1
|
Krause S, Florea A, Choi CH, Worthoff WA, Heinzel A, Fischer S, Burda N, Neumaier B, Shah NJ, Lohmann P, Mottaghy FM, Langen KJ, Stegmayr C. Autoradiography of Intracerebral Tumours in the Chick Embryo Model: A Feasibility Study Using Different PET Tracers. Mol Imaging Biol 2025; 27:151-162. [PMID: 39838234 PMCID: PMC12062108 DOI: 10.1007/s11307-025-01983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
PURPOSE In addition to rodent models, the chick embryo model has gained attention for radiotracer evaluation. Previous studies have investigated tumours on the chorioallantoic membrane (CAM), but its value for radiotracer imaging of intracerebral tumours has yet to be demonstrated. PROCEDURES Human U87 glioblastoma cells and U87-IDH1 mutant glioma cells were implanted into the brains of chick embryos at developmental day 5. After 12-14 days of tumour growth, blood-brain-barrier integrity was evaluated in vivo using MRI contrast enhancement or ex vivo with Evans blue dye. The tracers O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) (n = 5), 3,4-dihydroxy-6-[18F]-fluoro-L-phenylalanine ([18F]FDOPA) (n = 3), or [68Ga] labelled quinoline-based small molecule fibroblast activation protein inhibitor ([68Ga]FAPI-46) (n = 4) were injected intravenously if solid tumours were detected with MRI. For time-activity curves for [18F]FET, additional micro PET (µPET) was performed. The chick embryos were sacrificed 60 min post-injection, and cryosections of the tumour-bearing brains were produced and evaluated with autoradiography and immunohistochemistry. RESULTS Intracerebral tumours were produced with a 100% success rate in viable chick embryos at the experimental endpoint. However, 52% of chick embryos (n = 85) did not survive the procedure to embryonic development day 20. For the evaluated radiotracers, the tumour-to-brain ratios (TBR) derived from ex vivo autoradiography, as well as the tracer kinetics derived from µPET for intracerebral chick embryo tumours, were comparable to those previously reported in rodents and patients: the TBRmean for [18F]FET was 1.69 ± 0.54 (n = 5), and 3.8 for one hypermetabolic tumour and < 2.0 for two isometabolic tumors using [18F]FDOPA, with a TBRmean of 1.92 ± 1,11 (n = 3). The TBRmean of [68Ga]FAPI-46 for intracerebral chick embryo tumours was 19.13 ± 0.64 (n = 4). An intact blood-tumour barrier was observed in one U87-MG tumour (n = 5). CONCLUSIONS Radiotracer imaging of intracerebral tumours in the chick embryo offers a fast model for the evaluation of radiotracer uptake, accumulation, and kinetics. Our results indicate a high comparability between intracerebral tumour imaging in chick embryos and xenograft rodent models or brain tumour patients.
Collapse
Affiliation(s)
- Sandra Krause
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Alexandru Florea
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Chang-Hoon Choi
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Alexander Heinzel
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department for Nuclear Medicine, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Saskia Fischer
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Nicole Burda
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
- JARA - BRAIN - Translational Medicine, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-4; INM-5; INM-11), Forschungszentrum Jülich, 52425, Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
2
|
Lai TH, Wenzel B, Dukić-Stefanović S, Teodoro R, Arnaud L, Maisonial-Besset A, Weber V, Moldovan RP, Meister S, Pietzsch J, Kopka K, Juratli TA, Deuther-Conrad W, Toussaint M. Radiosynthesis and biological evaluation of [ 18F]AG-120 for PET imaging of the mutant isocitrate dehydrogenase 1 in glioma. Eur J Nucl Med Mol Imaging 2024; 51:1085-1096. [PMID: 37982850 PMCID: PMC10881675 DOI: 10.1007/s00259-023-06515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.
Collapse
Affiliation(s)
- Thu Hang Lai
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
- Department of Research and Development, ROTOP Pharmaka GmbH, Dresden, Germany
| | - Barbara Wenzel
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Sladjana Dukić-Stefanović
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Rodrigo Teodoro
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Lucie Arnaud
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Valérie Weber
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Rareş-Petru Moldovan
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Sebastian Meister
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tareq A Juratli
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurosurgery, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Magali Toussaint
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany.
| |
Collapse
|
3
|
Pronin IN, Postnov AA, Lipengolts AA, Pavlova GV, Revishchin AV, Skribitsky VA, Finogenova YA, Smirnova AV, Shpakova KE, Grigorieva EY, Kozlova YA, Alekseeva AI. [A Novel Rat Glioblastoma 101/8 Model: A Comparative PET-CT Study with C6 Rat model]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:54-62. [PMID: 39670780 DOI: 10.17116/neiro20248806154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The development of new drugs in nuclear medicine for diagnosis or treatment (chemotherapy) of brain tumors, in particular gliomas, is inextricably linked with the use of tumor models in animals (usually rats). OBJECTIVE To compare the widely used glioma cell model C6 and the new experimental tissue model of glioblastoma 101.8. MATERIAL AND METHODS A comparison was made of the diagnostic and morphological characteristics of the presented glioma models in two groups of animals with intracranially implanted tissue strain of experimental glioblastoma 101.8 (n=4) and the C6 glioma cell line (n=4) throughout the tumor development cycle within the rat brain. To monitor the progress of tumor growth and development, each animal underwent repeated diagnostic studies using PET-CT with 18F-FDG and 18F-FET to assess the metabolic activity and volume of the tumor. Also MRI images were collected. After the end of data acquisition, a histological examination of the tumor was carried out. RESULTS The tissue model of glioblastoma 101.8 demonstrated rapid growth and pronounced accumulation of the tracers in all animals during the tumor observation cycle. Formation of intratumoral necrosis and signs of disruption of the blood-brain barrier (BBB) were detected. In PET-CT studies of animals with a transplanted C6 tumor, no visible necrosis in the tumor structure was observed. Tumor growth was less rapid than in the case of model 101.8. The obtained morphological characteristics of 101.8 tumors transplanted into the rat brain demonstrated similar properties observed in real clinical conditions in patients with glioblastoma of the brain (necrosis, neovascularization, multiple pseudopalisade structures). CONCLUSIONS Tumor model 101.8 can be recommended for scientific research as it most closely reproduces the diagnostic and morphological features of a human glioblastoma.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - A A Postnov
- Burdenko Neurosurgical Center, Moscow, Russia
- The Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
| | - A A Lipengolts
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - G V Pavlova
- Burdenko Neurosurgical Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - A V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - V A Skribitsky
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Yu A Finogenova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A V Smirnova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - K E Shpakova
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - E Yu Grigorieva
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Yu A Kozlova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
- Botkin Hospital, Moscow, Russia
| | - A I Alekseeva
- Burdenko Neurosurgical Center, Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Avtsyn Research Institute of Human Morphology of Federal state budgetary scientific institution «Petrovsky National Research Centre of Surgery», Moscow, Russia
| |
Collapse
|
4
|
Langen KJ, Galldiks N, Mauler J, Kocher M, Filß CP, Stoffels G, Régio Brambilla C, Stegmayr C, Willuweit A, Worthoff WA, Shah NJ, Lerche C, Mottaghy FM, Lohmann P. Hybrid PET/MRI in Cerebral Glioma: Current Status and Perspectives. Cancers (Basel) 2023; 15:3577. [PMID: 37509252 PMCID: PMC10377176 DOI: 10.3390/cancers15143577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Advanced MRI methods and PET using radiolabelled amino acids provide valuable information, in addition to conventional MR imaging, for brain tumour diagnostics. These methods are particularly helpful in challenging situations such as the differentiation of malignant processes from benign lesions, the identification of non-enhancing glioma subregions, the differentiation of tumour progression from treatment-related changes, and the early assessment of responses to anticancer therapy. The debate over which of the methods is preferable in which situation is ongoing, and has been addressed in numerous studies. Currently, most radiology and nuclear medicine departments perform these examinations independently of each other, leading to multiple examinations for the patient. The advent of hybrid PET/MRI allowed a convergence of the methods, but to date simultaneous imaging has reached little relevance in clinical neuro-oncology. This is partly due to the limited availability of hybrid PET/MRI scanners, but is also due to the fact that PET is a second-line examination in brain tumours. PET is only required in equivocal situations, and the spatial co-registration of PET examinations of the brain to previous MRI is possible without disadvantage. A key factor for the benefit of PET/MRI in neuro-oncology is a multimodal approach that provides decisive improvements in the diagnostics of brain tumours compared with a single modality. This review focuses on studies investigating the diagnostic value of combined amino acid PET and 'advanced' MRI in patients with cerebral gliomas. Available studies suggest that the combination of amino acid PET and advanced MRI improves grading and the histomolecular characterisation of newly diagnosed tumours. Few data are available concerning the delineation of tumour extent. A clear additive diagnostic value of amino acid PET and advanced MRI can be achieved regarding the differentiation of tumour recurrence from treatment-related changes. Here, the PET-guided evaluation of advanced MR methods seems to be helpful. In summary, there is growing evidence that a multimodal approach can achieve decisive improvements in the diagnostics of cerebral gliomas, for which hybrid PET/MRI offers optimal conditions.
Collapse
Affiliation(s)
- Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 53127 Bonn, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Jörg Mauler
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Martin Kocher
- Department of Stereotaxy and Functional Neurosurgery, Center for Neurosurgery, Faculty of Medicine, University Hospital Cologne, 50931 Cologne, Germany
| | - Christian Peter Filß
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Department of Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Cláudia Régio Brambilla
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Wieland Alexander Worthoff
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Nadim Jon Shah
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
- Department of Neurology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Christoph Lerche
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - Felix Manuel Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Duesseldorf, 53127 Bonn, Germany
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, The Netherlands
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4, INM-11), Forschungszentrum Juelich, 52425 Juelich, Germany
| |
Collapse
|
5
|
Becker H, Castaneda-Vega S, Patzwaldt K, Przystal JM, Walter B, Michelotti FC, Canjuga D, Tatagiba M, Pichler B, Beck SC, Holland EC, la Fougère C, Tabatabai G. Multiparametric Longitudinal Profiling of RCAS-tva-Induced PDGFB-Driven Experimental Glioma. Brain Sci 2022; 12:1426. [PMID: 36358353 PMCID: PMC9688186 DOI: 10.3390/brainsci12111426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/31/2023] Open
Abstract
Glioblastomas are incurable primary brain tumors harboring a heterogeneous landscape of genetic and metabolic alterations. Longitudinal imaging by MRI and [18F]FET-PET measurements enable us to visualize the features of evolving tumors in a dynamic manner. Yet, close-meshed longitudinal imaging time points for characterizing temporal and spatial metabolic alterations during tumor evolution in patients is not feasible because patients usually present with already established tumors. The replication-competent avian sarcoma-leukosis virus (RCAS)/tumor virus receptor-A (tva) system is a powerful preclinical glioma model offering a high grade of spatial and temporal control of somatic gene delivery in vivo. Consequently, here, we aimed at using MRI and [18F]FET-PET to identify typical neuroimaging characteristics of the platelet-derived growth factor B (PDGFB)-driven glioma model using the RCAS-tva system. Our study showed that this preclinical glioma model displays MRI and [18F]FET-PET features that highly resemble the corresponding established human disease, emphasizing the high translational relevance of this experimental model. Furthermore, our investigations unravel exponential growth dynamics and a model-specific tumor microenvironment, as assessed by histology and immunochemistry. Taken together, our study provides further insights into this preclinical model and advocates for the imaging-stratified design of preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Hannes Becker
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- Department of Neurosurgery, University Hospital Tubingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Salvador Castaneda-Vega
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
| | - Kristin Patzwaldt
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
| | - Justyna M. Przystal
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
| | - Bianca Walter
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Filippo C. Michelotti
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
| | - Denis Canjuga
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Marcos Tatagiba
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- Department of Neurosurgery, University Hospital Tubingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Bernd Pichler
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72072 Tubingen, Germany
| | - Susanne C. Beck
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, DC 98109, USA
| | - Christian la Fougère
- Department of Nuclear Medicine and Clinical Molecular Imaging, Eberhard Karls University Tuebingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72072 Tubingen, Germany
| | - Ghazaleh Tabatabai
- Department of Neurology & Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for Neuro-Oncology, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tubingen, 72072 Tubingen, Germany
- German Translational Cancer Consortium (DKTK), DKFZ Partner Site, 72072 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls University, 72072 Tubingen, Germany
| |
Collapse
|
6
|
Bashir A, Mathilde Jacobsen S, Mølby Henriksen O, Broholm H, Urup T, Grunnet K, Andrée Larsen V, Møller S, Skjøth-Rasmussen J, Skovgaard Poulsen H, Law I. Recurrent glioblastoma versus late posttreatment changes: diagnostic accuracy of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (18F-FET PET). Neuro Oncol 2020; 21:1595-1606. [PMID: 31618420 DOI: 10.1093/neuonc/noz166] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diagnostic accuracy in previous studies of O-(2-[18F]-fluoroethyl)-L-tyrosine (18F-FET) PET in patients with suspected recurrent glioma may be influenced by prolonged dynamic PET acquisitions, heterogeneous populations, different non-standard-of-care therapies, and PET scans performed at different time points post radiotherapy. We investigated the diagnostic accuracy of a 20-minute 18F-FET PET scan in MRI-suspected recurrent glioblastoma 6 months after standard radiotherapy and its ability to prognosticate overall survival (OS). METHODS In total, 146 glioblastoma patients with 168 18F-FET PET scans were reviewed retrospectively. Patients with MRI responses to bevacizumab or undergoing re-irradiation or immunotherapy after 18F-FET PET were excluded. Maximum and mean tumor-to-background ratios (TBRmax, TBRmean) and biological tumor volume (BTV) were recorded and verified by histopathology or clinical/radiological follow-up. Thresholds of 18F-FET parameters were determined by receiver operating characteristic (ROC) analysis. Prognostic factors were investigated in Cox proportional hazards models. RESULTS Surgery was performed after 104 18F-FET PET scans, while clinical/radiological surveillance was used following 64, identifying 152 glioblastoma recurrences and 16 posttreatment changes. ROC analysis yielded thresholds of 2.0 for TBRmax, 1.8 for TBRmean, and 0.55 cm3 for BTV in differentiating recurrent glioblastoma from posttreatment changes with the best performance of TBRmax (sensitivity 99%, specificity 94%; P < 0.0001) followed by BTV (sensitivity 98%, specificity 94%; P < 0.0001). Using these thresholds, 166 18F-FET PET scans were correctly classified. Increasing BTV was associated with shorter OS (P < 0.0001). CONCLUSION A 20-minute 18F-FET PET scan is a powerful tool to distinguish posttreatment changes from recurrent glioblastoma 6-month postradiotherapy, and predicts OS.
Collapse
Affiliation(s)
- Asma Bashir
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Helle Broholm
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Urup
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Grunnet
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Søren Møller
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine, and PET, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Oliveira D, Stegmayr C, Heinzel A, Ermert J, Neumaier B, Shah NJ, Mottaghy FM, Langen KJ, Willuweit A. High uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of rat gliomas due to activated astrocytes. EJNMMI Res 2020; 10:55. [PMID: 32451793 PMCID: PMC7378136 DOI: 10.1186/s13550-020-00642-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent studies reported on high uptake of the PSMA ligands [68Ga]HBED-CC (68Ga-PSMA) and 18F-DCFPyL in cerebral gliomas. This study explores the regional uptake and cellular targets of 68Ga-PSMA and 18F-DCFPyL in three different rat glioma models. METHODS F98, 9 L, or U87 rat gliomas were implanted into the brains of 38 rats. After 13 days of tumor growth, 68Ga-PSMA (n = 21) or 18F-DCFPyL (n = 17) was injected intravenously, and animals were sacrificed 40 min later. Five animals for each tracer and tumor model were additionally investigated by micro-PET at 20-40 min post injection. Cryosections of the tumor bearing brains were analyzed by ex vivo autoradiography and immunofluorescence staining for blood vessels, microglia, astrocytes, and presence of PSMA. Blood-brain barrier (BBB) permeability was tested by coinjection of Evans blue dye (EBD). 68Ga-PSMA uptake after restoration of BBB integrity by treatment with dexamethasone (Dex) was evaluated in four animals with U87 gliomas. Competition experiments using the PSMA-receptor inhibitor 2-(phosphonomethyl)pentane-1,5-dioic acid (PMPA) were performed for both tracers in two animals each. RESULTS Autoradiography demonstrated a strong 68Ga-PSMA and 18F-DCFPyL binding in the peritumoral area and moderate binding in the center of the tumors. PMPA administration led to complete inhibition of 68Ga-PSMA and 18F-DCFPyL binding in the peritumoral region. Restoration of BBB by Dex treatment reduced EBD extravasation but 68Ga-PSMA binding remained unchanged. Expression of activated microglia (CD11b) was low in the intra- and peritumoral area but GFAP staining revealed strong activation of astrocytes in congruency to the tracer binding in the peritumoral area. All tumors were visualized in micro PET, showing a lower tumor/brain contrast with 68Ga-PSMA than with 18F-DCFPyL. CONCLUSIONS High uptake of 68Ga-PSMA and 18F-DCFPyL in the peritumoral area of all glioma models is presumably caused by activated astrocytes. This may represent a limitation for the clinical application of PSMA ligands in gliomas.
Collapse
Affiliation(s)
- Dennis Oliveira
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Alexander Heinzel
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany
- Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany.
- Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany.
- Jülich-Aachen Research Alliance (JARA)-Section JARA-Brain, Aachen, Germany.
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM), Forschungszentrum Jülich, D-52425, Jülich, Germany
| |
Collapse
|
8
|
Stegmayr C, Willuweit A, Lohmann P, Langen KJ. O-(2-[18F]-Fluoroethyl)-L-Tyrosine (FET) in Neurooncology: A Review of Experimental Results. Curr Radiopharm 2020; 12:201-210. [PMID: 30636621 DOI: 10.2174/1874471012666190111111046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
In recent years, PET using radiolabelled amino acids has gained considerable interest as an additional tool besides MRI to improve the diagnosis of cerebral gliomas and brain metastases. A very successful tracer in this field is O-(2-[18F]fluoroethyl)-L-tyrosine (FET) which in recent years has replaced short-lived tracers such as [11C]-methyl-L-methionine in many neuro-oncological centers in Western Europe. FET can be produced with high efficiency and distributed in a satellite concept like 2- [18F]fluoro-2-deoxy-D-glucose. Many clinical studies have demonstrated that FET PET provides important diagnostic information regarding the delineation of cerebral gliomas for therapy planning, an improved differentiation of tumor recurrence from treatment-related changes and sensitive treatment monitoring. In parallel, a considerable number of experimental studies have investigated the uptake mechanisms of FET on the cellular level and the behavior of the tracer in various benign lesions in order to clarify the specificity of FET uptake for tumor tissue. Further studies have explored the effects of treatment related tissue alterations on tracer uptake such as surgery, radiation and drug therapy. Finally, the role of blood-brain barrier integrity for FET uptake which presents an important aspect for PET tracers targeting neoplastic lesions in the brain has been investigated in several studies. Based on a literature research regarding experimental FET studies and corresponding clinical applications this article summarizes the knowledge on the uptake behavior of FET, which has been collected in more than 30 experimental studies during the last two decades and discusses the role of these results in the clinical context.
Collapse
Affiliation(s)
- Carina Stegmayr
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine 4, Forschungszentrum Juelich, Juelich, Germany.,Department of Nuclear Medicine, University of Aachen, Aachen, Germany.,Juelich-Aachen Research Alliance (JARA) - Section JARA-Brain, Juelich, Germany
| |
Collapse
|
9
|
McMahon D, Oakden W, Hynynen K. Investigating the effects of dexamethasone on blood-brain barrier permeability and inflammatory response following focused ultrasound and microbubble exposure. Am J Cancer Res 2020; 10:1604-1618. [PMID: 32042325 PMCID: PMC6993222 DOI: 10.7150/thno.40908] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Rationale: Clinical trials are currently underway to test the safety and efficacy of delivering therapeutic agents across the blood-brain barrier (BBB) using focused ultrasound and microbubbles (FUS+MBs). While acoustic feedback control strategies have largely minimized the risk of overt tissue damage, transient induction of inflammatory processes have been observed following sonication in preclinical studies. The goal of this work was to explore the potential of post-sonication dexamethasone (DEX) administration as a means to mitigate treatment risk. Vascular permeability, inflammatory protein expression, blood vessel growth, and astrocyte activation were assessed. Methods: A single-element focused transducer (transmit frequency = 580 kHz) and DefinityTM microbubbles were used to increase BBB permeability unilaterally in the dorsal hippocampi of adult male rats. Sonicating pressure was calibrated based on ultraharmonic emissions. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively assess BBB permeability at 15 min (baseline) and 2 hrs following sonication. DEX was administered following baseline imaging and at 24 hrs post-FUS+MB exposure. Expression of key inflammatory proteins were assessed at 2 days, and astrocyte activation and blood vessel growth were assessed at 10 days post-FUS+MB exposure. Results: Compared to saline-treated control animals, DEX administration expedited the restoration of BBB integrity at 2 hrs, and significantly limited the production of key inflammation-related proteins at 2 days, following sonication. Indications of FUS+MB-induced astrocyte activation and vascular growth were diminished at 10 days in DEX-treated animals, compared to controls. Conclusions: These results suggest that DEX provides a means of modulating the duration of BBB permeability enhancement and may reduce the risk of inflammation-induced tissue damage, increasing the safety profile of this drug-delivery strategy. This effect may be especially relevant in scenarios for which the goal of treatment is to restore or preserve neural function and multiple sonications are required.
Collapse
|
10
|
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020; 20:26-41. [PMID: 31601988 PMCID: PMC8246629 DOI: 10.1038/s41568-019-0205-x] [Citation(s) in RCA: 1042] [Impact Index Per Article: 208.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
For a blood-borne cancer therapeutic agent to be effective, it must cross the blood vessel wall to reach cancer cells in adequate quantities, and it must overcome the resistance conferred by the local microenvironment around cancer cells. The brain microenvironment can thwart the effectiveness of drugs against primary brain tumours as well as brain metastases. In this Review, we highlight the cellular and molecular components of the blood-brain barrier (BBB), a specialized neurovascular unit evolved to maintain brain homeostasis. Tumours are known to compromise the integrity of the BBB, resulting in a vasculature known as the blood-tumour barrier (BTB), which is highly heterogeneous and characterized by numerous distinct features, including non-uniform permeability and active efflux of molecules. We discuss the challenges posed by the BBB and BTB for drug delivery, how multiple cell types dictate BBB function and the role of the BTB in disease progression and treatment. Finally, we highlight emerging molecular, cellular and physical strategies to improve drug delivery across the BBB and BTB and discuss their impact on improving conventional as well as emerging treatments, such as immune checkpoint inhibitors and engineered T cells. A deeper understanding of the BBB and BTB through the application of single-cell sequencing and imaging techniques, and the development of biomarkers of BBB integrity along with systems biology approaches, should enable new personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Influence of Dexamethasone on O-(2-[ 18F]-Fluoroethyl)-L-Tyrosine Uptake in the Human Brain and Quantification of Tumor Uptake. Mol Imaging Biol 2019; 21:168-174. [PMID: 29845426 DOI: 10.1007/s11307-018-1221-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) is an established positron emission tomography (PET) tracer for brain tumor imaging. This study explores the influence of dexamethasone therapy on [18F]FET uptake in the normal brain and its influence on the maximum and mean tumor-to-brain ratio (TBR). PROCEDURES [18F]FET PET scans of 160 brain tumor patients were evaluated (80 dexamethasone treated, 80 untreated; each group with 40 men/40 women). The standardized uptake value of [18F]FET uptake in the normal brain (SUVbrain) in the different groups was compared. Nine patients were examined repeatedly with and without dexamethasone therapy. RESULTS SUVbrain of [18F]FET uptake was significantly higher in dexamethasone-treated patients than in untreated patients (SUVbrain 1.33 ± 0.1 versus 1.06 ± 0.16 in male and 1.45 ± 0.25 versus 1.31 ± 0.28 in female patients). Similar results were observed in patients with serial PET scans. Furthermore, compared to men, a significantly higher SUVbrain was found in women, both with and without dexamethasone treatment. There were no significant differences between the different groups for TBRmax and TBRmean, which could have been masked by the high standard deviation. In a patient with a stable brain metastasis investigated twice with and without dexamethasone, the TBRmax and the biological tumor volume (BTV) decreased considerably after dexamethasone due to an increased SUVbrain. CONCLUSION Dexamethasone treatment appears to increase the [18F]FET uptake in the normal brain. An effect on TBRmax, TBRmean, and BTV cannot be excluded which should be considered especially for treatment monitoring and the estimation of BTV using [18F]FET PET.
Collapse
|
12
|
Investigation of cis-4-[ 18F]Fluoro-D-Proline Uptake in Human Brain Tumors After Multimodal Treatment. Mol Imaging Biol 2019; 20:1035-1043. [PMID: 29687323 DOI: 10.1007/s11307-018-1197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Cis-4-[18F]fluoro-D-proline (D-cis-[18F]FPro) has been shown to pass the intact blood-brain barrier and to accumulate in areas of secondary neurodegeneration and necrosis in the rat brain while uptake in experimental brain tumors is low. This pilot study explores the uptake behavior of D-cis-[18F]FPro in human brain tumors after multimodal treatment. PROCEDURES In a prospective study, 27 patients with suspected recurrent brain tumor after treatment with surgery, radiotherapy, and/or chemotherapy (SRC) were investigated by dynamic positron emission tomography (PET) using D-cis-[18F]FPro (22 high-grade gliomas, one unspecified glioma, and 4 metastases). Furthermore, two patients with untreated lesions were included (one glioblastoma, one reactive astrogliosis). Data were compared with the results of PET using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) which detects viable tumor tissue. Tracer distribution, mean and maximum lesion-to-brain ratios (LBRmean, LBRmax), and time-to-peak (TTP) of the time activity curve (TAC) of tracer uptake were evaluated. Final diagnosis was determined by histology (n = 9), clinical follow-up (n = 10), or by [18F]FET PET (n = 10). RESULTS D-cis-[18F]FPro showed high uptake in both recurrent brain tumors (n = 11) and lesions classified as treatment-related changes (TRC) only (n = 16) (LBRmean 2.2 ± 0.7 and 2.1 ± 0.6, n.s.; LBRmax 3.4 ± 1.2 and 3.2 ± 1.3, n.s.). The untreated glioblastoma and the lesion showing reactive astrogliosis exhibited low D-cis-[18F]FPro uptake. Distribution of [18F]FET and D-cis-[18F]FPro uptake was discordant in 21/29 cases indicating that the uptake mechanisms are different. CONCLUSION The high accumulation of D-cis-[18F]FPro in pretreated brain tumors and TRC supports the hypothesis that tracer uptake is related to cell death. Further studies before and after therapy are needed to assess the potential of D-cis-[18F]FPro for treatment monitoring.
Collapse
|
13
|
Martens B, Drebert Z. Glucocorticoid-mediated effects on angiogenesis in solid tumors. J Steroid Biochem Mol Biol 2019; 188:147-155. [PMID: 30654109 DOI: 10.1016/j.jsbmb.2019.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 12/28/2022]
Abstract
Angiogenesis is essential in tumor development to maintain the oxygen and nutrient supply. Glucocorticoids have shown both direct and indirect angiostatic properties in various types of solid cancers. In most of the reported cases glucocorticoid-mediated actions involved suppression of multiple pro-angiogenic factors expression by cancer cells. The anti-angiogenic properties of glucocorticoids correlated with diminished tumor vasculature and reduced tumor growth in multiple in vivo studies. However, when glucocorticoid treatment is considered, possible adverse events should be taken into account. Additional research is needed to further test the use of these steroidal drugs in cancer therapy.
Collapse
Affiliation(s)
- Broes Martens
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Zuzanna Drebert
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology & Experimental Cancer Research, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
14
|
Geisler S, Stegmayr C, Niemitz N, Lohmann P, Rapp M, Stoffels G, Willuweit A, Galldiks N, Filss C, Sabel MC, Coenen HH, Shah NJ, Langen KJ. Treatment-Related Uptake of O-(2-18F-Fluoroethyl)-l-Tyrosine and l-[Methyl-3H]-Methionine After Tumor Resection in Rat Glioma Models. J Nucl Med 2019; 60:1373-1379. [DOI: 10.2967/jnumed.119.225680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
|
15
|
Abstract
PURPOSE OF REVIEW The aim of this study was to give an update on the emerging role of PET using radiolabelled amino acids in the diagnostic workup and management of patients with cerebral gliomas and brain metastases. RECENT FINDINGS Numerous studies have demonstrated the potential of PET using radiolabelled amino acids for differential diagnosis of brain tumours, delineation of tumour extent for treatment planning and biopsy guidance, differentiation between tumour progression and recurrence versus treatment-related changes, and for monitoring of therapy. The Response Assessment in Neuro-Oncology (RANO) working group - an international effort to develop new standardized response criteria for clinical trials in brain tumours - has recently recommended the use of amino acid PET imaging for brain tumour management in addition to MRI at every stage of disease. With the introduction of F-18 labelled amino acids, a broader clinical application has become possible, but is still hampered by the lack of regulatory approval and of reimbursement in many countries. SUMMARY PET using radiolabelled amino acids is a rapidly evolving method that can significantly enhance the diagnostic value of MRI in brain tumours. Current developments suggest that this imaging technique will become an indispensable tool in neuro-oncological centres in the near future.
Collapse
|
16
|
The Emerging Role of Amino Acid PET in Neuro-Oncology. Bioengineering (Basel) 2018; 5:bioengineering5040104. [PMID: 30487391 PMCID: PMC6315339 DOI: 10.3390/bioengineering5040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Imaging plays a critical role in the management of the highly complex and widely diverse central nervous system (CNS) malignancies in providing an accurate diagnosis, treatment planning, response assessment, prognosis, and surveillance. Contrast-enhanced magnetic resonance imaging (MRI) is the primary modality for CNS disease management due to its high contrast resolution, reasonable spatial resolution, and relatively low cost and risk. However, defining tumor response to radiation treatment and chemotherapy by contrast-enhanced MRI is often difficult due to various factors that can influence contrast agent distribution and perfusion, such as edema, necrosis, vascular alterations, and inflammation, leading to pseudoprogression and pseudoresponse assessments. Amino acid positron emission tomography (PET) is emerging as the method of resolving such equivocal lesion interpretations. Amino acid radiotracers can more specifically differentiate true tumor boundaries from equivocal lesions based on their specific and active uptake by the highly metabolic cellular component of CNS tumors. These therapy-induced metabolic changes detected by amino acid PET facilitate early treatment response assessments. Integrating amino acid PET in the management of CNS malignancies to complement MRI will significantly improve early therapy response assessment, treatment planning, and clinical trial design.
Collapse
|
17
|
Abstract
Written by associate editors of the Annals of Nuclear Medicine, this invited review article is intended to offer our readers a condensed global view on the high-quality research work that has been published in Europe last year. We have divided this article into five sections. The first three sections from the oncology category include "[18F]fluorodeoxyglucose (FDG) positron-emission tomography (PET) for therapy monitoring in malignant lymphoma", "[18F]fluoromisonidazole (FMISO) PET for hypoxia", and "lymphoscintigraphy update". It is followed by a section on "amyloid PET for Alzheimer's disease" using [11C]Pittsburgh Compound B (PiB) and [18F]florbetapir from the neurology category. The final section reviews three original articles in the field of "basic and translational molecular imaging" regardless of the category, which investigated new PET tracers such as L-4-borono-2-[18F]fluoro-phenylalanine (FBPA), O-(2-[18F]fluoroethyl)-L-tyrosine (FET) and 64Cu-NOTA-pertuzumab in small animals. We hope that this review article will arouse greater interest in our readers in recent European research trends in the field of nuclear medicine.
Collapse
|
18
|
Li X, Wang X, Xie J, Liang B, Wu J. Suppression of Angiotensin-(1-7) on the Disruption of Blood-Brain Barrier in Rat of Brain Glioma. Pathol Oncol Res 2018; 25:429-435. [PMID: 30229380 DOI: 10.1007/s12253-018-0471-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/13/2018] [Indexed: 01/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the most primary brain tumor, specially characterized with the damage of blood-brain barrier (BBB). The Ang-(1-7) was proven to have an inhibitory effect on glioblastoma growth. However, its role on blood-brain barrier (BBB) and the underlying molecular mechanism remains unclear. In this study, Ang-(1-7) significantly relieved the damage of blood-brain barrier in rats with intracranial U87 gliomas as evaluated by magnetic resonance imaging (MRI). Furthermore, its treatment attenuated BBB permeability, tumor growth and edema formation. Similarly, Ang-(1-7) also decreased U87 glioma cells barrier permeability in vitro. Further analysis showed that Ang-(1-7) could effectively restore tight junction protein (claudin-5 and ZO-1) expression levels both in rats and U87 glioma cells by affecting the activation of JNK pathway. SP600125, an inhibitor of JNK, significantly enhanced the expression of Claudin-5 and ZO-1, and decreased the disruption of BBB and enhanced the efficiency of Ang-(1-7) in glioma rats. Taken together, this study demonstrated a protective role of Ang-(1-7) in glioma-induced blood-brain barrier damage by regulating tight junction protein expression. Accordingly, Ang-(1-7) may become a promising therapeutic agent against glioma.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China.
| | - Jingwei Xie
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| | - Bo Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| | - Jianheng Wu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, No.3 Kangfuqian Street, Erqi District, Zhengzhou, 450052, China
| |
Collapse
|
19
|
Lohmann P, Kocher M, Ceccon G, Bauer EK, Stoffels G, Viswanathan S, Ruge MI, Neumaier B, Shah NJ, Fink GR, Langen KJ, Galldiks N. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. NEUROIMAGE-CLINICAL 2018; 20:537-542. [PMID: 30175040 PMCID: PMC6118093 DOI: 10.1016/j.nicl.2018.08.024] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/01/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Background The aim of this study was to investigate the potential of combined textural feature analysis of contrast-enhanced MRI (CE-MRI) and static O-(2-[18F]fluoroethyl)-L-tyrosine (FET) PET for the differentiation between local recurrent brain metastasis and radiation injury since CE-MRI often remains inconclusive. Methods Fifty-two patients with new or progressive contrast-enhancing brain lesions on MRI after radiotherapy (predominantly stereotactic radiosurgery) of brain metastases were additionally investigated using FET PET. Based on histology (n = 19) or clinicoradiological follow-up (n = 33), local recurrent brain metastases were diagnosed in 21 patients (40%) and radiation injury in 31 patients (60%). Forty-two textural features were calculated on both unfiltered and filtered CE-MRI and summed FET PET images (20–40 min p.i.), using the software LIFEx. After feature selection, logistic regression models using a maximum of five features to avoid overfitting were calculated for each imaging modality separately and for the combined FET PET/MRI features. The resulting models were validated using cross-validation. Diagnostic accuracies were calculated for each imaging modality separately as well as for the combined model. Results For the differentiation between radiation injury and recurrence of brain metastasis, textural features extracted from CE-MRI had a diagnostic accuracy of 81% (sensitivity, 67%; specificity, 90%). FET PET textural features revealed a slightly higher diagnostic accuracy of 83% (sensitivity, 88%; specificity, 75%). However, the highest diagnostic accuracy was obtained when combining CE-MRI and FET PET features (accuracy, 89%; sensitivity, 85%; specificity, 96%). Conclusions Our findings suggest that combined FET PET/CE-MRI radiomics using textural feature analysis offers a great potential to contribute significantly to the management of patients with brain metastases. Differentiation between brain metastasis recurrence and radiation injury is of high clinical importance. Differentiation based on contrast-enhanced conventional MRI is often inconclusive. Radiomics and hybrid amino acid PET/MR imaging are increasingly gaining attention in Neuro-Oncology. We investigated the potential of combined PET/MRI radiomics analysis using MRI and FET PET in patients with brain metastases. Combined PET/MRI radiomics allows the differentiation of brain metastasis recurrence from radiation injury with high accuracy.
Collapse
Affiliation(s)
- Philipp Lohmann
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany.
| | - Martin Kocher
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Gabriele Stoffels
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Shivakumar Viswanathan
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Maximilian I Ruge
- Dept. of Stereotaxy and Functional Neurosurgery, University of Cologne, Cologne, Germany
| | - Bernd Neumaier
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany
| | - Nadim J Shah
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Gereon R Fink
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, University of Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Norbert Galldiks
- Inst. of Neuroscience and Medicine (INM-3, -4, -5), Forschungszentrum Juelich, Juelich, Germany; Dept. of Neurology, University of Cologne, Cologne, Germany; Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany
| |
Collapse
|
20
|
Hybrid MR-PET of brain tumours using amino acid PET and chemical exchange saturation transfer MRI. Eur J Nucl Med Mol Imaging 2018; 45:1031-1040. [PMID: 29478081 DOI: 10.1007/s00259-018-3940-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
Abstract
PURPOSE PET using radiolabelled amino acids has become a promising tool in the diagnostics of gliomas and brain metastasis. Current research is focused on the evaluation of amide proton transfer (APT) chemical exchange saturation transfer (CEST) MR imaging for brain tumour imaging. In this hybrid MR-PET study, brain tumours were compared using 3D data derived from APT-CEST MRI and amino acid PET using O-(2-18F-fluoroethyl)-L-tyrosine (18F-FET). METHODS Eight patients with gliomas were investigated simultaneously with 18F-FET PET and APT-CEST MRI using a 3-T MR-BrainPET scanner. CEST imaging was based on a steady-state approach using a B1 average power of 1μT. B0 field inhomogeneities were corrected a Prametric images of magnetisation transfer ratio asymmetry (MTRasym) and differences to the extrapolated semi-solid magnetisation transfer reference method, APT# and nuclear Overhauser effect (NOE#), were calculated. Statistical analysis of the tumour-to-brain ratio of the CEST data was performed against PET data using the non-parametric Wilcoxon test. RESULTS A tumour-to-brain ratio derived from APT# and 18F-FET presented no significant differences, and no correlation was found between APT# and 18F-FET PET data. The distance between local hot spot APT# and 18F-FET were different (average 20 ± 13 mm, range 4-45 mm). CONCLUSION For the first time, CEST images were compared with 18F-FET in a simultaneous MR-PET measurement. Imaging findings derived from18F-FET PET and APT CEST MRI seem to provide different biological information. The validation of these imaging findings by histological confirmation is necessary, ideally using stereotactic biopsy.
Collapse
|
21
|
Carideo L, Minniti G, Mamede M, Scaringi C, Russo I, Scopinaro F, Cicone F. 18F-DOPA uptake parameters in glioma: effects of patients' characteristics and prior treatment history. Br J Radiol 2018; 91:20170847. [PMID: 29271230 DOI: 10.1259/bjr.20170847] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE In amino acid positron emission tomography brain tumour imaging, tumour-to-background uptake parameters are often used for treatment monitoring. We studied the effects of patients' characteristics and anticancer treatments on 18F-fluoro-l-phenylalanine uptake of normal brain and tumour lesions, with particular emphasis on temozolomide (TMZ) chemotherapy. METHODS 155 studies from 120 patients with glioma were analysed. Average uptake of normal background (standardized uptake value, SUVbckgr) and basal ganglia (SUVbg), as well as tumour-to-brain ratios (TBR) were compared between positron emission tomography/CT studies acquired before (Group A, n = 48), after (Group B, n = 50) or during (Group C, n = 57) TMZ treatment, using analysis of variance. RESULTS Overall, mean SUVbckgr and mean SUVbg were 1.06 ± 0.26 and 2.12 ± 0.47, respectively. Female had significantly higher SUVbckgr (p = 0.002) and SUVbg (p = 0.012) than male patients. Age showed a positive correlation with SUVbg (p = 0.001). In the overall cohort, there were significant effects of TMZ on SUVbckgr (p = 0.0237) and TBR (p = 0.0138). In particular, SUVbckgr was lower in Group C than in Group B (1.00 ± 0.25 vs 1.14 ± 0.31, p = 0.0173). Significant variations of SUVbckr could be observed in female only. TBR was significantly higher in Group C than in Group B (2.37 ± 0.54 vs 2.06 ± 0.38, p = 0.010). Variations of SUVbg between groups slightly missed significance (p = 0.0504). CONCLUSION Temozolomide chemotherapy and patients' characteristics, including gender and age, affect physiological [18F]-fluoro-l-phenylalanine uptake and, consequently, the calculation of TBRs. Advances in knowledge: For the first time, the effects of past or concurrent temozolomide chemotherapy on brain physiological amino acid uptake have been investigated. Such effects are relevant and should be taken into account when evaluating tumour-to-background ratios.
Collapse
Affiliation(s)
- Luciano Carideo
- 1 Nuclear Medicine, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Giuseppe Minniti
- 2 Radiotherapy, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy.,3 IRCCS Neuromed , Pozzilli (IS) , Italy
| | - Marcelo Mamede
- 4 Department of Anatomy and Imaging, Federal University of Minas Gerais , Belo Horizonte , Brazil
| | - Claudia Scaringi
- 2 Radiotherapy, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Ivana Russo
- 2 Radiotherapy, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Francesco Scopinaro
- 1 Nuclear Medicine, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| | - Francesco Cicone
- 1 Nuclear Medicine, Sant'Andrea Hospital, Department of Surgical and Medical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome , Rome , Italy
| |
Collapse
|