anatomical compartments, specifically, transfer to the brain using the thymidine analogue, [18F]fluorothymidine (FLT), and the glucose analogue, [18F]fluorodeoxyglucose (FDG). Anesthetized rats were administered FLT or FDG by intranasal instillation (IN) or tail-vein injection (IV). PET/CT imaging was performed for up to 60 min. Volumes-of-interest (VOIs) for the olfactory bulb (OB) and the remaining brain were created on the CT and transferred to the co-registered dynamic PET. Time-activity curves (TACs) were generated and compared. The disposition patterns were successfully visualized and quantified and differences in brain distribution patterns were observed. For FDG, the concentration was substantially higher in the OB than the brain only after IN administration. For FLT, the concentration was higher in the OB than the brain after both IN and IV and higher after IN than after IV administration at all times, whereas the concentration in the brain was higher after IN than after IV administration at early times only. Approximately 50 and 9% of the IN FDG and FLT doses, respectively, remained in the nasal cavity at 20 min post-administration. The initial phase of clearance was similar for both agents (t1/2 = 2.53 and 3.36 min) but the slow clearance phase was more rapid for FLT than FDG (t1/2 = 32.1 and 85.2 min, respectively). Pharmacoimaging techniques employing PET/CT can be successfully implemented to quantitatively investigate and compare the disposition of radiolabeled agents administered by a variety of routes.
Collapse
Affiliation(s)
- Laura L Boles Ponto
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA. .,PET Imaging Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA.
| | - Susan Walsh
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jiangeng Huang
- College of Pharmacy, Division of Pharmaceutics and Translational Therapeutics, Iowa City, Iowa, USA.,Department of Pharmaceutics, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Christine Mundt
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,PET Imaging Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| | - Katherine Thede-Reynolds
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,PET Imaging Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| | - G Leonard Watkins
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,PET Imaging Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| | - John Sunderland
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,PET Imaging Center, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, Iowa, 52242, USA
| | - Michael Acevedo
- Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Maureen Donovan
- College of Pharmacy, Division of Pharmaceutics and Translational Therapeutics, Iowa City, Iowa, USA
| |
Collapse
|
16
|
Nikaki A, Angelidis G, Efthimiadou R, Tsougos I, Valotassiou V, Fountas K, Prasopoulos V, Georgoulias P. 18F-fluorothymidine PET imaging in gliomas: an update. Ann Nucl Med 2017; 31:495-505. [PMID: 28612247 PMCID: PMC5517561 DOI: 10.1007/s12149-017-1183-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/31/2017] [Indexed: 01/18/2023]
Abstract
Brain neoplasms constitute a group of tumors with discrete differentiation grades, and therefore, course of disease and prognosis. Magnetic resonance imaging (MRI) remains the gold standard method for the investigation of central nervous system tumors. However, MRI suffers certain limitations, especially if radiation therapy or chemotherapy has been previously applied. On the other hand, given the development of newer radiopharmaceuticals, positron emission tomography (PET) aims to a better investigation of brain tumors, assisting in the clinical management of the patients. In the present review, the potential contribution of radiolabeled fluorothymidine (FLT) imaging for the evaluation of brain tumors will be discussed. In particular, we will present the role of FLT-PET imaging in the depiction of well and poorly differentiated lesions, the assessment of patient prognosis and treatment response, and the recognition of disease recurrence. Moreover, related semi-quantitative and kinetic parameters will be discussed.
Collapse
Affiliation(s)
- Alexandra Nikaki
- Department of Clinical Physiology, KHSHP, 20 Ahvenistontie Str., 13530, Hämeenlinna, Finland.,Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - George Angelidis
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Roxani Efthimiadou
- PET/CT Department, Hygeia Hospital, 4 Erythrou Stavrou Str., 15123, Athens, Greece
| | - Ioannis Tsougos
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Varvara Valotassiou
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Konstantinos Fountas
- Department of Neurosurgery, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece
| | - Vasileios Prasopoulos
- PET/CT Department, Hygeia Hospital, 4 Erythrou Stavrou Str., 15123, Athens, Greece.,Department of Nuclear Medicine, Hygeia Hospital, 4 Erythrou Stavrou Str., 15123, Athens, Greece
| | - Panagiotis Georgoulias
- Department of Nuclear Medicine, University Hospital of Larissa, Mezourlo, 41110, Larissa, Greece.
| |
Collapse
|
17
|
Abstract
A 32-year-old woman, with spare previous medical history, presented with neurological symptoms of numbness and diplopia. The patient underwent brain MRI, which revealed a lesion of abnormal signal in the midbrain that could be attributed to subacute stroke; however, consecutive MRIs revealed multiple lesions of abnormal signal pointing to demyelinating disease. During symptoms investigation and MRI findings assessment, the patient underwent a FLT PET/CT examination, which revealed lesions of increased FLT uptake, probably indicating active disease and blood-brain barrier disruption.
Collapse
|
18
|
Lodge MA, Holdhoff M, Leal JP, Bag AK, Nabors LB, Mintz A, Lesser GJ, Mankoff DA, Desai AS, Mountz JM, Lieberman FS, Fisher JD, Desideri S, Ye X, Grossman SA, Schiff D, Wahl RL. Repeatability of 18F-FLT PET in a Multicenter Study of Patients with High-Grade Glioma. J Nucl Med 2016; 58:393-398. [PMID: 27688473 DOI: 10.2967/jnumed.116.178434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/28/2016] [Indexed: 12/27/2022] Open
Abstract
Quantitative 3'-deoxy-3'-18F-fluorothymidine (18F-FLT) PET has potential as a noninvasive tumor biomarker for the objective assessment of response to treatment. To guide interpretation of these quantitative data, we evaluated the repeatability of 18F-FLT PET as part of a multicenter trial involving patients with high-grade glioma. Methods:18F-FLT PET was performed on 10 patients with recurrent high-grade glioma at 5 different institutions within the Adult Brain Tumor Consortium trial ABTC1101. Data were acquired according to a double baseline protocol in which PET examinations were repeated within 2 d of each other with no intervening treatment. On each of the 2 imaging days, dedicated brain PET was performed at 2 time points, 1 and 3 h after 18F-FLT administration. Tumor SUVs and related parameters were measured at a central laboratory using various volumes of interest: isocontour at 30% of the maximum pixel (SUVmean_30%), gradient-based segmentation (SUVmean_gradient), the maximum pixel (SUVmax), and a 1-mL sphere at the region of highest uptake (SUVpeak). Repeatability coefficients (RCs) were calculated from the relative differences between corresponding SUV measurements obtained on the 2 d. Results: RCs for tumor SUVs were 22.5% (SUVmean_30%), 23.8% (SUVmean_gradient), 23.2% (SUVmax), and 18.5% (SUVpeak) at 1 h after injection. Corresponding data at 3 h were 22.4%, 25.0%, 27.3%, and 23.6%. Normalizing the tumor SUV data with reference to a background region improved repeatability, and the most stable parameter was the tumor-to-background ratio derived using SUVpeak (RC, 16.5%). Conclusion: SUV quantification of 18F-FLT uptake in glioma had an RC in the range of 18%-24% when imaging began 1 h after 18F-FLT administration. The volume-of-interest methodology had a small but not negligible influence on repeatability, with the best performance obtained using SUVpeak Although changes in 18F-FLT SUV after treatment cannot be directly interpreted as a change in tumor proliferation, we have established ranges beyond which SUV differences are likely due to legitimate biologic effects.
Collapse
Affiliation(s)
- Martin A Lodge
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthias Holdhoff
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Jeffrey P Leal
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Asim K Bag
- University of Alabama, Birmingham, Alabama
| | | | - Akiva Mintz
- Wake Forest University School of Medicine, Winston Salem, North Carolina
| | - Glenn J Lesser
- Wake Forest University School of Medicine, Winston Salem, North Carolina
| | | | - Arati S Desai
- University of Pennsylvania, Philadelphia, Pennsylvania
| | - James M Mountz
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Frank S Lieberman
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Joy D Fisher
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Serena Desideri
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Xiaobu Ye
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Stuart A Grossman
- Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - David Schiff
- University of Virginia, Charlottesville, Virginia
| | - Richard L Wahl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Brain Cancer Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
19
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
20
|
Kudomi N, Maeda Y, Hatakeyama T, Yamamoto Y, Nishiyama Y. Fully parametric imaging with reversible tracer 18F-FLT within a reasonable time. Radiol Phys Technol 2016; 10:41-48. [PMID: 27380307 DOI: 10.1007/s12194-016-0367-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/09/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
PET enables quantitative imaging of the rate constants K 1, k 2, k 3, and k 4, with a reversible two tissue compartment model (2TCM). A new method is proposed for computing all of these rates within a reasonable time, less than 1 min. A set of differential equations for the reversible 2TCM was converted into a single formula consisting of differential and convolution terms. The validity was tested on clinical data with 18F-FLT PET for patients with glioma (n = 39). Parametric images were generated with the formula that was developed. Parametric values were extracted from regions of interest (ROIs) for glioma from the images generated, and they were compared with those obtained with the non-linear fitting method. We performed simulation studies for testing accuracy by generating simulated images, assuming clinically expected ranges of the parametric values. The computation time was about 20 s, and the quality of the images generated was acceptable. The values obtained for K 1 for grade IV tumor were 0.24 ± 0.23 and 0.26 ± 0.25 ml-1 min-1 g-1 for the image-based and ROI-based methods, respectively. The values were 0.21 ± 0.12 and 0.21 ± 0.12 min-1 for k 2, 0.13 ± 0.07 and 0.13 ± 0.07 min-1 for k 3, and 0.052 ± 0.020 and 0.054 ± 0.021 min-1 for k 4. The differences between the methods were not significant. Regression analysis showed correlations of r = 0.94, 0.86, 0.71, and 0.52 for these parameters. Simulation demonstrated that the accuracy was within acceptable ranges, namely, the correlations were r = 0.99, r = 0.97, r = 0.99, and r = 0.91 for K 1, k 2, k 3, and k 4, respectively, between estimated and assumed values. This results suggest that parametric images can be obtained fully within reasonable time, accuracy, and quality.
Collapse
Affiliation(s)
- Nobuyuki Kudomi
- Department of Medical Physics, Faculty of Medicine, Kagawa University, Mikicho, Kagawa, 761-0793, Japan.
| | - Yukito Maeda
- Department of Radiology, Kagawa University Hospital, Mikicho, Kagawa, 761-0793, Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Mikicho, Kagawa, 761-0793, Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Mikicho, Kagawa, 761-0793, Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Mikicho, Kagawa, 761-0793, Japan
| |
Collapse
|
21
|
Miyake K, Ogawa D, Okada M, Hatakeyama T, Tamiya T. Usefulness of positron emission tomographic studies for gliomas. Neurol Med Chir (Tokyo) 2016; 56:396-408. [PMID: 27250577 PMCID: PMC4945598 DOI: 10.2176/nmc.ra.2015-0305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Non-invasive positron emission tomography (PET) enables the measurement of metabolic and molecular processes with high sensitivity. PET plays a significant role in the diagnosis, prognosis, and treatment of brain tumors and predominantly detects brain tumors by detecting their metabolic alterations, including energy metabolism, amino acids, nucleic acids, and hypoxia. Glucose metabolic tracers are related to tumor cell energy and exhibit good sensitivity but poor specificity for malignant tumors. Amino acid metabolic tracers provide a better delineation of tumors and cellular proliferation. Nucleic acid metabolic tracers have a high sensitivity for malignant tumors and cellular proliferation. Hypoxic metabolism tracers are useful for detecting resistance to radiotherapy and chemotherapy. Therefore, PET imaging techniques are useful for detecting biopsy-targeting points, deciding on tumor resection, radiotherapy planning, monitoring therapy, and distinguishing brain tumor recurrence or progression from post-radiotherapy effects. However, it is not possible to use only one PET tracer to make all clinical decisions because each tracer has both advantages and disadvantages. This study focuses on the different kinds of PET tracers and summarizes their recent applications in patients with gliomas. Combinational uses of PET tracers are expected to contribute to differential diagnosis, prognosis, treatment targeting, and monitoring therapy.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Neurological Surgery, Kagawa University Faculty of Medicine
| | | | | | | | | |
Collapse
|
22
|
Toyota Y, Miyake K, Kawai N, Hatakeyama T, Yamamoto Y, Toyohara J, Nishiyama Y, Tamiya T. Comparison of 4'-[methyl-(11)C]thiothymidine ((11)C-4DST) and 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) PET/CT in human brain glioma imaging. EJNMMI Res 2015; 5:7. [PMID: 25853013 PMCID: PMC4385144 DOI: 10.1186/s13550-015-0085-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/16/2015] [Indexed: 12/17/2022] Open
Abstract
Background 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) has been used to evaluate tumor malignancy and cell proliferation in human brain gliomas. However, 18F-FLT has several limitations in clinical use. Recently, 11C-labeled thymidine analogue, 4′-[methyl-11C]thiothymidine (11C-4DST), became available as an in vivo cell proliferation positron emission tomography (PET) tracer. The present study was conducted to evaluate the usefulness of 11C-4DST PET in the diagnosis of human brain gliomas by comparing with the images of 18F-FLT PET. Methods Twenty patients with primary and recurrent brain gliomas underwent 18F-FLT and 11C-4DST PET scans. The uptake values in the tumors were evaluated using the maximum standardized uptake value (SUVmax), the tumor-to-normal tissue uptake (T/N) ratio, and the tumor-to-blood uptake (T/B) ratio. These values were compared among different glioma grades. Correlation between the Ki-67 labeling index and the uptake values of 11C-4DST and 18F-FLT in the tumor was evaluated using linear regression analysis. The relationship between the individual 18F-FLT and 11C-4DST uptake values in the tumors was also examined. Results 11C-4DST uptake was significantly higher than that of 18F-FLT in the normal brain. The uptake values of 11C-4DST in the tumor were similar to those of 18F-FLT resulting in better visualization with 18F-FLT. No significant differences in the uptake values of 18F-FLT and 11C-4DST were noted among different glioma grades. Linear regression analysis showed a significant correlation between the Ki-67 labeling index and the T/N ratio of 11C-4DST (r = 0.50, P < 0.05) and 18F-FLT (r = 0.50, P < 0.05). Significant correlations were also found between the Ki-67 labeling index and the T/B ratio of 11C-4DST (r = 0.52, P < 0.05) and 18F-FLT (r = 0.55, P < 0.05). A highly significant correlation was observed between the individual T/N ratio of 11C-4DST and 18F-FLT in the tumor (r = 0.79, P = 0.0001). Conclusions The present study demonstrates that 11C-4DST is useful for the imaging of human brain gliomas with PET. A relatively higher background uptake of 11C-4DST in the normal brain compared to 18F-FLT limits the detection of low-tracer-uptake tumors. Moreover, no superiority was found in 11C-4DST over 18F-FLT in the evaluation of cell proliferation.
Collapse
Affiliation(s)
- Yasunori Toyota
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Nobuyuki Kawai
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Tetsuhiro Hatakeyama
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Yuka Yamamoto
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015 Japan
| | - Yoshihiro Nishiyama
- Department of Radiology, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| | - Takashi Tamiya
- Department of Neurological Surgery, Faculty of Medicine, Kagawa University, Kagawa, 761-0793 Japan
| |
Collapse
|
23
|
Simoncic U, Jeraj R. Heterogeneity in stabilization phenomena in FLT PET images of canines. Phys Med Biol 2014; 59:7937-55. [PMID: 26009642 DOI: 10.1088/0031-9155/59/24/7937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
3'-((18)F)fluoro-3'-deoxy-L-thymidine (FLT) is a PET marker of cellular proliferation. Its tissue uptake rate is often quantified with a Standardized Uptake Value (SUV), although kinetic analysis provides a more accurate quantification. The purpose of this study is to investigate the heterogeneity in FLT stabilization phenomena. The study was done on 15 canines with spontaneously occurring sinonasal tumours. They were imaged dynamically for 90 min with FLT PET/CT twice; before and during the radiotherapy. Images were analyzed for kinetics on a voxel basis through compartmental analysis. Stabilization curves were calculated as a time-dependant correlation between the time-dependant SUV and the kinetic parameters (voxel values within the tumour were correlated). Stabilization curves were analyzed for stabilization speed, maximal correlation and correlation decrease following the maximal correlation. These stabilization parameters were correlated with the region-averaged kinetic parameters. The FLT SUV was highly correlated with vasculature fraction immediately post-injection, followed by maximum in correlation with the perfusion/permeability. At later times post-injection the FLT SUV was highly correlated (Pearson correlation coefficient above 0.95) with the FLT influx parameter for cases with tumour-averaged SUV(30-50 min) above 2, while others were indeterminate (correlation coefficients from 0.1 to 0.97). All cases with highly correlated SUV and FLT influx parameter had correlation coefficient within 0.5% of its maximum in the period of 30-50 min post-injection. Stabilization time was inversely proportional to the FLT influx rate. Correlation between the FLT SUV and FLT influx parameter dropped at later times post-injection with drop being proportional to the dephosphorylation rate. The FLT was found to be metabolically stable in canines. FLT PET imaging protocol should define minimal and maximal FLT uptake period, which would be 30-50 min for our patients. Additionally, kinetic analysis should be used when low FLT avidity is expected. Low SUVs should be treated with great caution.
Collapse
Affiliation(s)
- Urban Simoncic
- Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia. Medical Physics Department, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705-2275, USA. The Centre of Excellence for Biosensors, Instrumentation and Process Control-COBIK, Tovarniska 26, 5270 Ajdovscina, Slovenia
| | | |
Collapse
|
24
|
Lin NU, Amiri-Kordestani L, Palmieri D, Liewehr DJ, Steeg PS. CNS metastases in breast cancer: old challenge, new frontiers. Clin Cancer Res 2014; 19:6404-18. [PMID: 24298071 DOI: 10.1158/1078-0432.ccr-13-0790] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite major therapeutic advances in the management of patients with breast cancer, central nervous system (CNS) metastases remain an intractable problem, particularly in patients with metastatic HER2-positive and triple-negative breast cancer. As systemic therapies to treat extracranial disease improve, some patients are surviving longer, and the frequency of CNS involvement seems to be increasing. Furthermore, in the early-stage setting, the CNS remains a potential sanctuary site for relapse. This review highlights advances in the development of biologically relevant preclinical models, including the development of brain-tropic cell lines for testing of agents to prevent and treat brain metastases, and summarizes our current understanding of the biology of CNS relapse. From a clinical perspective, a variety of therapeutic approaches are discussed, including methods to improve drug delivery, novel cytotoxic agents, and targeted therapies. Challenges in current trial design and endpoints are reviewed. Finally, we discuss promising new directions, including novel trial designs, correlative imaging techniques, and enhanced translational opportunities.
Collapse
Affiliation(s)
- Nancy U Lin
- Authors' Affiliations: Dana-Farber Cancer Institute, Boston, Massachusetts; Medical Oncology Branch, Center for Cancer Research, National Cancer Institute; Women's Cancers Section, Laboratory of Molecular Pharmacology; and Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
25
|
Heiss WD. [PET in gliomas. Overview of current studies]. Nuklearmedizin 2014; 53:163-71; quiz N32. [PMID: 24853278 DOI: 10.3413/nukmed-0662-14-04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/20/2014] [Indexed: 11/20/2022]
Abstract
Gliomas which represent 30% of intracranial tumours are morphologic lesions and therefore CT and MRI are the first line diagnostic procedures with MRI giving better soft tissue resolution and permitting additional functional information. These mainly morphologic imaging modalities yield only restricted information on grade of malignancy, on infiltration into and effects on surrounding brain tissue, on differentiation between necrotic and recurrent tumour, on prognosis and on efficacy of treatment. Information on these important issues for patient management can be obtained by PET-studies of glucose metabolism with FDG, of aminoacid-uptake and protein synthesis with 11C-methionin, 18F-fluorethyltyrosin and 18F-fluor-deoxyphenylalanin and of proliferation by 18F-deoxythymidin. With the increasing availability of 18F-tracers PET has obtained wider spread clinical application. In all these applications a coregistration with morphologic imaging should be obtained, and for that purpose hybrid installations (PET-MR) are already being used.
Collapse
Affiliation(s)
- W-D Heiss
- Prof. Dr. W.-D. Heiss, Max-Planck-Institut für neurologische Forschung, Gleueler Str. 50, 50931 Köln, Tel. 02 21/472 62 20, Fax 02 21/472 63 49, E-Mail:
| |
Collapse
|
26
|
Nowosielski M, DiFranco MD, Putzer D, Seiz M, Recheis W, Jacobs AH, Stockhammer G, Hutterer M. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas. PLoS One 2014; 9:e95830. [PMID: 24759867 PMCID: PMC3997484 DOI: 10.1371/journal.pone.0095830] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 03/31/2014] [Indexed: 11/20/2022] Open
Abstract
Objectives Intra-individual spatial overlap analysis of tumor volumes assessed by MRI, the amino acid PET tracer [18F]-FET and the nucleoside PET tracer [18F]-FLT in high-grade gliomas (HGG). Methods MRI, [18F]-FET and [18F]-FLT PET data sets were retrospectively analyzed in 23 HGG patients. Morphologic tumor volumes on MRI (post-contrast T1 (cT1) and T2 images) were calculated using a semi-automatic image segmentation method. Metabolic tumor volumes for [18F]-FET and [18F]-FLT PETs were determined by image segmentation using a threshold-based volume of interest analysis. After co-registration with MRI the morphologic and metabolic tumor volumes were compared on an intra-individual basis in order to estimate spatial overlaps using the Spearman's rank correlation coefficient and the Mann-Whitney U test. Results [18F]-FLT uptake was negative in tumors with no or only moderate contrast enhancement on MRI, detecting only 21 of 23 (91%) HGG. In addition, [18F]-FLT uptake was mainly restricted to cT1 tumor areas on MRI and [18F]-FLT volumes strongly correlated with cT1 volumes (r = 0.841, p<0.001). In contrast, [18F]-FET PET detected 22 of 23 (96%) HGG. [18F]-FET uptake beyond areas of cT1 was found in 61% of cases and [18F]-FET volumes showed only a moderate correlation with cT1 volumes (r = 0.573, p<0.001). Metabolic tumor volumes beyond cT1 tumor areas were significantly larger for [18F]-FET compared to [18F]-FLT tracer uptake (8.3 vs. 2.7 cm3, p<0.001). Conclusion In HGG [18F]-FET but not [18F]-FLT PET was able to detect metabolic active tumor tissue beyond contrast enhancing tumor on MRI. In contrast to [18F]-FET, blood-brain barrier breakdown seems to be a prerequisite for [18F]-FLT tracer uptake.
Collapse
Affiliation(s)
- Martha Nowosielski
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- * E-mail:
| | - Matthew D. DiFranco
- Department of Oto-, Rhino- and Laryngology with 4D Visualization Lab, Innsbruck Medical University, Innsbruck, Austria
- Department of Radiology, Computational Image Analysis and Radiology Lab (CIR), Medical University of Vienna, Vienna, Austria
| | - Daniel Putzer
- Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Marcel Seiz
- Department of Neurosurgery, Innsbruck Medical University, Innsbruck, Austria
- Department of Neurosurgery, Mannheim Medical University, Mannheim, Germany
| | - Wolfgang Recheis
- Department of Radiology, Innsbruck Medical University, Innsbruck, Austria
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westphalian Wilhelms University, Münster, Germany
- Department of Geriatrics at Evangelische Kliniken, Johanniter Krankenhaus, Bonn, Germany
| | | | - Markus Hutterer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
- Department of Neurology and Wilhelm-Sander Neurooncology Unity, University Hospital and Medical School Regensburg, Regensburg, Germany
| |
Collapse
|
27
|
Usefulness of PET/CT for the Differentiation and Characterization of Periampullary Lesions. Clin Nucl Med 2013; 38:703-8. [DOI: 10.1097/rlu.0b013e31829b266a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Shinomiya A, Miyake K, Okada M, Nakamura T, Kawai N, Kushida Y, Haba R, Kudomi N, Tokuda M, Tamiya T. 3'-Deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT) transport in newly diagnosed glioma: correlation with nucleoside transporter expression, vascularization, and blood-brain barrier permeability. Brain Tumor Pathol 2013; 30:215-23. [PMID: 23423309 DOI: 10.1007/s10014-013-0136-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
3'-Deoxy-3'-[(18)F]-fluorothymidine ([(18)F]-FLT), a marker of cellular proliferation, has been used in positron emission tomography (PET) examination of gliomas. The aim of this study was to investigate whether the uptake of [(18)F]-FLT in glioma correlates with messenger RNA (mRNA) levels of the equilibrative nucleoside transporter 1 (ENT1), microvascular density (assessed by CD34 immunohistochemistry), and the blood-brain barrier (BBB) breakdown. A total of 21 patients with newly diagnosed glioma were examined with [(18)F]-FLT PET. Tumor lesions were identified as areas of focally increased [(18)F]-FLT uptake, exceeding that of surrounding normal tissue. Dynamic analysis of [(18)F]-FLT PET revealed correlations between the phosphorylation rate constant k 3 and ENT1 expression; however there was no correlation between the kinetic parameters and CD34 score. There was a good correlation between the gadolinium (Gd) enhancement score (evaluating BBB breakdown) and ENT1 expression, CD34 score, and Ki-67 index. This preliminary study suggests that ENT1 expression might not reflect accumulation of [(18)F]-FLT in vivo due to BBB permeability in glioma.
Collapse
Affiliation(s)
- Aya Shinomiya
- Department of Neurological Surgery, Kagawa University Faculty of Medicine, 1750-1 Ikenobe, Miki, Kagawa, 761-0173, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|