1
|
Jiang Z, Chernoff D, Galenchik-Chan A, Tomorri D, Honkanen RA, Duong TQ, Muir ER. Improved MRI methods to quantify retinal and choroidal blood flow applied to a model of glaucoma. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1385495. [PMID: 38984144 PMCID: PMC11182105 DOI: 10.3389/fopht.2024.1385495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Purpose Blood flow (BF) of the retinal and choroidal vasculatures can be quantitatively imaged using MRI. This study sought to improve methods of data acquisition and analysis for MRI of layer-specific retinal and choroidal BF and then applied this approach to detect reduced ocular BF in a well-established mouse model of glaucoma from both eyes. Methods Quantitative BF magnetic resonance imaging (MRI) was performed on glaucomatous DBA/2J and normal C57BL/6J mice. Arterial spin labeling MRI was applied to image retinal and choroidal BF using custom-made dual eye coils that could image both eyes during the same scan. Statistics using data from a single eye or two eyes were compared. BF values were calculated using two approaches. The BF rate per quantity of tissue was calculated as commonly done, and the peak BF values of the retinal and choroidal vasculatures were taken. Additionally, the BF rate per retinal surface area was calculated using a new analysis approach to attempt to reduce partial volume and variability by integrating BF over the retinal and choroidal depths. Results Ocular BF of both eyes could be imaged using the dual coil setup without effecting scan time. Intraocular pressure was significantly elevated in DBA/2J mice compared to C57BL/6J mice (P<0.01). Both retinal and choroidal BF were significantly decreased in DBA/2J mice in comparison to the age-matched normal C57BL/6J mice across all measurements (P < 0.01). From simulations, the values from the integrated BF analysis method had less partial volume effect, and from in vivo scans, this analysis approach also improved power. Conclusion The dual eye coil setup allows bilateral eye data acquisition, increasing the amount of data acquired without increasing acquisition times in vivo. The reduced ocular BF found using the improved acquisition and analysis approaches replicated the results of previous studies on DBA/2J mice. The ocular hypertensive stress-induced BF reduction found within these mice may represent changes associated with glaucomatous progression.
Collapse
Affiliation(s)
- Zhao Jiang
- Department of Radiology, Stony Brook University, Stony Brook, NY, United States
| | - Diane Chernoff
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - Andre Galenchik-Chan
- Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, United States
| | - David Tomorri
- School of Health Professions, Stony Brook University, Stony Brook, NY, United States
| | - Robert A. Honkanen
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY, United States
| | - Timothy Q. Duong
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Eric R. Muir
- Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Hsia CCW. Tissue Perfusion and Diffusion and Cellular Respiration: Transport and Utilization of Oxygen. Semin Respir Crit Care Med 2023; 44:594-611. [PMID: 37541315 DOI: 10.1055/s-0043-1770061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
This article provides an overview of the journey of inspired oxygen after its uptake across the alveolar-capillary interface, and the interplay among tissue perfusion, diffusion, and cellular respiration in the transport and utilization of oxygen. The critical interactions between oxygen and its facilitative carriers (hemoglobin in red blood cells and myoglobin in muscle cells), and with other respiratory and vasoactive molecules (carbon dioxide, nitric oxide, and carbon monoxide), are emphasized to illustrate how this versatile system dynamically optimizes regional convective transport and diffusive gas exchange. The rates of reciprocal gas exchange in the lung and the periphery must be well-matched and sufficient for meeting the range of energy demands from rest to maximal stress but not excessive as to become toxic. The mobile red blood cells play a vital role in matching tissue perfusion and gas exchange by dynamically regulating the controlled uptake of oxygen and communicating regional metabolic signals across different organs. Intracellular oxygen diffusion and facilitation via myoglobin into the mitochondria, and utilization via electron transport chain and oxidative phosphorylation, are summarized. Physiological and pathophysiological adaptations are briefly described. Dysfunction of any component across this integrated system affects all other components and elicits corresponding structural and functional adaptation aimed at matching the capacities across the entire system and restoring equilibrium under normal and pathological conditions.
Collapse
Affiliation(s)
- Connie C W Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
3
|
Madhvapathy SR, Arafa HM, Patel M, Winograd J, Kong J, Zhu J, Xu S, Rogers JA. Advanced thermal sensing techniques for characterizing the physical properties of skin. APPLIED PHYSICS REVIEWS 2022; 9:041307. [PMID: 36467868 PMCID: PMC9677811 DOI: 10.1063/5.0095157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Measurements of the thermal properties of the skin can serve as the basis for a noninvasive, quantitative characterization of dermatological health and physiological status. Applications range from the detection of subtle spatiotemporal changes in skin temperature associated with thermoregulatory processes, to the evaluation of depth-dependent compositional properties and hydration levels, to the assessment of various features of microvascular/macrovascular blood flow. Examples of recent advances for performing such measurements include thin, skin-interfaced systems that enable continuous, real-time monitoring of the intrinsic thermal properties of the skin beyond its superficial layers, with a path to reliable, inexpensive instruments that offer potential for widespread use as diagnostic tools in clinical settings or in the home. This paper reviews the foundational aspects of the latest thermal sensing techniques with applicability to the skin, summarizes the various devices that exploit these concepts, and provides an overview of specific areas of application in the context of skin health. A concluding section presents an outlook on the challenges and prospects for research in this field.
Collapse
|
4
|
Yáñez C, DeMas-Giménez G, Royo S. Overview of Biofluids and Flow Sensing Techniques Applied in Clinical Practice. SENSORS (BASEL, SWITZERLAND) 2022; 22:6836. [PMID: 36146183 PMCID: PMC9503462 DOI: 10.3390/s22186836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
This review summarizes the current knowledge on biofluids and the main flow sensing techniques applied in healthcare today. Since the very beginning of the history of medicine, one of the most important assets for evaluating various human diseases has been the analysis of the conditions of the biofluids within the human body. Hence, extensive research on sensors intended to evaluate the flow of many of these fluids in different tissues and organs has been published and, indeed, continues to be published very frequently. The purpose of this review is to provide researchers interested in venturing into biofluid flow sensing with a concise description of the physiological characteristics of the most important body fluids that are likely to be altered by diverse medical conditions. Similarly, a reported compilation of well-established sensors and techniques currently applied in healthcare regarding flow sensing is aimed at serving as a starting point for understanding the theoretical principles involved in the existing methodologies, allowing researchers to determine the most suitable approach to adopt according to their own objectives in this broad field.
Collapse
Affiliation(s)
- Carlos Yáñez
- Centre for Sensors, Instruments and Systems Development, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain
| | | | | |
Collapse
|
5
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Gregg S, Keramida G, Peters AM. Measuring myocardial blood flow with 82rubidium using Gjedde-Patlak-Rutland graphical analysis. Ann Nucl Med 2021; 35:777-784. [PMID: 34076856 DOI: 10.1007/s12149-021-01591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 01/27/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Myocardial blood flow (MBF) is measured with 82Rb using non-linear, least-squares computerised modelling. The study aim was to explore the feasibility of Gjedde-Patlak-Rutland (GPR) graphical analysis as a simpler method for measuring MBF. METHODS Patients had myocardial perfusion imaging using adenosine (n = 45) or regadenoson (n = 33) for stressing. Blood 82Rb clearance into myocytes (K1) was measured from Cedar-Sinai QPET software using the modified Crone-Renkin equation of Lortie et al. (K1 = [1-0.77 × e-B/MBF] × MBF) to convert K1 to MBF (ml/min/100 ml), where B (63 ml/min/100 ml) is myocardial permeability-surface area product. Using aorta or left ventricular cavity (LV) to measure arterial blood 82Rb concentration, blood 82Rb clearance into myocardium (Z) was measured from GPR analysis based on data acquired between 1 and 3 min post-injection. As units of K1 and Z are, respectively, ml/min/ml intracellular space and ml/min/ml total tissue including extracellular space, myocardial extracellular fluid volume (ECV) is 1 - [Z/K1]. Using Z/K1 (see Results) to modify its index, the Lortie equation was changed to Z = (1-0.77 × [Formula: see text]e-BZ/MBFZ)*MBFZ, following which MBFZ was calculated from Z. In GPR analysis, spillover of activity from LV to myocardium conveniently 'drops out' in the intercept of the plot. RESULTS Both agents increased myocardial blood flow almost equally. ECV was ~ 35 ml/100 ml at rest, increasing to ~ 40 ml/100 ml after stress. Z/K1, averaged between stress, rest, stressing agents and arterial ROI, was 0.62, so BZ was taken as 39 (i.e. 0.62 × 63) ml/min/100 ml. Based on LV, MBFZ (y) correlated with MBF (x): y = 0.43x + 22 ml/min/100 ml; r = 0.84; n = 156). Their respective stress/rest ratios showed a moderate correlation (r = 0.64; n = 78). CONCLUSIONS GPR analysis offers promise as a valid and analytically simpler technique for measuring myocardial blood flow, which, as with any clearance measured from GPR analysis, has units of ml/min/ml total tissue volume, and merits development as a polar map display.
Collapse
Affiliation(s)
- Sima Gregg
- Department of Nuclear Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Georgia Keramida
- Department of Nuclear Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - A Michael Peters
- Department of Nuclear Medicine, King's College Hospital NHS Foundation Trust, Denmark Hill, Brixton, London, SE5 9RS, UK.
| |
Collapse
|
7
|
Chow RS. Terms, Definitions, Nomenclature, and Routes of Fluid Administration. Front Vet Sci 2021; 7:591218. [PMID: 33521077 PMCID: PMC7844884 DOI: 10.3389/fvets.2020.591218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
Fluid therapy is administered to veterinary patients in order to improve hemodynamics, replace deficits, and maintain hydration. The gradual expansion of medical knowledge and research in this field has led to a proliferation of terms related to fluid products, fluid delivery and body fluid distribution. Consistency in the use of terminology enables precise and effective communication in clinical and research settings. This article provides an alphabetical glossary of important terms and common definitions in the human and veterinary literature. It also summarizes the common routes of fluid administration in small and large animal species.
Collapse
Affiliation(s)
- Rosalind S Chow
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MI, United States
| |
Collapse
|