1
|
dos Santos Loureiro GG, Duarte Couto P, Gambini Gonzalez JP, Alonso Nuñez O. Comparative Evaluation of ( 18 F)AlF-PSMA-HBED-CC and 68 Ga-PSMA-HBED-CC in Staging Intermediate-/High-Risk Prostate Cancer: A Prospective Study. World J Nucl Med 2025; 24:118-127. [PMID: 40336848 PMCID: PMC12055253 DOI: 10.1055/s-0045-1801842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025] Open
Abstract
Objective 68 Ga-PSMA-HBED-CC positron emission tomography (PET)/computed tomography (CT) represents a clinically relevant technique for the evaluation of prostate cancer (PCa) patients, whereas 18 F-AIF-PSMA-HBED-CC is a novel tracer produced in our center, with suitable radiochemical purity for clinical purposes. We prospectively compared the diagnostic values of both tracers for the detection of metastatic disease in patients with intermediate-/high-risk PCa at initial staging. Materials and Methods Sixty-six patients (mean age: 63 years; range: 52-78 years) with PCa at initial staging (Gleason score ≥6; median prostate-specific antigen [PSA]: 10 ng/mL; range:1.7-152 ng/mL) prospectively underwent routine 68 Ga-PSMA-11 and 18 F-AlF-PSMA-11 PET/CT scanning with a 64-slice PET/CT scan with time-of-flight (TOF) correction. We measured the maximum standardized uptake value (SUVmax) and lesion-to-background ratio (LBR) in all coincidentally detected lesions. Open prostatectomy and pelvic lymph node dissection were performed in nonmetastatic patients. Histopathology, correlative imaging, and/or clinical follow-up were considered the gold standard. Follow-up was conducted at least 4 months after PET/CT scanning (median: 6.4 months; range: 4-11 months). Sensitivity, specificity, and predictive values were calculated. Results The overall detection rate was 85% (56/66) for both tracers. At least one suspicious lesion indicating potential PCa metastasis was detected in 20 (30%) and 21 (32%) of 66 patients for 68 Ga-PSMA-11 and 18 F-AIF-PSMA-11 tracers, respectively. A total of 145 extra-prostatic lesions were detected in the bone ( n = 56), lymph nodes ( n = 88), and lung ( n = 1) by at least one radiopharmaceutical: 131 (90%) for 68 Ga-PSMA-11 and 123 (85%) for 18 F-AlF-PSMA-11. In concordant lesions, a significant correlation was found between the SUVmax of both tracers ( r = 0.90, p = 0.001). The SUVmax and LBR for 18 F-AlF-PSMA-11 were higher in bone foci ( n = 39) compared with 68 Ga-PSMA-11 (7.2 vs. 8.9 and 14 vs. 13, respectively, p = 0.02). For the detection of systemic metastasis, the sensitivity values were the same for both techniques: 0.90 (95% confidence interval [CI]: 0.68-0.98). We calculated specificities of 0.96 (95% CI: 0.85-0.99) and 0.94 (95% CI: 0.82-0.98) for 68 Ga-PSMA-11 and 18 F-AlF-PSMA-11, respectively. Conclusions 68 Ga-PSMA-11 and 18 F-AlF-PSMA-11 PET/CT seem to be clinically equivalent imaging techniques for the assessment of primary intermediate-/high-risk PCa with promising potential for the detection of metastatic spread that would impact patient management.
Collapse
Affiliation(s)
- Gerardo Gabriel dos Santos Loureiro
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
- Nuclear Medicine and Molecular Imaging Centre, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | | | - Juan Pablo Gambini Gonzalez
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
- Nuclear Medicine and Molecular Imaging Centre, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Omar Alonso Nuñez
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
- Nuclear Medicine and Molecular Imaging Centre, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
2
|
Alshamrani AFA. Diagnostic Accuracy of Molecular Imaging Techniques for Detecting Prostate Cancer: A Systematic Review. Diagnostics (Basel) 2024; 14:1315. [PMID: 39001206 PMCID: PMC11240585 DOI: 10.3390/diagnostics14131315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Molecular imaging modalities show valuable non-invasive techniques capable of precisely and selectively addressing molecular markers associated with prostate cancer (PCa). This systematic review provides an overview of imaging markers utilized in positron emission tomography (PET) methods, specifically focusing on the pathways and mediators involved in PCa. This systematic review aims to evaluate and analyse existing literature on the diagnostic accuracy of molecular imaging techniques for detecting PCa. The PubMed, EBSCO, ScienceDirect, and Web of Science databases were searched, identifying 32 studies that reported molecular imaging modalities for detecting PCa. Numerous imaging modalities and radiotracers were used to detect PCa, including 68Ga-prostate-specific membrane antigen (PSMA) PET/computed tomography (CT), 68Ga-PSMA-11 PET/magnetic resonance imaging (MRI), 18F-PSMA-1007 PET/CT, 18F-DCFPyL PET/MRI, 18F-choline PET/MRI, and 18F-fluoroethylcholine PET/MRI. Across 11 studies, radiolabelled 68Ga-PSMA PET/CT imaging had a pooled sensitivity of 80 (95% confidence interval [CI]: 35-93), specificity of 90 (95% CI: 71-98), and accuracy of 86 (95% CI: 64-96). The PSMA-ligand 68Ga-PET/CT showed good diagnostic performance and appears promising for detecting and staging PCa.
Collapse
Affiliation(s)
- Abdullah Fahad A Alshamrani
- Department of Diagnostic Radiology Technology, College of Applied Medical Sciences, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
3
|
Zamani-Siahkali N, Mirshahvalad SA, Farbod A, Divband G, Pirich C, Veit-Haibach P, Cook G, Beheshti M. SPECT/CT, PET/CT, and PET/MRI for Response Assessment of Bone Metastases. Semin Nucl Med 2024; 54:356-370. [PMID: 38172001 DOI: 10.1053/j.semnuclmed.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Recent developments in hybrid SPECT/CT systems and the use of cadmium-zinc-telluride (CZT) detectors have improved the diagnostic accuracy of bone scintigraphy. These advancements have paved the way for novel quantitative approaches to accurate and reproducible treatment monitoring of bone metastases. PET/CT imaging using [18F]F-FDG and [18F]F-NaF have shown promising clinical utility in bone metastases assessment and monitoring response to therapy and prediction of treatment response in a broad range of malignancies. Additionally, specific tumor-targeting tracers like [99mTc]Tc-PSMA, [68Ga]Ga-PSMA, or [11C]C- or [18F]F-Choline revealed high diagnostic performance for early assessment and prognostication of bone metastases, particularly in prostate cancer. PET/MRI appears highly accurate imaging modality, but has associated limitations notably, limited availability, more complex logistics and high installation costs. Advances in artificial intelligence (Al) seem to improve the accuracy of imaging modalities and provide an assistant role in the evaluation of treatment response of bone metastases.
Collapse
Affiliation(s)
- Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Patrick Veit-Haibach
- Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, Canada
| | - Gary Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
4
|
Mohseninia N, Zamani-Siahkali N, Harsini S, Divband G, Pirich C, Beheshti M. Bone Metastasis in Prostate Cancer: Bone Scan Versus PET Imaging. Semin Nucl Med 2024; 54:97-118. [PMID: 37596138 DOI: 10.1053/j.semnuclmed.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 08/20/2023]
Abstract
Prostate cancer is the second most common cause of malignancy among men, with bone metastasis being a significant source of morbidity and mortality in advanced cases. Detecting and treating bone metastasis at an early stage is crucial to improve the quality of life and survival of prostate cancer patients. This objective strongly relies on imaging studies. While CT and MRI have their specific utilities, they also possess certain drawbacks. Bone scintigraphy, although cost-effective and widely available, presents high false-positive rates. The emergence of PET/CT and PET/MRI, with their ability to overcome the limitations of standard imaging methods, offers promising alternatives for the detection of bone metastasis. Various radiotracers targeting cell division activity or cancer-specific membrane proteins, as well as bone seeking agents, have been developed and tested. The use of positron-emitting isotopes such as fluorine-18 and gallium-68 for labeling allows for a reduced radiation dose and unaffected biological properties. Furthermore, the integration of artificial intelligence (AI) and radiomics techniques in medical imaging has shown significant advancements in reducing interobserver variability, improving accuracy, and saving time. This article provides an overview of the advantages and limitations of bone scan using SPECT and SPECT/CT and PET imaging methods with different radiopharmaceuticals and highlights recent developments in hybrid scanners, AI, and radiomics for the identification of prostate cancer bone metastasis using molecular imaging.
Collapse
Affiliation(s)
- Nasibeh Mohseninia
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Nazanin Zamani-Siahkali
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Department of Nuclear Medicine, Research center for Nuclear Medicine and Molecular Imaging, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Harsini
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | | | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
5
|
Fernandes MC, Yildirim O, Woo S, Vargas HA, Hricak H. The role of MRI in prostate cancer: current and future directions. MAGMA (NEW YORK, N.Y.) 2022; 35:503-521. [PMID: 35294642 PMCID: PMC9378354 DOI: 10.1007/s10334-022-01006-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
There has been an increasing role of magnetic resonance imaging (MRI) in the management of prostate cancer. MRI already plays an essential role in the detection and staging, with the introduction of functional MRI sequences. Recent advancements in radiomics and artificial intelligence are being tested to potentially improve detection, assessment of aggressiveness, and provide usefulness as a prognostic marker. MRI can improve pretreatment risk stratification and therefore selection of and follow-up of patients for active surveillance. MRI can also assist in guiding targeted biopsy, treatment planning and follow-up after treatment to assess local recurrence. MRI has gained importance in the evaluation of metastatic disease with emerging technology including whole-body MRI and integrated positron emission tomography/MRI, allowing for not only better detection but also quantification. The main goal of this article is to review the most recent advances on MRI in prostate cancer and provide insights into its potential clinical roles from the radiologist's perspective. In each of the sections, specific roles of MRI tailored to each clinical setting are discussed along with its strengths and weakness including already established material related to MRI and the introduction of recent advancements on MRI.
Collapse
Affiliation(s)
- Maria Clara Fernandes
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA.
| | - Hebert Alberto Vargas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, 10065, USA
| |
Collapse
|
6
|
Manafi-Farid R, Ranjbar S, Jamshidi Araghi Z, Pilz J, Schweighofer-Zwink G, Pirich C, Beheshti M. Molecular Imaging in Primary Staging of Prostate Cancer Patients: Current Aspects and Future Trends. Cancers (Basel) 2021; 13:5360. [PMID: 34771523 PMCID: PMC8582501 DOI: 10.3390/cancers13215360] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022] Open
Abstract
Accurate primary staging is the cornerstone in all malignancies. Different morphological imaging modalities are employed in the evaluation of prostate cancer (PCa). Regardless of all developments in imaging, invasive histopathologic evaluation is still the standard method for the detection and staging of the primary PCa. Magnetic resonance imaging (MRI) and computed tomography (CT) play crucial roles; however, functional imaging provides additional valuable information, and it is gaining ever-growing acceptance in the management of PCa. Targeted imaging with different radiotracers has remarkably evolved in the past two decades. [111In]In-capromab pendetide scintigraphy was a new approach in the management of PCa. Afterwards, positron emission tomography (PET) tracers such as [11C/18F]choline and [11C]acetate were developed. Nevertheless, none found a role in the primary staging. By introduction of the highly sensitive small molecule prostate-specific membrane antigen (PSMA) PET/CT, as well as recent developments in MRI and hybrid PET/MRI systems, non-invasive staging of PCa is being contemplated. Several studies investigated the role of these sophisticated modalities in the primary staging of PCa, showing promising results. Here, we recapitulate the role of targeted functional imaging. We briefly mention the most popular radiotracers, their diagnostic accuracy in the primary staging of PCa, and impact on patient management.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran 1411713135, Iran;
| | - Shaghayegh Ranjbar
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Zahra Jamshidi Araghi
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Julia Pilz
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Gregor Schweighofer-Zwink
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Christian Pirich
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| | - Mohsen Beheshti
- Department of Nuclear Medicine, Division of Molecular Imaging and Theranostics, University Hospital Salzburg, Paracelsus Medical University, Muellner Hauptstrasse 48, 5020 Salzburg, Austria; (S.R.); (Z.J.A.); (J.P.); (G.S.-Z.); (C.P.)
| |
Collapse
|
7
|
Zhao J, Kader A, Mangarova DB, Brangsch J, Brenner W, Hamm B, Makowski MR. Dynamic Contrast-Enhanced MRI of Prostate Lesions of Simultaneous [ 68Ga]Ga-PSMA-11 PET/MRI: Comparison between Intraprostatic Lesions and Correlation between Perfusion Parameters. Cancers (Basel) 2021; 13:1404. [PMID: 33808685 PMCID: PMC8003484 DOI: 10.3390/cancers13061404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022] Open
Abstract
We aimed to retrospectively compare the perfusion parameters measured from dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) of prostate benign lesions and malignant lesions to determine the relationship between perfusion parameters. DCE-MRI was performed in patients with PCa who underwent simultaneous [68Ga]Ga-prostate-specific membrane antigen (PSMA)-11 positron emission tomography (PET)/MRI. Six perfusion parameters (arrival time (AT), time to peak (TTP), wash-in slope (W-in), wash-out slope (W-out), peak enhancement intensity (PEI), and initial area under the 60-s curve (iAUC)), and a semi-quantitative parameter, standardized uptake values maximum (SUVmax) were calculated by placing regions of interest in the largest area of the lesions. The DCE-MRI parameters between prostate benign and malignant lesions were compared. The DCE-MRI parameters in both the benign and malignant lesions subgroup with SUVmax ≤ 3.0 and SUVmax > 3.0 were compared. The correlation of DCE-MRI parameters was investigated. Malignant lesions demonstrated significantly shorter TTP and higher SUVmax than did benign lesions. In the benign and malignant lesions subgroup, perfusion parameters of lesions with SUVmax ≤ 3.0 show no significant difference to those with SUVmax > 3.0. DCE-MRI perfusion parameters show a close correlation with each other. DCE-MRI parameters reflect the perfusion characteristics of intraprostatic lesions with malignant lesions, demonstrating significantly shorter TTP. There is a moderate to strong correlation between DCE-MRI parameters. Semi-quantitative analysis reflects that malignant lesions show a significantly higher SUVmax than benign lesions.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Radiology and Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.K.); (D.B.M.); (J.B.); (B.H.); (M.R.M.)
| | - Avan Kader
- Institute of Radiology and Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.K.); (D.B.M.); (J.B.); (B.H.); (M.R.M.)
- Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195 Berlin, Germany
| | - Dilyana B. Mangarova
- Institute of Radiology and Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.K.); (D.B.M.); (J.B.); (B.H.); (M.R.M.)
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163 Berlin, Germany
| | - Julia Brangsch
- Institute of Radiology and Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.K.); (D.B.M.); (J.B.); (B.H.); (M.R.M.)
| | - Winfried Brenner
- Department of Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Bernd Hamm
- Institute of Radiology and Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.K.); (D.B.M.); (J.B.); (B.H.); (M.R.M.)
| | - Marcus R. Makowski
- Institute of Radiology and Nuclear Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (A.K.); (D.B.M.); (J.B.); (B.H.); (M.R.M.)
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
8
|
Curative-intent Metastasis-directed Therapies for Molecularly-defined Oligorecurrent Prostate Cancer: A Prospective Phase II Trial Testing the Oligometastasis Hypothesis. Eur Urol 2021; 80:374-382. [PMID: 33685838 DOI: 10.1016/j.eururo.2021.02.031] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/17/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The hypothesis of a curable oligometastatic prostate cancer (PCa) state remains to be clinically-proven. Conventional imaging often fails to localize early recurrences, hampering the potential for radical approaches. OBJECTIVE We hypothesize that prostate-specific membrane antigen (PSMA)-targeted PET-MR/CT allows for earlier detection and localization of oligorecurrent-PCa, unveiling a molecularly-defined state amenable to curative-intent metastasis-directed treatment (MDT). DESIGN/SETTING/PARTICIPANTS Single-institution single-arm phase-two study. Patients with rising PSA (0.4-3.0 ng/mL) after maximal local therapy (radical prostatectomy and post-operative radiotherapy), negative conventional staging, and no prior salvage hormonal therapy (HT) were eligible. INTERVENTIONS All patients underwent [18F]DCFPyL PET-MR/CT. Patients with molecularly-defined oligorecurrent-PCa had MDT (stereotactic ablative body radiotherapy [SABR] or surgery) without HT. OUTCOME MEASUREMENTS/STATISTICAL ANALYSIS Primary endpoint was biochemical response (complete, i.e. biochemical 'no evidence of disease' [bNED], or partial response [100% or ≥50% PSA decline from baseline, respectively]) after MDT. Simon's two-stage design was employed (null and alternate hypotheses <5% and >20% response rate, respectively), with α and β of 0.1. RESULTS Seventy-two patients were enrolled (May/2017-July/2019). Thirty-eight (53%) had PSMA-detected oligorecurrent-PCa amenable for MDT. Thirty-seven (51%) agreed to MDT: 10 and 27 underwent surgery and SABR, respectively. Median follow-up was 15.9 months (IQR 9.8-19.1). Of patients receiving MDT, the overall response rate was 60%, including 22% rendered bNED. One (2.7%) grade 3 toxicity (intra-operative ureteric injury) was observed. CONCLUSIONS PSMA-defined oligorecurrent-PCa can be rendered bNED, a necessary step towards cure, in 1 of 5 patients receiving MDT alone. Randomized trials are justified to determine if MDT +/- systemic agents can expand the curative therapeutic armamentarium for PCa. PATIENT SUMMARY We studied men treated for prostate cancer with rising PSA. We found PSMA imaging detected recurrent cancer in three-quarters of patients, and targeted treatment to these areas significantly decreased PSA in half of patients.
Collapse
|
9
|
Evangelista L, Zattoni F, Cassarino G, Artioli P, Cecchin D, Dal Moro F, Zucchetta P. PET/MRI in prostate cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2021; 48:859-873. [PMID: 32901351 PMCID: PMC8036222 DOI: 10.1007/s00259-020-05025-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
AIM In recent years, the clinical availability of scanners for integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) has enabled the practical potential of multimodal, combined metabolic-receptor, anatomical, and functional imaging to be explored. The present systematic review and meta-analysis summarize the diagnostic information provided by PET/MRI in patients with prostate cancer (PCa). MATERIALS AND METHODS A literature search was conducted in three different databases. The terms used were "choline" or "prostate-specific membrane antigen - PSMA" AND "prostate cancer" or "prostate" AND "PET/MRI" or "PET MRI" or "PET-MRI" or "positron emission tomography/magnetic resonance imaging." All relevant records identified were combined, and the full texts were retrieved. Reports were excluded if (1) they did not consider hybrid PET/MRI; or (2) the sample size was < 10 patients; or (3) the raw data were not enough to enable the completion of a 2 × 2 contingency table. RESULTS Fifty articles were eligible for systematic review, and 23 for meta-analysis. The pooled data concerned 2104 patients. Initial disease staging was the main indication for PET/MRI in 24 studies. Radiolabeled PSMA was the tracer most frequently used. In primary tumors, the pooled sensitivity for the patient-based analysis was 94.9%. At restaging, the pooled detection rate was 80.9% and was higher for radiolabeled PSMA than for choline (81.8% and 77.3%, respectively). CONCLUSIONS PET/MRI proved highly sensitive in detecting primary PCa, with a high detection rate for recurrent disease, particularly when radiolabeled PSMA was used.
Collapse
Affiliation(s)
- Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy.
| | - Fabio Zattoni
- Urology Unit, Department of Medicine, Udine University Hospital, Udine, Italy
| | - Gianluca Cassarino
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| | - Paolo Artioli
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| | - Fabrizio Dal Moro
- Urology Unit, Department of Medicine, Udine University Hospital, Udine, Italy
- Urology Unit, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Pietro Zucchetta
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, Padova, Italy
| |
Collapse
|
10
|
Van Nieuwenhove S, Van Damme J, Padhani AR, Vandecaveye V, Tombal B, Wuts J, Pasoglou V, Lecouvet FE. Whole-body magnetic resonance imaging for prostate cancer assessment: Current status and future directions. J Magn Reson Imaging 2020; 55:653-680. [PMID: 33382151 DOI: 10.1002/jmri.27485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, updated definitions for the different stages of prostate cancer and risk for distant disease, along with the advent of new therapies, have remarkably changed the management of patients. The two expectations from imaging are accurate staging and appropriate assessment of disease response to therapies. Modern, next-generation imaging (NGI) modalities, including whole-body magnetic resonance imaging (WB-MRI) and nuclear medicine (most often prostate-specific membrane antigen [PSMA] positron emission tomography [PET]/computed tomography [CT]) bring added value to these imaging tasks. WB-MRI has proven its superiority over bone scintigraphy (BS) and CT for the detection of distant metastasis, also providing reliable evaluations of disease response to treatment. Comparison of the effectiveness of WB-MRI and molecular nuclear imaging techniques with regard to indications and the definition of their respective/complementary roles in clinical practice is ongoing. This paper illustrates the evolution of WB-MRI imaging protocols, defines the current state-of-the art, and highlights the latest developments and future challenges. The paper presents and discusses WB-MRI indications in the care pathway of men with prostate cancer in specific key situations: response assessment of metastatic disease, "all in one" cancer staging, and oligometastatic disease.
Collapse
Affiliation(s)
- Sandy Van Nieuwenhove
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Van Damme
- Department of Urology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Anwar R Padhani
- Mount Vernon Cancer Centre, Mount Vernon Hospital, London, UK
| | - Vincent Vandecaveye
- Department of Radiology and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Bertrand Tombal
- Department of Urology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Joris Wuts
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.,Department of Electronics and Informatics (ETRO), Vrije Universiteit Brussel, Brussels, Belgium
| | - Vassiliki Pasoglou
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Frederic E Lecouvet
- Department of Radiology and Medical Imaging, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
11
|
Öztürk H. PET/MRI: The future of cancer restaging. Cancer Treat Res Commun 2020; 25:100250. [PMID: 33276287 DOI: 10.1016/j.ctarc.2020.100250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 11/26/2022]
Abstract
The re-staging of cancer is one of the main oncological problems faced in the present day. Restaging can lead to the emergence of surgical therapy alternatives for a down-staged cancer, or to the consideration of secondary or tertiary chemotherapies for an up-staged cancer. That said, with the application of one of the surgical, radiotheraphy(RT) or chemotherapy(CT) protocols, complications may occur, and restaging becomes difficult. Another difficulty may be encountered in explaining to the patient that additional therapy protocols may be needed after an accurate restaging. After surgery, RT or CT, renal, hepatic and bone marrow reserves may severely be decreased, and since the primary therapy protocol may reduce significantly the patient's performance status, "accurate restaging" is the most important problem to be resolved when planning further therapy.
Collapse
Affiliation(s)
- Hakan Öztürk
- Department of Urology, Medicalpark Izmir Hospital, Yeni Girne Boulevard 1825 St. No: 12, 35350, Karsiyaka-Izmir, Turkey.
| |
Collapse
|
12
|
Salvage Pelvic Lymph Node Dissection and Current State of Imaging for Recurrent Prostate Cancer: Does a Standard Exist? Curr Urol Rep 2020; 21:62. [PMID: 33159608 DOI: 10.1007/s11934-020-01011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE OF REVIEW We aim to evaluate the efficacy of salvage lymph node dissection (SLND) for nodal recurrent prostate cancer after primary treatment. We also provide a review of the diagnostic performance of next-generation sequencing (next-generation imaging (NGI)) radiotracers in the salvage setting. RECENT FINDINGS Most studies evaluating SLND include a heterogeneous population with a small sample size and are retrospective in design. The 5-year clinical recurrence-free and cancer-specific survival following SLND are 26-52% and 57-89%, respectively, among prospective studies. NGI improves accuracy in detecting nodal recurrence compared to conventional CT, with PMSA PET-CT showing the most promise. However, limited studies exist comparing imaging modalities and performance is variable at low PSA values. SLND is a promising treatment option, but more prospective data are needed to determine the ideal surgical candidate and long-term oncologic outcomes. More studies comparing different NGI are needed to determine the best imaging modality in patients who may be candidates for salvage treatment.
Collapse
|
13
|
Prostate Cancer: Prostate-specific Membrane Antigen Positron-emission Tomography/Computed Tomography or Positron-emission Tomography/Magnetic Resonance Imaging for Staging. Top Magn Reson Imaging 2020; 29:59-66. [PMID: 32015295 DOI: 10.1097/rmr.0000000000000229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Positron-emission tomography (PET) with prostate-specific membrane antigen (PSMA) has been increasingly used to image prostate cancer in the last decade. In the staging setting several studies have already been published suggesting PSMA PET can be a valuable tool. They, however, did not translate into recommendations by guidelines. Both PSMA PET/computed tomography (CT) and PET/magnetic resonance imaging have been investigated in the staging setting, showing higher detection rate of prostate cancer lesions over the conventional imaging work-up and some studies already showed an impact on disease management. The aim of this review is to provide an overview of the existing published data regarding PSMA PET for staging prostate cancer, with emphasis on PET/magnetic resonance imaging. Despite the fact that PSMA is a relatively new tool and not officially recommended for staging yet, there are >50 original studies in the literature assessing PSMA PET performance in the staging setting of prostate cancer, and some meta-analyses.
Collapse
|
14
|
Glicksman RM, Metser U, Valliant J, Chung PW, Fleshner NE, Bristow RG, Green D, Finelli A, Hamilton R, Stanescu T, Hussey D, Catton C, Gospodarowicz M, Warde P, Bayley A, Breen S, Vines D, Jaffray DA, Berlin A. [ 18F]DCFPyL PET-MRI/CT for unveiling a molecularly defined oligorecurrent prostate cancer state amenable for curative-intent ablative therapy: study protocol for a phase II trial. BMJ Open 2020; 10:e035959. [PMID: 32327479 PMCID: PMC7204865 DOI: 10.1136/bmjopen-2019-035959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION The oligometastatic (OM) disease hypothesis of an intermediate metastatic state with limited distant disease deposits amenable for curative therapies remains debatable. Over a third of prostate cancer (PCa) patients treated with radical prostatectomy and postoperative radiotherapy experience disease recurrence; these patients are considered incurable by current standards. Often the recurrence cannot be localised by conventional imaging (CT and bone scan). Combined anatomical imaging with CT and/or MR with positron emission tomography (PET) using a novel second-generation prostate-specific membrane antigen (PSMA) probe, [18F]DCFPyL, is a promising imaging modality to unveil disease deposits in these patients. A new and earlier molecularly defined oligorecurrent (OR) state may be amenable to focal-targeted ablative curative-intent therapies, such as stereotactic ablative radiotherapy (SABR) or surgery, thereby significantly delaying or completely avoiding the need for palliative therapies in men with recurrent PCa after maximal local treatments. METHODS AND ANALYSIS This ongoing single-institution phase II study will enrol up to 75 patients total, to include up to 37 patients with response-evaluable disease, who have rising prostate-specific antigen (range 0.4-3.0 ng/mL) following maximal local therapies with no evidence of disease on conventional imaging. These patients will undergo [18F]DCFPyL PET-MR/CT imaging to detect disease deposits, which will then be treated with SABR or surgery. The primary endpoints are performance of [18F]DCFPyL PET-MR/CT, and treatment response rates following SABR or surgery. Demographics and disease characteristics will be summarised and analysed descriptively. Response rates will be described with waterfall plots and proportions. ETHICS AND DISSEMINATION Ethics approval was obtained from the institutional Research Ethics Board. All patients will provide written informed consent. [18F]DCFPyL has approval from Health Canada. The results of the study will be disseminated by the principal investigator. Patients will not be identifiable as individuals in any publication or presentation of this study. TRIAL REGISTRATION NUMBERS NCT03160794.
Collapse
Affiliation(s)
- Rachel M Glicksman
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Ur Metser
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - John Valliant
- Centre for Probe Development and Commercialization, McMaster University, Hamilton, Ontario, Canada
| | - Peter W Chung
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Neil E Fleshner
- Department of Surgical Oncology, Division of Urology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Robert G Bristow
- Division of Cancer Sciences, Faculty of Biology, Health and Medicine, University of Manchester; Cancer Research UK Manchester Institute and Manchester Cancer Research Centre; The Christie NHS Foundation Trust, Manchester, UK
| | - David Green
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Antonio Finelli
- Department of Surgical Oncology, Division of Urology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Robert Hamilton
- Department of Surgical Oncology, Division of Urology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Teodor Stanescu
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Douglas Hussey
- Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Charles Catton
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mary Gospodarowicz
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Padraig Warde
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Andrew Bayley
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Breen
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Physics, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Doug Vines
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David A Jaffray
- Office of the Chief Technology and Digital Officer; Department of Radiation Physics; Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alejando Berlin
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Qian P, Chen Y, Kuo JW, Zhang YD, Jiang Y, Zhao K, Al Helo R, Friel H, Baydoun A, Zhou F, Heo JU, Avril N, Herrmann K, Ellis R, Traughber B, Jones RS, Wang S, Su KH, Muzic RF. mDixon-Based Synthetic CT Generation for PET Attenuation Correction on Abdomen and Pelvis Jointly Using Transfer Fuzzy Clustering and Active Learning-Based Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:819-832. [PMID: 31425065 PMCID: PMC7284852 DOI: 10.1109/tmi.2019.2935916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We propose a new method for generating synthetic CT images from modified Dixon (mDixon) MR data. The synthetic CT is used for attenuation correction (AC) when reconstructing PET data on abdomen and pelvis. While MR does not intrinsically contain any information about photon attenuation, AC is needed in PET/MR systems in order to be quantitatively accurate and to meet qualification standards required for use in many multi-center trials. Existing MR-based synthetic CT generation methods either use advanced MR sequences that have long acquisition time and limited clinical availability or use matching of the MR images from a newly scanned subject to images in a library of MR-CT pairs which has difficulty in accounting for the diversity of human anatomy especially in patients that have pathologies. To address these deficiencies, we present a five-phase interlinked method that uses mDixon MR acquisition and advanced machine learning methods for synthetic CT generation. Both transfer fuzzy clustering and active learning-based classification (TFC-ALC) are used. The significance of our efforts is fourfold: 1) TFC-ALC is capable of better synthetic CT generation than methods currently in use on the challenging abdomen using only common Dixon-based scanning. 2) TFC partitions MR voxels initially into the four groups regarding fat, bone, air, and soft tissue via transfer learning; ALC can learn insightful classifiers, using as few but informative labeled examples as possible to precisely distinguish bone, air, and soft tissue. Combining them, the TFC-ALC method successfully overcomes the inherent imperfection and potential uncertainty regarding the co-registration between CT and MR images. 3) Compared with existing methods, TFC-ALC features not only preferable synthetic CT generation but also improved parameter robustness, which facilitates its clinical practicability. Applying the proposed approach on mDixon-MR data from ten subjects, the average score of the mean absolute prediction deviation (MAPD) was 89.78±8.76 which is significantly better than the 133.17±9.67 obtained using the all-water (AW) method (p=4.11E-9) and the 104.97±10.03 obtained using the four-cluster-partitioning (FCP, i.e., external-air, internal-air, fat, and soft tissue) method (p=0.002). 4) Experiments in the PET SUV errors of these approaches show that TFC-ALC achieves the highest SUV accuracy and can generally reduce the SUV errors to 5% or less. These experimental results distinctively demonstrate the effectiveness of our proposed TFCALC method for the synthetic CT generation on abdomen and pelvis using only the commonly-available Dixon pulse sequence.
Collapse
|
16
|
Ferrone C, Goyal L, Qadan M, Gervais D, Sahani DV, Zhu AX, Hong TS, Blaszkowsky LS, Tanabe KK, Vangel M, Amorim BJ, Wo JY, Mahmood U, Pandharipande PV, Catana C, Duenas VP, Collazo YQ, Canamaque LG, Domachevsky L, Bernstine HH, Groshar D, Shih TTF, Li Y, Herrmann K, Umutlu L, Rosen BR, Catalano OA. Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 2019; 47:1871-1884. [PMID: 31705172 DOI: 10.1007/s00259-019-04558-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (ICC) is associated with a poor prognosis with surgical resection offering the best chance for long-term survival and potential cure. However, in up to 36% of patients who undergo surgery, more extensive disease is found at time of operation requiring cancellation of surgery. PET/MR is a novel hybrid technology that might improve local and whole-body staging in ICC patients, potentially influencing clinical management. This study was aimed to investigate the possible management implications of PET/MR, relative to conventional imaging, in patients affected by untreated intrahepatic cholangiocarcinoma. METHODS Retrospective review of the clinicopathologic features of 37 patients with iCCC, who underwent PET/MR between September 2015 and August 2018, was performed to investigate the management implications that PET/MR had exerted on the affected patients, relative to conventional imaging. RESULTS Of the 37 patients enrolled, median age 63.5 years, 20 (54%) were female. The same day PET/CT was performed in 26 patients. All patients were iCCC-treatment-naïve. Conventional imaging obtained as part of routine clinical care demonstrated early-stage resectable disease for 15 patients and advanced stage disease beyond the scope of surgical resection for 22. PET/MR modified the clinical management of 11/37 (29.7%) patients: for 5 patients (13.5%), the operation was cancelled due to identification of additional disease, while 4 "inoperable" patients (10.8%) underwent an operation. An additional 2 patients (5.4%) had a significant change in their operative plan based on PET/MR. CONCLUSIONS When compared with standard imaging, PET/MR significantly influenced the treatment plan in 29.7% of patients with iCCC. TRIAL REGISTRATION 2018P001334.
Collapse
Affiliation(s)
- Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Lipika Goyal
- Department of Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Debra Gervais
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA
| | - Dushyant V Sahani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA
| | - Andrew X Zhu
- Department of Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Lawrence S Blaszkowsky
- Department of Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.,Department of Oncology, Newton-Wellesley Hospital, 2114 Washington St., Newton, MA, 02462, USA
| | - Kenneth K Tanabe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Mark Vangel
- Department of Biostatics, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Barbara J Amorim
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA.,Division of Nuclear Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA
| | - Pari V Pandharipande
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA
| | - Virginia P Duenas
- Department of Nuclear Medicine and Radiology, Hospital HM Puerta del Sur, Avda Carlos V 70, 28938, Madrid, Spain
| | - Yolanda Q Collazo
- Department of Surgery, Hospital HM Sanchinarro, Avda Carlos V 70, 28938, Madrid, Spain
| | - Lina G Canamaque
- Department of Nuclear Medicine and Radiology, Hospital HM Puerta del Sur, Avda Carlos V 70, 28938, Madrid, Spain
| | - Liran Domachevsky
- Department of Radiology and Nuclear Medicine, Assuta Medical Center, HaBarzel St. 20, Tel Aviv-Yafo, Israel
| | - Hanna H Bernstine
- Department of Radiology and Nuclear Medicine, Assuta Medical Center, HaBarzel St. 20, Tel Aviv-Yafo, Israel
| | - David Groshar
- Department of Radiology and Nuclear Medicine, Assuta Medical Center, HaBarzel St. 20, Tel Aviv-Yafo, Israel
| | - Tiffany Tsing-Fang Shih
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Rd., Taipei, 10016, Taiwan
| | - Yan Li
- Department of Radiology, Universitatsklinikum, Essen University, Hufelandstraße 55, 45147, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, Universitatsklinikum, Essen University, Hufelandstraße 55, 45147, Essen, Germany
| | - Lale Umutlu
- Department of Radiology, Universitatsklinikum, Essen University, Hufelandstraße 55, 45147, Essen, Germany
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA. .,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA. .,Department of Radiology, University of Naples "Parthenope", Via Acton 38, 80131, Naples, Italy.
| |
Collapse
|
17
|
Morsing A, Hildebrandt MG, Vilstrup MH, Wallenius SE, Gerke O, Petersen H, Johansen A, Andersen TL, Høilund-Carlsen PF. Hybrid PET/MRI in major cancers: a scoping review. Eur J Nucl Med Mol Imaging 2019; 46:2138-2151. [PMID: 31267161 DOI: 10.1007/s00259-019-04402-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/13/2019] [Indexed: 01/11/2023]
Abstract
PURPOSE PET/MRI was introduced for clinical use in 2011 and is now an established modality for the imaging of brain and certain pelvic cancers, whereas clinical use for the imaging of other forms of cancer is not yet widespread. We therefore systematically investigated what has been published on the use of PET/MRI compared to PET/CT in the imaging of cancers outside the brain, focusing on clinical areas of application related to diagnosis, staging and restaging. METHODS A systematic search of PubMed/MEDLINE, Embase and the Cochrane Library was performed. Studies evaluating the diagnostic performance of simultaneous PET/MRI in cancer patients were chosen. RESULTS A total of 3,138 publications were identified and 116 published during the period 2012-2018 were included and were grouped according to the major cancer forms: 13 head and neck (HNC), 9 breast (BC), 21 prostate (PC), 14 gynaecological, 13 gastrointestinal (GIC), and 46 various cancers. Data from studies comparing PET/MRI and PET/CT for staging/restaging suggested the superiority of 18F-FDG PET/MRI for the detection of tumour extension and retropharyngeal lymph node metastases in nasopharyngeal cancer, and for the detection of liver metastases and possibly bone marrow metastases in high-risk BC. FDG PET/MRI tended to be inferior for the detection of lung metastases in HNC and BC. 68Ga-PSMA-11 PET/MRI was superior to PET/CT for the detection of local PC recurrence. FDG PET/MRI was superior to FDG PET/CT for the detection of local tumour invasion in cervical cancer and had higher accuracy for the detection of liver metastases in colorectal cancer. CONCLUSION The scoping review methodology resulted in the identification of a huge number of records, of which less than 5% were suitable for inclusion and only a limited number allowed conclusions on the advantages/disadvantages of PET/MRI compared to PET/CT in the oncological setting. There was evidence to support the use of FDG PET/MRI in staging of nasopharyngeal cancer and high-risk BC. Preliminary data indicate the superiority of PET/MRI for the detection of local recurrence in PC, local tumour invasion in cervical cancer, and liver metastases in colorectal cancer. These conclusions are based on small datasets and need to be further explored.
Collapse
Affiliation(s)
- Anni Morsing
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
- MAgNetic Resonance Technology for Response Adapted Radiotherapy (MANTRA), Odense University Hospital, Odense, Denmark.
| | - Malene Grubbe Hildebrandt
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Centre for Innovative Medical Technology (CIMT), Odense University Hospital, Odense, Denmark
| | - Mie Holm Vilstrup
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Henrik Petersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Allan Johansen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
| | - Thomas Lund Andersen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- MAgNetic Resonance Technology for Response Adapted Radiotherapy (MANTRA), Odense University Hospital, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Berzaczy D, Fueger B, Hoeller C, Haug AR, Staudenherz A, Berzaczy G, Weber M, Mayerhoefer ME. Whole-Body [18F]FDG-PET/MRI vs. [18F]FDG-PET/CT in Malignant Melanoma. Mol Imaging Biol 2019; 22:739-744. [DOI: 10.1007/s11307-019-01413-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
How to Provide Gadolinium-Free PET/MR Cancer Staging of Children and Young Adults in Less than 1 h: the Stanford Approach. Mol Imaging Biol 2019; 20:324-335. [PMID: 28721605 DOI: 10.1007/s11307-017-1105-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE To provide clinically useful gadolinium-free whole-body cancer staging of children and young adults with integrated positron emission tomography/magnetic resonance (PET/MR) imaging in less than 1 h. PROCEDURES In this prospective clinical trial, 20 children and young adults (11-30 years old, 6 male, 14 female) with solid tumors underwent 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET/MR on a 3T PET/MR scanner after intravenous injection of ferumoxytol (5 mg Fe/kg) and [18F]FDG (2-3 MBq/kg). Time needed for patient preparation, PET/MR image acquisition, and data processing was compared before (n = 5) and after (n = 15) time-saving interventions, using a Wilcoxon test. The ferumoxytol-enhanced PET/MR images were compared with clinical standard staging tests regarding radiation exposure and tumor staging results, using Fisher's exact tests. RESULTS Tailored workflows significantly reduced scan times from 36 to 24 min for head to mid thigh scans (p < 0.001). These streamlined PET/MR scans were obtained with significantly reduced radiation exposure (mean 3.4 mSv) compared to PET/CT with diagnostic CT (mean 13.1 mSv; p = 0.003). Using the iron supplement ferumoxytol "off label" as an MR contrast agent avoided gadolinium chelate administration. The ferumoxytol-enhanced PET/MR scans provided equal or superior tumor staging results compared to clinical standard tests in 17 out of 20 patients. Compared to PET/CT, PET/MR had comparable detection rates for pulmonary nodules with diameters of equal or greater than 5 mm (94 vs. 100 %), yet detected significantly fewer nodules with diameters of less than 5 mm (20 vs 100 %) (p = 0.03). [18F]FDG-avid nodules were detected with slightly higher sensitivity on the PET of the PET/MR compared to the PET of the PET/CT (59 vs 49 %). CONCLUSION Our streamlined ferumoxytol-enhanced PET/MR protocol provided cancer staging of children and young adults in less than 1 h with equivalent or superior clinical information compared to clinical standard staging tests. The detection of small pulmonary nodules with PET/MR needs to be improved.
Collapse
|
20
|
Metabolic Volumetric Parameters in 11C-Choline PET/MR Are Superior PET Imaging Biomarkers for Primary High-Risk Prostate Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:8945130. [PMID: 30532664 PMCID: PMC6247714 DOI: 10.1155/2018/8945130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022]
Abstract
Purpose Positron emission tomography/magnetic resonance imaging (PET/MRI) can facilitate the use of noninvasive imaging biomarkers in clinical prostate cancer staging. Although multiparametric MRI is a widely used technique, the clinical value of simultaneous PET imaging remains unclear. This study aimed at investigating this issue. Methods Between January 2015 and December 2016, 31 high-risk prostate cancer patients underwent 11C-choline PET/MRI for staging purposes. Clinical characteristics and imaging parameters, including the standardized uptake value (SUV) and metabolic volumetric parameters from PET imaging; apparent diffusion coefficient (ADC) values from diffusion-weighted imaging; and volume transfer rate constant (Ktrans), reflux rate constant (Kep), and initial area under curve (iAUC) in 60 seconds from dynamic contrast-enhanced (DCE) MRI were analyzed. Results 11C-Choline PET imaging parameters were significantly correlated with prostate-specific antigen (PSA) levels, and metabolic volumetric parameters, including metabolic tumor volume (MTV) and uptake volume product (UVP), showed significant correlations with other MRI parameters. In our cohort analysis, the PET/MRI parameters UVP/minimal ADC value (ADCmin) and kurtosis of Kep (Kepkur)/ADCmin were significant predictors for progression-free survival (PFS) (HR = 1.01, 95% CI: 1.00-1.02, p=0.031 and HR = 1.09, 95% CI: 1.02-1.16, p=0.009, respectively) in multivariate Cox regression analysis. High UVP/ADCmin and Kepkur/ADCmin values were significantly associated with shorter PFS. Conclusions Metabolic volumetric parameters such as MTV and UVP can be routinely used as PET imaging biomarkers to add prognostic value and show better correlations in combination with MR imaging parameters in high-risk prostate cancer patients undergoing 11C-choline PET/MRI.
Collapse
|
21
|
Alharbi AA, Alshehri FM, Albatly AA, Sah BR, Schmid C, Huber GF, Huellner MW. [ 18F]Fluorocholine Uptake of Parathyroid Adenoma Is Correlated with Parathyroid Hormone Level. Mol Imaging Biol 2018; 20:857-867. [PMID: 29508264 DOI: 10.1007/s11307-018-1179-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE The aim of the study was to investigate the relationship between [18F]fluoromethyl-dimethyl-2-hydroxyethylammonium ([18F]FCh) positron emission tomography (PET) parameters, laboratory parameters, and postoperative histopathological results in patients with primary hyperparathyroidism (pHPT) due to parathyroid adenomas. PROCEDURES This retrospective study was conducted in 52 patients with biochemically proven pHPT. [18F]FCh-PET parameters (maximum standardized uptake value: SUVmax) in early phase (after 2 min) and late phase (after 50 min), metabolic volume, and adenoma-to-background ratio (ABR), preoperative laboratory results (PTH and serum calcium concentration), and postoperative histopathology (location, size, volume, and weight of adenoma) were assessed. Relationship of PET parameters, laboratory parameters, and histopathological parameters was assessed using the Mann-Whitney U test and Spearman correlation coefficient. MRI characteristics of parathyroid adenomas were also analyzed. RESULTS The majority of patients underwent a PET/MR scan, 42 patients (80.7 %); 10 patients (19.3 %) underwent PET/CT. We found a strong positive correlation between late-phase SUVmax and preoperative PTH level (r = 0.768, p < 0.001) and between late-phase ABR and preoperative PTH level (r = 0.680, p < 0.001). The surgical specimen volume was positively correlated with the PET/MR lesion volume (r = 0.659, p < 0.001). No significant association was observed between other [18F]FCh-PET parameters, laboratory parameters, and histopathological findings. Cystic adenomas were larger than non-cystic adenomas (p = 0.048). CONCLUSIONS [18F]FCh uptake of parathyroid adenomas is strongly correlated with preoperative PTH serum concentration. Therefore, the preoperative PTH level might potentially be able to predict success of [18F]FCh-PET imaging in hyperparathyroidism, with higher lesion-to-background ratios being expected in patients with high PTH. PET/MR is accurate in estimating the volume of parathyroid adenomas.
Collapse
Affiliation(s)
- Abdullah A Alharbi
- Department of Nuclear Medicine, University Hospital Zurich / University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland.
| | - Fahad M Alshehri
- Department of Neuroradiology, University Hospital Zurich, Frauenklinikstrasse 10, Zurich, 8091, Switzerland
| | - Abdulrahman A Albatly
- Department of Nuclear Medicine, University Hospital Zurich / University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Bert-Ram Sah
- Department of Nuclear Medicine, University Hospital Zurich / University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Christoph Schmid
- Department of Endocrinology, Diabetes, and Clinical Nutrition, University Hospital Zurich, Rämistrasse 100, Zurich, 8091, Switzerland
| | - Gerhard F Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Frauenklinikstrasse 24, Zurich, 8091, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich / University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| |
Collapse
|
22
|
Riola-Parada C, Carreras-Delgado J, Pérez-Dueñas V, Garcerant-Tafur M, García-Cañamaque L. 18F-choline PET/MR in suspected recurrence of prostate cancer. Rev Esp Med Nucl Imagen Mol 2018. [DOI: 10.1016/j.remnie.2018.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
Oh SW, Cheon GJ. Prostate-Specific Membrane Antigen PET Imaging in Prostate Cancer: Opportunities and Challenges. Korean J Radiol 2018; 19:819-831. [PMID: 30174470 PMCID: PMC6082771 DOI: 10.3348/kjr.2018.19.5.819] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/02/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of this systematic review was to describe the characteristics of prostate-specific membrane antigen (PSMA)-targeting PET and their clinical applications in prostate cancer patients. There have been major strides in the design, synthesis of PSMA-targeting PET tracers over the past several years. PSMA-targeting PET tracers can be categorized, according to positron emitters and targeting strategies for the PSMA. The majority of PSMA PET studies has been focused on patients with biochemical recurrence, but additional values of PSMA PET have also been investigated for use in primary staging, treatment planning, response evaluation, and PSMA radioligand therapy. PSMA PET is expected to bring improvements in the management of patients, but the impact of improved diagnosis by PSMA on overall survival remains unanswered. Many challenges still await PSMA PET to expedite the use in the clinical practice. At this early stage, prospective multicenter trials are needed to validate the effectiveness and usefulness of PSMA PET.
Collapse
Affiliation(s)
- So Won Oh
- Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
24
|
Abstract
Treatment of high-risk prostate cancer (HRPCa) is challenging. Local staging and metastatic evaluation are important for the patient management. Recently, prostate-specific membrane antigen (PSMA)-based imaging modalities such as PSMA PET/CT and PET/MRI have received significant attention for detection of recurrent prostate cancer sites with elevated prostate-specific antigen levels, after therapy. Current evidence suggests that these imaging modalities may also have a role for the management of patients with HRPCa. In this review, we discuss PSMA-based imaging modalities in the management of patients with HRPCa.
Collapse
|
25
|
Das CJ, Razik A, Sharma S. Positron emission tomography in prostate cancer: An update on state of the art. Indian J Urol 2018; 34:172-179. [PMID: 30034126 PMCID: PMC6034413 DOI: 10.4103/iju.iju_320_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prostate cancer (PCa), one of the most common cancers in males, is a topic of active interest in imaging research. Positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MRI) have enabled the combination of morphologic and functional imaging with the promise of providing better information in guiding therapy. 18F-fluorodeoxyglucose, the workhorse radiopharmaceutical in PET imaging, has not found preference in PCa since these tumors show poor glucose uptake and can be obscured by the normal urinary excretion of the radiotracer. Hence, the last two decades have seen the development of multiple newer radiotracers and better optimization of the technical aspects of PET imaging. The combination of functional imaging and MRI holds great promise. We searched PubMed, Scopus, and Google Scholar for peer-reviewed literature concerning the advances and newer developments in the imaging of PCa between the years 2005 and 2017. This review aims at summarizing current evidence on the role of PET imaging in PCa and its impact on the diagnosis, staging, prognostication, response assessment, and restaging of this malignancy.
Collapse
Affiliation(s)
- Chandan Jyoti Das
- Department of Radio-Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Abdul Razik
- Department of Radio-Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Sharma
- Department of Radio-Diagnosis, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
26
|
Abstract
OBJECTIVE The purpose of this article is to provide an update on clinical PET/MRI, including current and developing clinical indications and technical developments. CONCLUSION PET/MRI is evolving rapidly, transitioning from a predominant research focus to exciting clinical practice. Key technical obstacles have been overcome, and further technical advances promise to herald significant advancements in image quality. Further optimization of protocols to address challenges posed by this hybrid modality will ensure the long-term success of PET/MRI.
Collapse
|
27
|
Imaging the High-risk Prostate Cancer Patient: Current and Future Approaches to Staging. Urology 2018; 116:3-12. [DOI: 10.1016/j.urology.2017.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 11/24/2022]
|
28
|
Muehlematter UJ, Nagel HW, Becker A, Mueller J, Vokinger KN, de Galiza Barbosa F, Ter Voert EEGT, Veit-Haibach P, Burger IA. Impact of time-of-flight PET on quantification accuracy and lesion detection in simultaneous 18F-choline PET/MRI for prostate cancer. EJNMMI Res 2018; 8:41. [PMID: 29855728 PMCID: PMC5981153 DOI: 10.1186/s13550-018-0390-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/18/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Accurate attenuation correction (AC) is an inherent problem of positron emission tomography magnetic resonance imaging (PET/MRI) systems. Simulation studies showed that time-of-flight (TOF) detectors can reduce PET quantification errors in MRI-based AC. However, its impact on lesion detection in a clinical setting with 18F-choline has not yet been evaluated. Therefore, we compared TOF and non-TOF 18F-choline PET for absolute and relative difference in standard uptake values (SUV) and investigated the detection rate of metastases in prostate cancer patients. RESULTS Non-TOF SUV was significantly lower compared to TOF in all osseous structures, except the skull, in primary lesions of the prostate, and in pelvic nodal and osseous metastasis. Concerning lymph node metastases, both experienced readers detected 16/19 (84%) on TOF PET, whereas on non-TOF PET readers 1 and 2 detected 11 (58%), and 14 (73%), respectively. With TOF PET readers 1 and 2 detected 14/15 (93%) and 11/15 (73%) bone metastases, respectively, whereas detection rate with non-TOF PET was 73% (11/15) for reader 1 and 53% (8/15) for reader 2. The interreader agreement was good for osseous metastasis detection on TOF (kappa 0.636, 95% confidence interval [CI] 0.453-0.810) and moderate on non-TOF (kappa = 0.600, CI 0.438-0.780). CONCLUSION TOF reconstruction for 18F-choline PET/MRI shows higher SUV measurements compared to non-TOF reconstructions in physiological osseous structures as well as pelvic malignancies. Our results suggest that addition of TOF information has a positive impact on lesion detection rate for lymph node and bone metastasis in prostate cancer patients.
Collapse
Affiliation(s)
- Urs J Muehlematter
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| | - Hannes W Nagel
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Anton Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Julian Mueller
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Edwin E G T Ter Voert
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Patrick Veit-Haibach
- Department Joint Medical Imaging, Toronto General Hospital, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
| | - Irene A Burger
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Riola-Parada C, Carreras-Delgado JL, Pérez-Dueñas V, Garcerant-Tafur M, García-Cañamaque L. 18F-choline PET/MRI in suspected recurrence of prostate carcinoma. Rev Esp Med Nucl Imagen Mol 2018; 37:296-301. [PMID: 29793842 DOI: 10.1016/j.remn.2018.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To evaluate the usefulness of simultaneous 18F-choline PET/MRI in the suspicion of prostate cancer recurrence and to relate 18F-choline PET/MRI detection rate with analytical and pathological variables. MATERIAL AND METHODS 27 patients with prostate cancer who received local therapy as primary treatment underwent a 18F-choline PET/MRI due to suspicion of recurrence (persistently rising serum PSA level). 18F-choline PET/MRI findings were validated by anatomopathological analysis, other imaging tests or by biochemical response to oncological treatment. RESULTS 18F-choline PET/MRI detected disease in 15 of 27 patients (detection rate 55.56%). 4 (15%) presented exclusively local recurrence, 5 (18%) lymph node metastases and 7 (26%) bone metastases. Mean PSA (PSAmed) at study time was 2.94ng/mL (range 0.18-10ng/mL). PSAmed in patients with positive PET/MRI was 3.70ng/mL (range 0.24-10ng/mL), higher than in patients with negative PET/MRI, PSAmed 1.97ng/mL (range 0.18-4.38ng/mL), although without statistically significant differences. Gleason score at diagnosis in patients with a positive study was 7.33 (range 6-9) and in patients with a negative study was 7 (range 6-9), without statistically significant differences. CONCLUSION 18F-choline PET/MRI detection rate was considerable despite the relatively low PSA values in our sample. The influence of Gleason score and PSA level on 18F-choline PET/MRI detection rate was not statistically significant.
Collapse
Affiliation(s)
- C Riola-Parada
- Servicio de Medicina Nuclear, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, España.
| | - J L Carreras-Delgado
- Servicio de Medicina Nuclear, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, España
| | - V Pérez-Dueñas
- Servicio de Radiología, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, España
| | - M Garcerant-Tafur
- Servicio de Medicina Nuclear, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, España
| | - L García-Cañamaque
- Servicio de Medicina Nuclear, Hospital Universitario HM Puerta del Sur, Móstoles, Madrid, España
| |
Collapse
|
30
|
Queiroz MA, Barbosa FDG, Buchpiguel CA, Cerri GG. Positron emission tomography/magnetic resonance imaging (PET/MRI): An update and initial experience at HC-FMUSP. ACTA ACUST UNITED AC 2018; 64:71-84. [PMID: 29561945 DOI: 10.1590/1806-9282.64.01.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 01/16/2023]
Abstract
The new technology of PET/MRI is a prototype of hybrid imaging, allowing for the combination of molecular data from PET scanning and morphofunctional information derived from MRI scanning. Recent advances regarding the technical aspects of this device, especially after the development of MRI-compatible silicon photomultipliers of PET, permitted an increase in the diagnostic performance of PET/MRI translated into dose reduction and higher imaging quality. Among several clinical applications, PET/MRI gains ground initially in oncology, where MRI per se plays an essential role in the assessment of primary tumors (which is limited in the case of PET/CT), including prostate, rectal and gynecological tumors. On the other hand, the evaluation of the lungs remains an enigma although new MRI sequences are being designed to overcome this. More clinical indications of PET/MRI are seen in the fields of neurology, cardiology and inflammatory processes, and the use of PET/MRI also opens perspectives for pediatric populations as it involves very low radiation exposure. Our review aimed to highlight the current indications of PET/MRI and discuss the challenges and perspectives of PET/MRI at HC-FMUSP.
Collapse
Affiliation(s)
- Marcelo A Queiroz
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Carlos Alberto Buchpiguel
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Giovanni Guido Cerri
- Institute of Radiology (InRad), Hospital das Clínicas da Faculdade de Medicina da USP (HC-FMUSP), São Paulo, SP, Brazil.,Service of Medical Imaging, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| |
Collapse
|
31
|
Miller ET, Salmasi A, Reiter RE. Anatomic and Molecular Imaging in Prostate Cancer. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a030619. [PMID: 28710256 DOI: 10.1101/cshperspect.a030619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prostate cancer is characterized by a complex set of heterogeneous disease states. This review aims to describe how imaging has been studied within each specific state. As physicians transition into an era of precision medicine, multiparametric magnetic resonance imaging (mpMRI) is proving to be a powerful tool leading the way for a paradigm shift in the diagnosis and management of localized prostate cancer. With further research and development, molecular imaging modalities will likely change the way we approach recurrent and metastatic disease. Given the range of possible oncological progression patterns, a thorough understanding of the underlying carcinogenesis, as it relates to imaging, is a requisite if we are to appropriately manage prostate cancer in future decades.
Collapse
Affiliation(s)
- Eric T Miller
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Amirali Salmasi
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| | - Robert E Reiter
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095
| |
Collapse
|
32
|
Whole-Body 68Ga-DOTANOC PET/MRI Versus 68Ga-DOTANOC PET/CT in Patients With Neuroendocrine Tumors: A Prospective Study in 28 Patients. Clin Nucl Med 2018; 42:669-674. [PMID: 28682844 PMCID: PMC5636054 DOI: 10.1097/rlu.0000000000001753] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to assess the diagnostic performance of simultaneous whole-body Ga-DOTANOC PET/MRI compared with Ga-DOTANOC PET/CT for detection of distant metastatic disease in patients with well-differentiated neuroendocrine tumors (NETs). METHODS Patients with histologically proven, well-differentiated NET (G1 or G2) were included in this prospective, institutional review board-approved study. Patients underwent Ga-DOTANOC PET/CT and subsequent Ga-DOTANOC PET/MRI after a single tracer injection on the same day for staging or restaging purposes. Images were evaluated for the presence of NET lesions by 2 rater teams, each consisting of a nuclear medicine physician and a radiologist, in an observer-blinded fashion. Overall agreement, accuracy, sensitivity, and specificity, relative to a composite reference standard (consensus review including follow-up data), were calculated. RESULTS Between July 2014 and June 2016, 28 patients were enrolled. Overall agreement and accuracy between the 2 rater teams were 91.7% (95% confidence interval [CI], 87.5%-95.9%) and 97% (95% CI, 94.4%-99.6%) for PET/MRI and 92.3% (95% CI, 88.3%-96.3%) and 94.6% (95% CI, 91.2%-98.1%) for PET/CT, respectively (P = 1.00).Overall, PET/MRI reached 89.8% sensitivity (95% CI, 77.8%-96.6%) and 100% specificity (95% CI, 97%-100%); PET/CT showed 81.6% sensitivity (95% CI, 68%-91.2%) and 100% specificity (95% CI, 97%-100%) for the detection of metastatic disease in NETs. CONCLUSIONS Whole-body Ga-DOTANOC PET/MRI appears to be comparable to Ga-DOTANOC PET/CT for lesion detection in patients with well-differentiated NETs.
Collapse
|
33
|
Eiber M, Rauscher I, Souvatzoglou M, Maurer T, Schwaiger M, Holzapfel K, Beer AJ. Prospective head-to-head comparison of 11C-choline-PET/MR and 11C-choline-PET/CT for restaging of biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2017; 44:2179-2188. [PMID: 28803358 DOI: 10.1007/s00259-017-3797-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Whole-body integrated 11C-choline PET/MR might provide advantages compared to 11C-choline PET/CT for restaging of prostate cancer (PC) due to the high soft-tissue contrast and the use of multiparametric MRI, especially for detection of local recurrence and bone metastases. MATERIALS AND METHODS Ninety-four patients with recurrent PC underwent a single-injection/dual-imaging protocol with contrast-enhanced PET/CT followed by fully diagnostic PET/MR. Imaging datasets were read separately by two reader teams (team 1 and 2) assessing the presence of local recurrence, lymph node and bone metastases in predefined regions using a five-point scale. Detection rates were calculated. The diagnostic performance of PET/CT vs. PET/MR was compared using ROC analysis. Inter-observer and inter-modality variability, radiation exposure, and mean imaging time were evaluated. Clinical follow-up, imaging, and/or histopathology served as standard of reference (SOR). RESULTS Seventy-five patients qualified for the final image analysis. A total of 188 regions were regarded as positive: local recurrence in 37 patients, 87 regions with lymph node metastases, and 64 regions with bone metastases. Mean detection rate between both readers teams for PET/MR was 84.7% compared to 77.3% for PET/CT (p > 0.05). Local recurrence was identified significantly more often in PET/MR compared to PET/CT by team 1. Lymph node and bone metastases were identified significantly more often in PET/CT compared to PET/MR by both teams. However, this difference was not present in the subgroup of patients with PSA values ≤2 ng/ml. Inter-modality and inter-observer agreement (K > 0.6) was moderate to substantial for nearly all categories. Mean reduction of radiation exposure for PET/MR compared to PET/CT was 79.7% (range, 72.6-86.2%). Mean imaging time for PET/CT was substantially lower (18.4 ± 0.7 min) compared to PET/MR (50.4 ± 7.9 min). CONCLUSIONS 11C-choline PET/MR is a robust imaging modality for restaging biochemical recurrent PC and interpretations between different readers are consistent. It provides a higher diagnostic value for detecting local recurrence compared to PET/CT with the advantage of substantial dose reduction. Drawbacks of PET/MR are a substantially longer imaging time and a slight inferiority in detecting bone and lymph node metastases in patients with PSA values >2 ng/ml. Thus, we suggest the use of 11C-choline PET/MR especially for patients with low (≤2 ng/ml) PSA values, whereas PET/CT is preferable in the subgroup with higher PSA values.
Collapse
Affiliation(s)
- Matthias Eiber
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Isabel Rauscher
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Michael Souvatzoglou
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Tobias Maurer
- Department of Urology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Konstantin Holzapfel
- Department of Radiology, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Technische Universität München, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany.,Department of Nuclear Medicine, Ulm University, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
34
|
Couñago F, Sancho G, Catalá V, Hernández D, Recio M, Montemuiño S, Hernández JA, Maldonado A, del Cerro E. Magnetic resonance imaging for prostate cancer before radical and salvage radiotherapy: What radiation oncologists need to know. World J Clin Oncol 2017; 8:305-319. [PMID: 28848697 PMCID: PMC5554874 DOI: 10.5306/wjco.v8.i4.305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
External beam radiotherapy (EBRT) is one of the principal curative treatments for patients with prostate cancer (PCa). Risk group classification is based on prostate-specific antigen (PSA) level, Gleason score, and T-stage. After risk group determination, the treatment volume and dose are defined and androgen deprivation therapy is prescribed, if appropriate. Traditionally, imaging has played only a minor role in T-staging due to the low diagnostic accuracy of conventional imaging strategies such as transrectal ultrasound, computed tomography, and morphologic magnetic resonance imaging (MRI). As a result, a notable percentage of tumours are understaged, leading to inappropriate and imprecise EBRT. The development of multiparametric MRI (mpMRI), an imaging technique that combines morphologic studies with functional diffusion-weighted sequences and dynamic contrast-enhanced imaging, has revolutionized the diagnosis and management of PCa. As a result, mpMRI is now used in staging PCa prior to EBRT, with possible implications for both risk group classification and treatment decision-making for EBRT. mpMRI is also being used in salvage radiotherapy (SRT), the treatment of choice for patients who develop biochemical recurrence after radical prostatectomy. In the clinical context of biochemical relapse, it is essential to accurately determine the site of recurrence - pelvic (local, nodal, or bone) or distant - in order to select the optimal therapeutic management approach. Studies have demonstrated the value of mpMRI in detecting local recurrences - even in patients with low PSA levels (0.3-0.5 ng/mL) - and in diagnosing bone and nodal metastasis. The main objective of this review is to update the role of mpMRI prior to radical EBRT or SRT. We also consider future directions for the use and development of MRI in the field of radiation oncology.
Collapse
|
35
|
Lau JMC, Laforest R, Sotoudeh H, Nie X, Sharma S, McConathy J, Novak E, Priatna A, Gropler RJ, Woodard PK. Evaluation of attenuation correction in cardiac PET using PET/MR. J Nucl Cardiol 2017; 24:839-846. [PMID: 26499770 PMCID: PMC6360086 DOI: 10.1007/s12350-015-0197-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/16/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Simultaneous acquisition Positron emission tomography/magnetic resonance (PET/MR) is a new technology that has potential as a tool both in research and clinical diagnosis. However, cardiac PET acquisition has not yet been validated using MR imaging for attenuation correction (AC). The goal of this study is to evaluate the feasibility of PET imaging using a standard 2-point Dixon volume interpolated breathhold examination (VIBE) MR sequence for AC. METHODS AND RESULTS Evaluation was performed in both phantom and patient data. A chest phantom containing heart, lungs, and a lesion insert was scanned by both PET/MR and PET/CT. In addition, 30 patients underwent whole-body 18F-fluorodeoxyglucose PET/CT followed by simultaneous cardiac PET/MR. Phantom study showed 3% reduction of activity values in the myocardium due to the non-inclusion of the phased array coil in the AC. In patient scans, average standardized uptake values (SUVs) obtained by PET/CT and PET/MR showed no significant difference (n = 30, 4.6 ± 3.5 vs 4.7 ± 2.8, P = 0.47). There was excellent per patient correlation between the values acquired by PET/CT and PET/MR (R 2 = 0.97). CONCLUSIONS Myocardial SUVs PET imaging using MR for AC shows excellent correlation with myocardial SUVs obtained by standard PET/CT imaging. The 2-point Dixon VIBE MR technique can be used for AC in simultaneous PET/MR data acquisition.
Collapse
Affiliation(s)
- Jeffrey M C Lau
- Division of Cardiovascular Disease, Department of Internal Medicine, Washington University in Saint Louis, Campus Box 8086, 660 S. Euclid Avenue, Saint Louis, MO, 63110, USA.
| | - R Laforest
- Department of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - H Sotoudeh
- Department of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - X Nie
- Department of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - S Sharma
- Division of Cardiovascular Disease, Department of Internal Medicine, Washington University in Saint Louis, Campus Box 8086, 660 S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | - J McConathy
- Department of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - E Novak
- Division of Cardiovascular Disease, Department of Internal Medicine, Washington University in Saint Louis, Campus Box 8086, 660 S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | - A Priatna
- Siemens Medical Solutions U.S.A, Malvern, PA, USA
| | - R J Gropler
- Department of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO, USA
| | - P K Woodard
- Department of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University in Saint Louis, Saint Louis, MO, USA
| |
Collapse
|
36
|
Michaud L, Touijer K. Molecular imaging for prostate cancer: Performance analysis of 68Ga-PSMA PET/CT versus choline PET/CT. Actas Urol Esp 2017; 41:292-299. [PMID: 27912910 DOI: 10.1016/j.acuro.2016.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
INTRODUCTION There is a need for a precise and reliable imaging to improve the management of prostate cancer. In recent years the PET/CT with choline has changed the handling of prostate cancer in Europe, and it is commonly used for initial stratification or for the diagnosis of a biochemical recurrence, although it does not lack limitations. Other markers are being tested, including the ligand of prostate-specific membrane antigen (PSMA), that seems to offer encouraging prospects. The goal of this piece of work was to critically review the role of choline and PSMA PET/CT in prostate cancer. EVIDENCE ACQUISITION A systematic literature review of databases PUBMED/MEDLINE and EMBASE was conducted searching for articles fully published in English on the PET marker in prostate cancer and its clinical application. EVIDENCE SYNTHESIS AND DISCUSSION It seems as 68Ga-PSMA PET/CT is better than PET/CT in prostate cancer to detect primary prostate lesions, initial metastases in the lymph nodes and recurrence. However, further research is required to obtain high-level tests. Also, other PET markers are studied. Moreover, the emergence of a new PET/MR camera could change the performance of PET imaging.
Collapse
|
37
|
Elgqvist J. Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applications-Focus on Prostate and Breast Cancer. Int J Mol Sci 2017; 18:E1102. [PMID: 28531102 PMCID: PMC5455010 DOI: 10.3390/ijms18051102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/27/2022] Open
Abstract
Prostate and breast cancer are the second most and most commonly diagnosed cancer in men and women worldwide, respectively. The American Cancer Society estimates that during 2016 in the USA around 430,000 individuals were diagnosed with one of these two types of cancers, and approximately 15% of them will die from the disease. In Europe, the rate of incidences and deaths are similar to those in the USA. Several different more or less successful diagnostic and therapeutic approaches have been developed and evaluated in order to tackle this issue and thereby decrease the death rates. By using nanoparticles as vehicles carrying both diagnostic and therapeutic molecular entities, individualized targeted theranostic nanomedicine has emerged as a promising option to increase the sensitivity and the specificity during diagnosis, as well as the likelihood of survival or prolonged survival after therapy. This article presents and discusses important and promising different kinds of nanoparticles, as well as imaging and therapy options, suitable for theranostic applications. The presentation of different nanoparticles and theranostic applications is quite general, but there is a special focus on prostate cancer. Some references and aspects regarding breast cancer are however also presented and discussed. Finally, the prostate cancer case is presented in more detail regarding diagnosis, staging, recurrence, metastases, and treatment options available today, followed by possible ways to move forward applying theranostics for both prostate and breast cancer based on promising experiments performed until today.
Collapse
Affiliation(s)
- Jörgen Elgqvist
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden.
- Department of Physics, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
38
|
Catalano OA, Daye D, Signore A, Iannace C, Vangel M, Luongo A, Catalano M, Filomena M, Mansi L, Soricelli A, Salvatore M, Fuin N, Catana C, Mahmood U, Rosen BR. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol 2017; 51:281-288. [PMID: 28535000 DOI: 10.3892/ijo.2017.4012] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/11/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.
Collapse
Affiliation(s)
- Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alberto Signore
- Department of Nuclear Medicine, University of Roma 'La Sapienza', Rome, RM 00161, Italy
| | - Carlo Iannace
- Breast Unit, Ospedale Moscati, Contrada Amoretta, Avellino, AV 83010, Italy
| | - Mark Vangel
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Angelo Luongo
- Department of Radiology, Gammacord, Benevento, BN 82100, Italy
| | - Marco Catalano
- Department of Radiology, University of Naples 'Federico II', Napoli, NA 80131, Italy
| | - Mazzeo Filomena
- Department of Biology and Pathology, University of Naples 'Parthenope', Naples, NA 80131, Italy
| | - Luigi Mansi
- Department of Nuclear Medicine, Second University of Naples, Napoli, NA 80130, Italy
| | - Andrea Soricelli
- Department of Diagnostic Imaging, University of Naples 'Parthenope', Napoli, NA 80131, Italy
| | | | - Niccolo Fuin
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruce Robert Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
39
|
|
40
|
Lindenberg L, Ahlman M, Turkbey B, Mena E, Choyke P. Evaluation of Prostate Cancer with PET/MRI. J Nucl Med 2017; 57:111S-116S. [PMID: 27694163 DOI: 10.2967/jnumed.115.169763] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
In the ongoing effort to understand and cure prostate cancer, imaging modalities are constantly evolving to assist in clinical decisions. Multiparametric MRI can be used to direct prostate biopsies, improve diagnostic yield, and help clinicians make more accurate decisions. PET is superior in providing biologic information about the cancer and is sensitive and highly specific. Integrated PET/MRI is a welcome technical advance with great potential to influence the diagnosis and management of prostate cancer in clinical practice.
Collapse
Affiliation(s)
- Liza Lindenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark Ahlman
- Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, Maryland; and
| | - Baris Turkbey
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Esther Mena
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
PET and PET/CT with radiolabeled choline in prostate cancer: a critical reappraisal of 20 years of clinical studies. Eur J Nucl Med Mol Imaging 2017; 44:1751-1776. [PMID: 28409220 DOI: 10.1007/s00259-017-3700-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
Abstract
We here aim to provide a comprehensive and critical review of the literature concerning the clinical applications of positron emission tomography/computed tomography (PET/CT) with radiolabeled choline in patients with prostate cancer (PCa). We will initially briefly summarize the historical context that brought to the synthesis of [11C]choline, which occurred exactly 20 years ago. We have arbitrarily grouped the clinical studies in three different periods, according to the year in which they were published and according to their relation with their applications in urology, radiotherapy and oncology. Studies at initial staging and, more extensively, studies in patients with biochemical failure, as well as factors predicting positive PET/CT will be reviewed. The capability of PET/CT with radiolabeled choline to provide prognostic information on PCa-specific survival will also be examined. The last sections will be devoted to the use of radiolabeled choline for monitoring the response to androgen deprivation therapy, radiotherapy, and chemotherapy. The accuracy and the limits of the technique will be discussed according to the information available from standard validation processes, including biopsy or histology. The clinical impact of the technique will be discussed on the basis of changes induced in the management of patients and in the evaluation of the response to therapy. Current indications to PET/CT, as officially endorsed by guidelines, or as routinely performed in the clinical practice will be illustrated. Emphasis will be made on methodological factors that might have influenced the results of the studies or their interpretation. Finally, we will briefly highlight the potential role of positron emission tomography/magnetic resonance and of new radiotracers for PCa imaging.
Collapse
|
42
|
18 F-Choline Positron Emission Tomography/Computed Tomography and Multiparametric Magnetic Resonance Imaging for the Detection of Early Local Recurrence of Prostate Cancer Initially Treated by Radiation Therapy: Comparison With Systematic 3-Dimensional Transperineal Mapping Biopsy. Int J Radiat Oncol Biol Phys 2017; 97:986-994. [DOI: 10.1016/j.ijrobp.2016.12.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/12/2016] [Accepted: 12/18/2016] [Indexed: 11/23/2022]
|
43
|
Oldan JD, Shah SN, Rose TL. Applications of PET/MR Imaging in Urogynecologic and Genitourinary Cancers. Magn Reson Imaging Clin N Am 2017; 25:335-350. [PMID: 28390533 DOI: 10.1016/j.mric.2016.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Positron emission tomograph (PET)-magnetic resonance (MR) is a new modality combining PET and MR. In gynecologic cancers it can be used for staging of cervical and endometrial cancer, planning of radiation therapy in cervical cancer, assessing response to chemotherapy in ovarian cancer, and detection of recurrence in most gynecologic cancers. It is being explored for prostate cancer and other genitourinary cancers, but is still in experimental stages.
Collapse
Affiliation(s)
- Jorge D Oldan
- Nuclear Medicine, Department of Radiology, University of North Carolina School of Medicine, Chairman's Office, 2006 Old Clinic, CB# 7510, Chapel Hill, NC 27599, USA.
| | - Shetal N Shah
- Abdominal Imaging Section and Nuclear Medicine Department, Imaging Institute and Taussig Cancer Institute, Cleveland Clinic Main Campus, Mail Code JB3, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - Tracy Lynn Rose
- Hematology-Oncology, N.C. Cancer Hospital, 101 Manning Drive, Second Floor, Chapel Hill, NC 27514, USA
| |
Collapse
|
44
|
James N, Graham J, Maurer T, Eiber M, Gschwend JE. Diagnosis and Treatment of Prostate Cancer: What Americans Can Learn From International Oncologists. Am Soc Clin Oncol Educ Book 2017; 37:344-357. [PMID: 28561698 DOI: 10.1200/edbk_175496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The three main sections in this article illustrate a number of facets of European health care. The first section looks at the influence of NICE on treatment of metastatic castration-resistant prostate cancer. The second section explores the impact of molecular imaging on diagnosis and treatment, in particular the development and clinical implementation of 68Ga PET imaging in prostate cancer. The final section of the session looks at the STAMPEDE trial and how running a trial on this scale has impacted care of prostate cancer in the United Kingdom and also at the uptake of docetaxel chemotherapy in hormone-sensitive advanced disease.
Collapse
Affiliation(s)
- Nicholas James
- From the Institute of Cancer and Genomic Sciences, Queen Elizabeth Hospital, University of Birmingham, Edgbaston, Birmingham, United Kingdom; National Guideline Alliance, Royal College of Obstetricians and Gynaecologists, London, United Kingdom; Department of Urology, Technical University of Munich, Munich, Germany; Department of Nuclear Medicine, Technical University of Munich, Munich, Germany; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - John Graham
- From the Institute of Cancer and Genomic Sciences, Queen Elizabeth Hospital, University of Birmingham, Edgbaston, Birmingham, United Kingdom; National Guideline Alliance, Royal College of Obstetricians and Gynaecologists, London, United Kingdom; Department of Urology, Technical University of Munich, Munich, Germany; Department of Nuclear Medicine, Technical University of Munich, Munich, Germany; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Tobias Maurer
- From the Institute of Cancer and Genomic Sciences, Queen Elizabeth Hospital, University of Birmingham, Edgbaston, Birmingham, United Kingdom; National Guideline Alliance, Royal College of Obstetricians and Gynaecologists, London, United Kingdom; Department of Urology, Technical University of Munich, Munich, Germany; Department of Nuclear Medicine, Technical University of Munich, Munich, Germany; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Matthias Eiber
- From the Institute of Cancer and Genomic Sciences, Queen Elizabeth Hospital, University of Birmingham, Edgbaston, Birmingham, United Kingdom; National Guideline Alliance, Royal College of Obstetricians and Gynaecologists, London, United Kingdom; Department of Urology, Technical University of Munich, Munich, Germany; Department of Nuclear Medicine, Technical University of Munich, Munich, Germany; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jürgen E Gschwend
- From the Institute of Cancer and Genomic Sciences, Queen Elizabeth Hospital, University of Birmingham, Edgbaston, Birmingham, United Kingdom; National Guideline Alliance, Royal College of Obstetricians and Gynaecologists, London, United Kingdom; Department of Urology, Technical University of Munich, Munich, Germany; Department of Nuclear Medicine, Technical University of Munich, Munich, Germany; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
45
|
Evans-Axelsson S, Timmermand OV, Bjartell A, Strand SE, Elgqvist J. Radioimmunotherapy for Prostate Cancer--Current Status and Future Possibilities. Semin Nucl Med 2016; 46:165-79. [PMID: 26897720 DOI: 10.1053/j.semnuclmed.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the most common cancers in men and is the second leading cause of cancer-related deaths in the USA. In the United States, it is the second most frequently diagnosed cancer after skin cancer, and in Europe it is number one. According to the American Cancer Society, approximately 221,000 men in the United States would be diagnosed with PCa during 2015, and approximately 28,000 would die of the disease. According to the International Agency for Research on Cancer, approximately 345,000 men were diagnosed with PCa in Europe during 2012, and despite more emphasis placed on early detection through routine screening, 72,000 men died of the disease. Hence, the need for improved therapy modalities is of utmost importance. And targeted therapies based on radiolabeled specific antibodies or peptides are a very interesting and promising alternative to increase the therapeutic efficacy and overall chance of survival of these patients. There are currently several preclinical and some clinical studies that have been conducted, or are ongoing, to investigate the therapeutic efficacy and toxicity of radioimmunotherapy (RIT) against PCa. One thing that is lacking in a lot of these published studies is the dosimetry data, which are needed to compare results between the studies and the study locations. Given the complicated tumor microenvironment and overall complexity of RIT to PCa, old and new targets and targeting strategies like combination RIT and pretargeting RIT are being improved and assessed along with various therapeutic radionuclides candidates. Given alone or in combination with other therapies, these new and improved strategies and RIT tools further enhance the clinical response to RIT drugs in PCa, making RIT for PCa an increasingly practical clinical tool.
Collapse
Affiliation(s)
- Susan Evans-Axelsson
- Department of Translational Medicine, Division of Urological Cancers, Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | | | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Skåne University Hospital, Malmö, Lund University, Lund, Sweden; Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Sven-Erik Strand
- Department of Clinical Sciences, Lund, Division of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Jörgen Elgqvist
- Department of Clinical Sciences, Lund, Division of Medical Radiation Physics, Lund University, Lund, Sweden.
| |
Collapse
|
46
|
PET imaging for lymph node dissection in prostate cancer. World J Urol 2016; 35:507-515. [PMID: 27752756 DOI: 10.1007/s00345-016-1954-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022] Open
Abstract
The detection of neoplastic lymph nodal involvement in prostate cancer (PCa) patients has relevant therapeutic and prognostic significance, both in the clinical settings of primary staging and restaging. Lymph nodal dissection (LND) currently represents the gold standard for evaluating the presence of lymph nodal involvement. However, this procedure is invasive, associated with morbidity, and may fail in detecting all potential lymph nodal metastatic regions. Currently the criteria for lymph nodal detection using conventional imaging techniques mainly rely on morphological assessment with unsatisfactory diagnostic accuracy. Positron emission tomography (PET) represents a helpful imaging technique for a proper staging of lymph nodal status. The most investigated PET radiotracer is choline, although many others have been explored as guide for both primary and salvage LND, such as fluorodeoxyglucose, acetate, fluorocyclobutanecarboxylic acid and prostate-specific membrane antigen. In the present review, a comprehensive literature review addressing the role of PET for LND in PCa patients is reported, with the use of the above-mentioned radiotracers.
Collapse
|
47
|
|
48
|
Lindenberg L, Ahlman M, Turkbey B, Mena E, Choyke P. Advancement of MR and PET/MR in Prostate Cancer. Semin Nucl Med 2016; 46:536-543. [PMID: 27825433 DOI: 10.1053/j.semnuclmed.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiparametric magnetic resonance (mpMRI) imaging has assumed a larger role in the diagnosis and management of prostate cancer. The current method of detecting prostate cancer relies on blind systematic biopsy, guided only by transrectal ultrasound that generally directs the needle biopsy to sextants of the prostate rather than specific lesions. MpMRI is playing an increasing role in the detection of primary cancer as it can visualize cancers and direct biopsies. However, even mpMRI is inherently nonspecific and numerous biopsies performed under MR guidance prove to be negative. Positron emission tomography (PET) has the potential to improve the sensitivity and specificity for prostate cancer in combination with mpMRI. Prostate-specific membrane antigen is a widely expressed tumor antigen in prostate cancer for which multiple PET ligands, labeled with 68Ga and 18F, are being developed. However, the low spatial resolution of PET mandates that it be combined with a higher resolution imaging modality, which typically has been computed tomography (CT). However, MRI is not only better at localizing lesions in the prostate and prostatic bed, but it is also more sensitive than CT for early bone marrow changes in bone metastases caused by prostate cancer. Prostate-specific membrane antigen-based PET agents show promise in the early detection of recurrent and metastatic disease. Recent developments in hybrid imaging now allow PET/MRI to be performed simultaneously on a single scanner allowing one-to-one correspondence between the PET activity and MRI findings. This offers the opportunity for both high sensitivity and specificity with excellent anatomic location and could allow for more targeted biopsies and treatments. Here, we review the current status of PET/MRI for prostate cancer.
Collapse
Affiliation(s)
- Liza Lindenberg
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Ahlman
- Department of Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD
| | - Baris Turkbey
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Esther Mena
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Peter Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| |
Collapse
|
49
|
Lee MS, Cho JY, Kim SY, Cheon GJ, Moon MH, Oh S, Lee J, Lee S, Woo S, Kim SH. Diagnostic value of integrated PET/MRI for detection and localization of prostate cancer: Comparative study of multiparametric MRI and PET/CT. J Magn Reson Imaging 2016; 45:597-609. [PMID: 27586519 DOI: 10.1002/jmri.25384] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/23/2016] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To evaluate the diagnostic value of integrated positron emission tomography/magnetic resonance imaging (PET/MRI) compared with conventional multiparametric MRI and PET/computed tomography (CT) for the detailed and accurate segmental detection/localization of prostate cancer. MATERIALS AND METHODS Thirty-one patients who underwent integrated PET/MRI using 18 F-choline and 18 F-FDG with an integrated PET/MRI scanner followed by radical prostatectomy were included. The prostate was divided into six segments (sextants) according to anatomical landmarks. Three radiologists noted the presence and location of cancer in each sextant on four different image interpretation modalities in consensus (1, multiparametric MRI; 2, integrated 18 F-FDG PET/MRI; 3, integrated 18 F-choline PET/MRI; and 4, combined interpretation of 1 and 18 F-FDG PET/CT). Sensitivity, specificity, accuracy, positive and negative predictive values, likelihood ratios, and diagnostic performance based on the DOR (diagnostic odds ratio) and NNM (number needed to misdiagnose) were evaluated for each interpretation modality, using the pathologic result as the reference standard. Detection rates of seminal vesicle invasion and extracapsular invasion were also evaluated. RESULTS Integrated 18 F-choline PET/MRI showed significantly higher sensitivity than did multiparametric MRI alone in high Gleason score patients (77.0% and 66.2%, P = 0.011), low Gleason score patients (66.7% and 47.4%, P = 0.007), and total patients (72.5% and 58.0%, P = 0.008) groups. Integrated 18 F-choline PET/MRI and 18 F-FDG PET/MRI showed similar sensitivity and specificity to combined interpretation of multiparametric MRI and 18 F-FDG PET/CT (for sensitivity, 58.0%, 63.4%, 72.5%, and 68.7%, respectively, and for specificity, 87.3%, 80.0%, 81.8%, 72.7%, respectively, in total patient group). However, integrated 18 F-choline PET/MRI showed the best diagnostic performance (as DOR, 11.875 in total patients, 27.941 in high Gleason score patients, 5.714 in low Gleason score groups) among the imaging modalities, regardless of Gleason score. Integrated 18 F-choline PET/MRI showed higher sensitivity and diagnostic performance than did integrated 18 F-FDG PET/MRI (as DOR, 6.917 in total patients, 15.143 in high Gleason score patients, 3.175 in low Gleason score groups) in all three patient groups. CONCLUSION Integrated PET/MRI carried out using a dedicated integrated PET/MRI scanner provides better sensitivity, accuracy, and diagnostic value for detection/localization of prostate cancer compared to multiparametric MRI. Generally, integrated 18 F-choline PET/MRI shows better sensitivity, accuracy, and diagnostic performance than does integrated 18 F-FDG PET/MRI as well as combined interpretation of multiparametric MRI with 18 F-FDG PET/CT. LEVEL OF EVIDENCE 2 J. Magn. Reson. Imaging 2017;45:597-609.
Collapse
Affiliation(s)
- Myoung Seok Lee
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Jeong Yeon Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Sang Youn Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, Korea
| | - Min Hoan Moon
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Sohee Oh
- Department of Biostatistics, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Korea
| | - Joongyub Lee
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Sungmin Woo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Seung Hyup Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
50
|
Riola-Parada C, García-Cañamaque L, Pérez-Dueñas V, Garcerant-Tafur M, Carreras-Delgado J. Simultaneous PET/MRI vs. PET/CT in oncology. A systematic review. Rev Esp Med Nucl Imagen Mol 2016. [DOI: 10.1016/j.remnie.2016.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|