1
|
van der Hiel B, de Wit-van der Veen BJ, van den Eertwegh AJM, Vogel WV, Stokkel MPM, Lopez-Yurda M, Boellaard R, Kapiteijn EW, Hospers GAP, Aarts MJB, de Vos FYFL, Boers-Sonderen MJ, van der Veldt AAM, de Groot JWB, Haanen JBAG. Metabolic parameters on baseline and early [ 18F]FDG PET/CT as a predictive biomarker for resistance to BRAF/MEK inhibition in advanced cutaneous BRAFV600-mutated melanoma. EJNMMI Res 2025; 15:60. [PMID: 40434500 PMCID: PMC12119442 DOI: 10.1186/s13550-025-01259-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND [18F]FDG PET/CT plays a crucial role in evaluating cancer patients and assessing treatment response, including in BRAF-mutated melanoma. Metabolic tumor volume (MTV) and total lesion glycolysis (TLG) have emerged as promising alternatives to standardized uptake value (SUV)-based measures for tumor assessment. This study evaluates the predictive value of SUVpeak, MTV, and TLG in predicting progression-free survival (PFS) in advanced BRAF-mutated melanoma treated with BRAF/MEK inhibitors. RESULTS Seventy-five patients with metastatic melanoma were enrolled in a multi-center trial and treated with vemurafenib/cobimetinib. [18F]FDG-PET/CT scans were performed at baseline, week-2, and week-7. Imaging analysis included SUVpeak, MTV, and TLG of summed metastases, as well as percentage changes over time (∆). Baseline median PET-parameters were SUVpeak 12.59 (range 3.13-50.59), MTV 159mL (range 0-1897 mL), and TLG 1013 (range 1-13162). Baseline MTV was the strongest predictor (AUCT=6 months=0.714), while early changes in MTV, TLG, and especially week-7 ΔSUVpeak% showed similar or improved performance (P = 0.017 vs. baseline SUVpeak). Patients with TLG below the median had significantly prolonged PFS (15.4 vs. 8.5 months, P = 0.024). MTV above optimal cutoff (45.3 mL) was associated with an increased risk of progression/death, even after adjusting for LDH, ECOG status, and metastatic sites (HR = 2.97, 95% CI 1.17-7.52, P = 0.022). At week-2, ∆SUVpeak% was not predictive in a multivariable analysis, but became predictive at week-7 (median ∆SUVpeak%: 64), with a more than three-fold hazard of progression for patients with ∆SUVpeak% below 64% (P = 0.0014); PFS was 5.0 months (95% CI: 4.3-NA) for patients below the median versus 14.7 months (95% CI: 9.2-20.2) for those above or with non-quantifiable scans (P = 0.0002). Median ∆MTV was 95.5% at week-2 and 97.6% at week-7, with significant PFS differences at both time points (week-2: P = 0.020, week-7: P < 0.001). As expected, TLG mirrored MTV. Patients with MTV increases at week-7 after an initial response at week-2 had a median PFS of 5.3 vs. 12.6 months for those with stable or declining MTV (P = 0.0023). Intra-patient metabolic heterogeneity was also associated with outcome, with early reductions in SUVpeak variation between lesions correlating with better PFS. CONCLUSION This study supports the use of MTV and TLG as robust predictive markers for PFS in advanced melanoma treated with BRAF/MEK-inhibitors. Monitoring early PET parameters changes can provide valuable insights into therapeutic response and disease progression. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02414750. Registered 10 April 2015, retrospectively registered.
Collapse
Affiliation(s)
- Bernies van der Hiel
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands.
| | - Berlinda J de Wit-van der Veen
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands
| | - Alfons J M van den Eertwegh
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter V Vogel
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121- Room C0.137, Amsterdam, 1066 CX, The Netherlands
| | - Marta Lopez-Yurda
- Department of Biometrics, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen W Kapiteijn
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geke A P Hospers
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Maureen J B Aarts
- Department of Medical Oncology, GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Filip Y F L de Vos
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marye J Boers-Sonderen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - John B A G Haanen
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Jaber N, Saadani H, Schats W, Aalbersberg EA, Stokkel MPM. Novel Clinical PET Tracers in the Pipeline for Melanoma. Curr Oncol Rep 2025; 27:458-471. [PMID: 40072700 DOI: 10.1007/s11912-025-01659-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE The aim of this review is to provide an overview of novel clinical PET tracers in the pipeline for melanoma. Secondarily, to provide a head-to-head comparison with the current clinical standard used in clinical practice, [18F]FDG, if available. RECENT FINDINGS [18F]FDG PET/CT has become important in the clinical setting for melanoma as it serves many purposes, but lacks other important qualities due its nonspecific nature. There is an increased clinical need for specific tracers. Many new PET tracers, such as melanin-targeted and antibody-based probes, have been studied in melanoma with the intention of achieving high sensitivity detection of metastases and small lesions. There are four main groups of PET tracers in de pipeline for melanoma: melanin-, FAP-, PD-1/PD-L1- and CD8+ T cell-tracers. Melanin-targeted tracers and FAP inhibitors revealed potential for diagnostic application, whilst PD-1/PD-L1 and CD8+ T cell tracers demonstrated potential for response assessment and prediction. In conclusion, research has revealed promising results from current (ongoing) studies; however, more melanoma patients need to be included to further assess the value of these tracers.
Collapse
Affiliation(s)
- Nora Jaber
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Hanna Saadani
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands.
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands.
| | - Winnie Schats
- Department of Scientific Information Service, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Else A Aalbersberg
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| | - Marcel P M Stokkel
- Department of Nuclear Medicine, Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam, 1066 CX, The Netherlands
| |
Collapse
|
3
|
Sato M, Umeda Y, Tsujikawa T, Mori T, Shimada A, Sonoda T, Yamaguchi M, Honjo C, Waseda Y, Kiyono Y, Ishizuka T, Okazawa H. 3'-deoxy-3'- 18F-fluorothymidine PET imaging of lymphoid tissues in patients with advanced non-small cell lung cancer undergoing anti-programmed cell death-1 therapy. EJNMMI Res 2025; 15:32. [PMID: 40167945 PMCID: PMC11961847 DOI: 10.1186/s13550-025-01225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/12/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Anti-programmed cell death-1 (anti-PD-1) therapy has become the standard immunotherapy for patients with advanced non-small cell lung cancer (NSCLC). However, little is known about the organs influenced by PD-1 inhibitors on a patient's tumor immunity. We examined the changes in lymphoid tissue proliferation before and after PD-1 inhibitor treatment using 3'-deoxy-3'-[18F]-fluorothymidine (18F-FLT) positron emission tomography (PET). This study included 25 patients with advanced NSCLC who underwent 18F-FLT PET before and 2 and 6 weeks after the initiation of PD-1 inhibitor treatment. We determined the average standardized uptake value (SUVmean) in the spleen, maximum SUV (SUVmax) in the lymph nodes, and the SUVmax, SUVmean, proliferative vertebral volume (PVV), and total vertebral proliferation (TVP) in the thoracolumbar vertebral bodies using 18F-FLT PET and blood test data. The relationship between the rate of change in these parameters before and after treatment and the tumor response was evaluated. RESULTS The baseline 18F-FLT accumulation in the lymphoid tissues or blood test data between the progressive disease (PD) and non-PD groups were not significantly different. In the spleen and lymph nodes, changes in 18F-FLT accumulation from baseline to 2 or 6 weeks did not differ between the non-PD and PD groups. However, mediastinal lymph node accumulation tended to increase transiently at week 2 compared to that before treatment initiation (median SUVmax 2.19 vs. 2.64, P = 0.073). Regarding changes in vertebral accumulation in the non-PD group, the SUVmax, and PVV were significantly lower at weeks 2 and 6. In the percent changes in 18F-FLT accumulation of the vertebrae after the treatment initiation, the PD group was significantly higher than the non-PD group at the 6-week evaluation (median ΔTVP0-6, 17.0% vs. -13.0%, P = 0.0080). CONCLUSIONS In patients with advanced NSCLC who achieved a tumor response, proliferation decreased in the bone marrow, but not in the spleen or lymph nodes, 6 weeks after treatment initiation. 18F-FLT PET can help monitor changes in tumor immunity in each lymphoid tissue and may serve as a biomarker for the response to immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Masayuki Sato
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Yukihiro Umeda
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan.
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Tetsuya Mori
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Akikazu Shimada
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Tomoaki Sonoda
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Makiko Yamaguchi
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Chisato Honjo
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Yuko Waseda
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Tamotsu Ishizuka
- Department of Respiratory Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji, 910-1193, Fukui, Japan
| |
Collapse
|
4
|
Dall'Olio FG, Zrafi W, Roelants V, Ambrosini V, Fourquet A, Mitea C, Passiglia F, Bauckneht M, Bonardel G, Conci N, Benitez JC, Arena V, Namour C, Naigeon M, Monnet I, Beshiri K, Hoton D, Dursun S, Danlos FX, Argalia G, Aldea M, Rovera G, Derosa L, Iebba V, Gietema HA, Gounant V, Lacroix V, Remon J, Gautheret D, Chaput N, Job B, Kannouche PL, Velasco-Nuño M, Zitvogel L, Cella E, Chícharo de Freitas JR, Vasseur D, Bettaieb MA, Tagliamento M, Hendriks L, Italiano A, Planchard D, Marabelle A, Barlesi F, Novello S, De Andreis D, Aboubakar Nana F, Ardizzoni A, Zalcman G, Garcia C, Besse B. Metabolic Tumor Volume Assessed by 18F FDG-PET CT Scan as a Predictive Biomarker for Immune Checkpoint Blockers in Advanced NSCLC and Its Biological Correlates. Clin Cancer Res 2025; 31:352-364. [PMID: 39437011 DOI: 10.1158/1078-0432.ccr-24-1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE This study aimed to explore metabolic tumor volume (MTV) as assessed by 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG-PET/CT) and understand its biological meaning in patients with non-small cell lung cancer (NSCLC) exposed to immune checkpoint blockers (ICB). EXPERIMENTAL DESIGN In this study, patients with advanced NSCLC and a positive PET scan within 42 days of first-line treatment were enrolled in 11 institutions across four countries. Total MTV (tMTV) was analyzed, with a 42% maximum standardized uptake value threshold. Survival was analyzed according to high tMTV (≥median). Plasma proteomic profile, whole exome, transcriptome, and other analyses were performed on monocentric cohorts to explore its biological correlates. RESULTS Of the 518 patients included, 167 received ICBs, 257 had chemotherapy plus ICBs, and 94 had chemotherapy. Median tMTV was 99 cm3. Median overall survival (OS) for patients with high tMTV treated with ICBs was 11.4 vs. 29.6 months (P < 0.0012) for those with low tMTV. In patients who received chemotherapy-ICB, tMTV did not correlate with OS (P = 0.099). In patients with programmed death-ligand 1 (PD-L1) ≥1% and high tMTV, chemotherapy-ICB combination was associated with longer OS compared with ICBs alone (20 vs. 11.4 months; P = 0.026), while no survival differences were observed in the low tMTV group. High tMTV correlated (and its detrimental effect seems to be driven) with a specific proteomic profile and increase in genomic instability. CONCLUSIONS Our analysis indicates high tMTV is linked to an increase in systemic inflammation, specific cytokines production, and chromosomal instability. tMTV may serve as one of the biomarkers to select the best upfront strategy in patients with PD-L1-positive advanced NSCLC.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- METSY Laboratory Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, UMR 9018 CNRS and Université Paris-Saclay, Villejuif, France
| | - Wael Zrafi
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | - Veronique Roelants
- Nuclear Medicine Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Valentina Ambrosini
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Aloyse Fourquet
- Department of Nuclear Medicine, Hôpital Bichat-Claude Bernard, AP-HP.Nord, Univesité Paris Cité, Paris, France
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
- GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Gerald Bonardel
- Department of Nuclear Medicine, Centre Cardiologique du Nord, Saint-Denis, France
| | - Nicole Conci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Jose Carlos Benitez
- Medical Oncology Intercenter Unit, Regional and Virgen de la Victoria University Hospitals, IBIMA, Malaga, Spain
- Research Biomedical Institute of Malaga (IBIMA), Malaga, Spain
| | - Vincenzo Arena
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Céline Namour
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Marie Naigeon
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Isabelle Monnet
- Pneumology Department, Intercommunal Hospital of Creteil (CHI), Creteil, France
| | - Kristi Beshiri
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejui, France
| | - Delphine Hoton
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Safiye Dursun
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - François Xavier Danlos
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Gustave Roussy, Villejuif, France
| | - Giulia Argalia
- Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mihaela Aldea
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Guido Rovera
- Nuclear Medicine Division, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lisa Derosa
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale Contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
| | - Valerio Iebba
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Hester A Gietema
- GROW-School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
- Maastricht University Medical Centre, Maastricht University, Maastricht, the Netherlands
| | - Valerie Gounant
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Valérie Lacroix
- Department of Cardiovascular and Thoracic Surgery, IREC, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jordi Remon
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Daniel Gautheret
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
- Faculté de Pharmacie, Université Paris-Saclay, Orsay, France
| | - Bastien Job
- Department of Biostatistics and Bioinformatics, Gustave Roussy, Villejuif, France
| | | | - Monica Velasco-Nuño
- Department of Nuclear Medicine Hospital HM Nou Delfos, HM Hospitales, Barcelona, Spain
| | - Laurence Zitvogel
- Gustave Roussy, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée - Ligue Nationale Contre le Cancer, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin-Bicetre, France
- Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France
| | - Eugenia Cella
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università degli Studi di Genova, Genoa, Italy
| | | | - Damien Vasseur
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | | | - Marco Tagliamento
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Dipartimento di Medicina Interna e Specialità Mediche (DiMI), Università degli Studi di Genova, Genoa, Italy
| | - Lizza Hendriks
- Department of Pulmonary Diseases, GROW-School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Antoine Italiano
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Gustave Roussy, Université Paris Saclay, Villejui, France
| | - David Planchard
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | | | - Fabrice Barlesi
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Silvia Novello
- Department of Oncology, University of Turin, San Luigi Hospital, Orbassano, Italy
| | | | | | - Andrea Ardizzoni
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gerard Zalcman
- Thoracic Oncology Department-Early Phases Unit CIC-1425 Inserm, Institut du Cancer AP-HP.Nord, Hôpital Bichat-Claude Bernard, Paris, France
| | - Camilo Garcia
- Nuclear Medicine Department, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Laboratoire d'Immunomonitoring en Oncologie, INSERM US23, CNRS UMS 3655, Gustave Roussy, Villejuif, France
| |
Collapse
|
5
|
Dougherty SC, Flowers WL, Gaughan EM. Precision Oncology in Melanoma: Changing Practices. J Nucl Med 2024; 65:1838-1845. [PMID: 39542696 PMCID: PMC11619585 DOI: 10.2967/jnumed.124.267781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Over the last 2 decades, significant progress has been made in our understanding of the genomics, tumor immune microenvironment, and immunogenicity of malignant melanoma. Historically, the prognosis for metastatic melanoma was poor because of limited treatment options. However, after multiple landmark clinical trials displaying the efficacy of combined BRAF/MEK inhibition for BRAF-mutant melanoma and the application of immune checkpoint inhibitors targeting the programmed death-1, cytotoxic T-lymphocyte antigen-4, and lymphocyte activation gene-3 molecules, overall survival rates have dramatically improved. The role of immune checkpoint inhibition has since expanded to the neoadjuvant and adjuvant settings with multiple regimens in routine use. Personalized therapies, including tumor-infiltrating lymphocytes that are extracted from a patient's melanoma and eventually reinfused into the patient, and messenger RNA vaccines used to target neoantigens unique to a patient's tumor, show promise. Improvements in accompanying imaging modalities, particularly within the field of nuclear medicine, have allowed for more accurate staging of disease and assessment of treatment response. Continued growth in the role of nuclear medicine in the evaluation of melanoma, including the incorporation of artificial intelligence into image interpretation and use of radiolabeled tracers allowing for intricate imaging of the tumor immune microenvironment, is expected in the coming years.
Collapse
Affiliation(s)
- Sean C Dougherty
- Division of Hematology/Oncology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| | - William L Flowers
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Elizabeth M Gaughan
- Division of Hematology/Oncology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia; and
| |
Collapse
|
6
|
Amrane K, Meur CL, Thuillier P, Berthou C, Uguen A, Deandreis D, Bourhis D, Bourbonne V, Abgral R. Review on radiomic analysis in 18F-fluorodeoxyglucose positron emission tomography for prediction of melanoma outcomes. Cancer Imaging 2024; 24:87. [PMID: 38970050 PMCID: PMC11225300 DOI: 10.1186/s40644-024-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/24/2024] [Indexed: 07/07/2024] Open
Abstract
Over the past decade, several strategies have revolutionized the clinical management of patients with cutaneous melanoma (CM), including immunotherapy and targeted tyrosine kinase inhibitor (TKI)-based therapies. Indeed, immune checkpoint inhibitors (ICIs), alone or in combination, represent the standard of care for patients with advanced disease without an actionable mutation. Notably BRAF combined with MEK inhibitors represent the therapeutic standard for disease disclosing BRAF mutation. At the same time, FDG PET/CT has become part of the routine staging and evaluation of patients with cutaneous melanoma. There is growing interest in using FDG PET/CT measurements to predict response to ICI therapy and/or target therapy. While semiquantitative values such as standardized uptake value (SUV) are limited for predicting outcome, new measures including tumor metabolic volume, total lesion glycolysis and radiomics seem promising as potential imaging biomarkers for nuclear medicine. The aim of this review, prepared by an interdisciplinary group of experts, is to take stock of the current literature on radiomics approaches that could improve outcomes in CM.
Collapse
Affiliation(s)
- Karim Amrane
- Department of Oncology, Regional Hospital of Morlaix, Morlaix, 29600, France.
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France.
| | - Coline Le Meur
- Department of Radiotherapy, University Hospital of Brest, Brest, France
| | - Philippe Thuillier
- Department of Endocrinology, University Hospital of Brest, Brest, France
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
| | - Christian Berthou
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France
- Department of Hematology, University Hospital of Brest, Brest, France
| | - Arnaud Uguen
- Lymphocytes B et Autoimmunité, Inserm, UMR1227, Univ Brest, Inserm, LabEx IGO, Brest, France
- Department of Pathology, University Hospital of Brest, Brest, France
| | - Désirée Deandreis
- Department of Nuclear Medicine, Gustave Roussy Institute, University of Paris Saclay, Paris, France
| | - David Bourhis
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Vincent Bourbonne
- Department of Radiotherapy, University Hospital of Brest, Brest, France
- Inserm, UMR1101, LaTIM, University of Western Brittany, Brest, France
| | - Ronan Abgral
- UMR Inserm 1304 GETBO, University of Western Brittany, Brest, IFR 148, France
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| |
Collapse
|
7
|
Anurogo D, Luthfiana D, Anripa N, Fauziah AI, Soleha M, Rahmah L, Ratnawati H, Wargasetia TL, Pratiwi SE, Siregar RN, Sholichah RN, Maulana MS, Ikrar T, Chang YH, Qiu JT. The Art of Bioimmunogenomics (BIGs) 5.0 in CAR-T Cell Therapy for Lymphoma Management. Adv Pharm Bull 2024; 14:314-330. [PMID: 39206402 PMCID: PMC11347730 DOI: 10.34172/apb.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/13/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Lymphoma, the most predominant neoplastic disorder, is divided into Hodgkin and Non-Hodgkin Lymphoma classifications. Immunotherapeutic modalities have emerged as essential methodologies in combating lymphoid malignancies. Chimeric Antigen Receptor (CAR) T cells exhibit promising responses in chemotherapy-resistant B-cell non-Hodgkin lymphoma cases. Methods This comprehensive review delineates the advancement of CAR-T cell therapy as an immunotherapeutic instrument, the selection of lymphoma antigens for CAR-T cell targeting, and the conceptualization, synthesis, and deployment of CAR-T cells. Furthermore, it encompasses the advantages and disadvantages of CAR-T cell therapy and the prospective horizons of CAR-T cells from a computational research perspective. In order to improve the design and functionality of artificial CARs, there is a need for TCR recognition investigation, followed by the implementation of a quality surveillance methodology. Results Various lymphoma antigens are amenable to CAR-T cell targeting, such as CD19, CD20, CD22, CD30, the kappa light chain, and ROR1. A notable merit of CAR-T cell therapy is the augmentation of the immune system's capacity to generate tumoricidal activity in patients exhibiting chemotherapy-resistant lymphoma. Nevertheless, it also introduces manufacturing impediments that are laborious, technologically demanding, and financially burdensome. Physical, physicochemical, and physiological limitations further exacerbate the challenge of treating solid neoplasms with CAR-T cells. Conclusion While the efficacy and safety of CAR-T cell immunotherapy remain subjects of fervent investigation, the promise of this cutting-edge technology offers valuable insights for the future evolution of lymphoma treatment management approaches. Moreover, CAR-T cell therapies potentially benefit patients, motivating regulatory bodies to foster international collaboration.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Faculty of Medicine and Health Sciences, Muhammadiyah University of Makassar, Makassar, South Sulawesi, 90221, Indonesia
| | - Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, East Java, 65162, Indonesia
| | - Nuralfin Anripa
- Department of Environmental Science, Dumoga University, Kotamobagu, South Sulawesi, 95711, Indonesia
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Apriliani Ismi Fauziah
- MSc Program in Tropical Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan
| | - Maratu Soleha
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
- IKIFA College of Health Sciences, East Jakarta, Special Capital Region of Jakarta, 13470, Indonesia
| | - Laila Rahmah
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
- Faculty of Medicine, Muhammadiyah University of Surabaya, Surabaya, East Java, 60113, Indonesia
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia
| | | | - Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, 78115, Indonesia
| | - Riswal Nafi Siregar
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
| | - Ratis Nour Sholichah
- Department of Biotechnology, Postgraduate School of Gadjah Mada University, Yogyakarta, 55284, Indonesia
| | - Muhammad Sobri Maulana
- Community Health Center (Puskesmas) Temon 1, Kulon Progo, Special Region of Yogyakarta, 55654, Indonesia
| | - Taruna Ikrar
- Director of Members-at-Large, International Association of Medical Regulatory Authorities (IAMRA), Texas, 76039, USA
- Aivita Biomedical Inc., Irvine, California, 92612, USA
- Chairman of Medical Council, The Indonesian Medical Council (KKI), Central Jakarta, 10350, Indonesia
- Adjunct Professor, School of Military Medicine, The Republic of Indonesia Defense University (RIDU), Jakarta Pusat, 10440, Indonesia
- Department of Pharmacology, Faculty of Medicine, Malahayati University, Bandar Lampung, Lampung, 35152, Indonesia
| | - Yu Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Locus Cell Co., LTD., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Jiantai Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| |
Collapse
|
8
|
Wan Q, Deng Y, Wei R, Ma K, Tang J, Deng YP. Tumor-infiltrating macrophage associated lncRNA signature in cutaneous melanoma: implications for diagnosis, prognosis, and immunotherapy. Aging (Albany NY) 2024; 16:4518-4540. [PMID: 38475660 PMCID: PMC10968696 DOI: 10.18632/aging.205606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/14/2024]
Abstract
Along with the increasing knowledge of long noncoding RNA, the interaction between the long noncoding RNA (lncRNA) and tumor immune infiltration is increasingly valued. However, there is a lack of understanding of correlation between regulation of specific lncRNAs and tumor-infiltrating macrophages within melanoma. In this research, a macrophage associated lncRNA signature was identified by multiple machine learning algorithms and the robust and effectiveness of signature also validated in other independent datasets. The signature contained six specific lncRNAs (PART1, LINC00968, LINC00954, LINC00944, LINC00518 and C20orf197) was constructed, which could diagnose melanoma and predict the prognosis of patients. Moreover, our signature achieves higher accuracy than the previous well-established markers and regarded as an independent prognostic indicator. The pathway enrichment revealed that these lncRNAs were closely correlated with many immune processes. In addition, the signature was associated with different immune microenvironment and applied to predict response of immune checkpoint inhibitor therapy (low risk of patients well respond to anti-PD-1 therapy and high risk is insensitive to anti-CTLA-4 therapy). Therefore, our finding supplies a more accuracy and effective lncRNA signature for tumor-infiltrating macrophages targeting treatment approaches and affords a new clinical application for predicting the response of immunotherapies in melanomas.
Collapse
Affiliation(s)
- Qi Wan
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuhua Deng
- Department of Infection Control, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ran Wei
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ke Ma
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ying-Ping Deng
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Sachpekidis C, Stein-Thoeringer CK, Kopp-Schneider A, Weru V, Dimitrakopoulou-Strauss A, Hassel JC. Can physiologic colonic [ 18F]FDG uptake in PET/CT imaging predict response to immunotherapy in metastatic melanoma? Eur J Nucl Med Mol Imaging 2023; 50:3709-3722. [PMID: 37452874 PMCID: PMC10547632 DOI: 10.1007/s00259-023-06327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
AIM The development of biomarkers that can reliably and early predict response to immune checkpoint inhibitors (ICIs) is crucial in melanoma. In recent years, the gut microbiome has emerged as an important regulator of immunotherapy response, which may, moreover, serve as a surrogate marker and prognosticator in oncological patients under immunotherapy. Aim of the present study is to investigate if physiologic colonic [18F]FDG uptake in PET/CT before start of ICIs correlates with clinical outcome of metastatic melanoma patients. The relation between [18F]FDG uptake in lymphoid cell-rich organs and long-term patient outcome is also assessed. METHODOLOGY One hundred nineteen stage IV melanoma patients scheduled for immunotherapy with ipilimumab, applied either as monotherapy or in combination with nivolumab, underwent baseline [18F]FDG PET/CT. PET/CT data analysis consisted of standardized uptake value (SUV), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) calculations in the colon as well as measurements of the colon-to-liver SUV ratios (CLRmean, CLRmax). Visual grading of colon uptake based on a four-point scale was also performed. Moreover, the spleen-to-liver SUV ratios (SLRmean, SLRmax) and the bone marrow-to-liver SUV ratios (BLRmean, BLRmax) were calculated. We also measured serum lipopolysaccharide (LPS) levels as a marker for bacterial translocation and surrogate for mucosal defense homeostasis. The results were correlated with patients' best clinical response, progression-free survival (PFS), and overall survival (OS) as well as clinical signs of colitis. RESULTS Median follow-up [95%CI] from the beginning of immunotherapy was 64.6 months [61.0-68.6 months]. Best response to treatment was progressive disease (PD) for 60 patients, stable disease (SD) for 37 patients, partial response (PR) for 18 patients, and complete response (CR) for 4 patients. Kaplan-Meier curves demonstrated a trend for longer PFS and OS in patients with lower colonic SUV and CLR values; however, no statistical significance for these parameters as prognostic factors was demonstrated. On the other hand, patients showing disease control as best response to treatment (SD, PR, CR) had significantly lower colonic MTV and TLG than those showing PD. With regard to lymphoid cell-rich organs, significantly lower baseline SLRmax and BLRmax were observed in patients responding with disease control than progression to treatment. Furthermore, patients with lower SLRmax and BLRmax values had a significantly longer OS when dichotomized at their median. In multivariate analysis, PET parameters that were found to significantly adversely correlate with patient survival were colonic MTV for PFS, colonic TLG for PFS, and BLRmax for PFS and OS. CONCLUSIONS Physiologic colonic [18F]FDG uptake in PET/CT, as assessed by means of SUV, before start of ipilimumab-based treatment does not seem to independently predict patient survival of metastatic melanoma. On the other hand, volumetric PET parameters, such as MTV and TLG, derived from the normal gut may identify patients showing disease control to immunotherapy and significantly correlate with PFS. Moreover, the investigation of glucose metabolism in the spleen and the bone marrow may offer prognostic information.
Collapse
Affiliation(s)
- Christos Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany.
| | - Christoph K Stein-Thoeringer
- Laboratory of Translational, Microbiome Science, Internal Medicine I, University Clinic Tuebingen, Tuebingen, Germany
| | | | - Vivienn Weru
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonia Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Mangas Losada M, Romero Robles L, Mendoza Melero A, García Megías I, Villanueva Torres A, Garrastachu Zumarán P, Boulvard Chollet X, Lopci E, Ramírez Lasanta R, Delgado Bolton RC. [ 18F]FDG PET/CT in the Evaluation of Melanoma Patients Treated with Immunotherapy. Diagnostics (Basel) 2023; 13:978. [PMID: 36900122 PMCID: PMC10000458 DOI: 10.3390/diagnostics13050978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Immunotherapy is based on manipulation of the immune system in order to act against tumour cells, with growing evidence especially in melanoma patients. The challenges faced by this new therapeutic tool are (i) finding valid evaluation criteria for response assessment; (ii) knowing and distinguishing between "atypical" response patterns; (iii) using PET biomarkers as predictive and response evaluation parameters and (iv) diagnosis and management of immunorelated adverse effects. This review is focused on melanoma patients analysing (a) the role of [18F]FDG PET/CT in the mentioned challenges; (b) the evidence of its efficacy. For this purpose, we performed a review of the literature, including original and review articles. In summary, although there are no clearly established or globally accepted criteria, modified response criteria are potentially appropriate for evaluation of immunotherapy benefit. In this context, [18F]FDG PET/CT biomarkers appear to be promising parameters in prediction and assessment of response to immunotherapy. Moreover, immunorelated adverse effects are recognized as predictors of early response to immunotherapy and may be associated with better prognosis and clinical benefit.
Collapse
Affiliation(s)
- María Mangas Losada
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Leonardo Romero Robles
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Alejandro Mendoza Melero
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Irene García Megías
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Amós Villanueva Torres
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Puy Garrastachu Zumarán
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Xavier Boulvard Chollet
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Egesta Lopci
- Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Rafael Ramírez Lasanta
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| | - Roberto C. Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), 26006 Logroño, Spain
| |
Collapse
|
11
|
Liu Y, Yu L, Liang Y, Cheng X, Jiang S, Yu H, Zhang Z, Lu L, Qu B, Chen Y, Zhang X. Research landscape and trends of melanoma immunotherapy: A bibliometric analysis. Front Oncol 2023; 12:1024179. [PMID: 36698407 PMCID: PMC9868470 DOI: 10.3389/fonc.2022.1024179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Immunotherapy for lung cancer has been a hot research area for years. This bibliometric analysis was intended to present research trends on melanoma immunotherapy. Method On April 1, 2022, the authors identified 2,109 papers on melanoma immunotherapy using the Web of Science and extracted their general information and the total number of citations. The authors then conducted a bibliometric analysis to present the research landscape, clarify the research trends, and determine the most cited papers (top-papers) as well as major journals on melanoma immunotherapy. Subsequently, recent research hotspots were identified by analyzing the latest articles in major journals. Results The total and median number of citations of these 2,109 papers on melanoma immunotherapy was 137,686 and 11, respectively. "Improved survival with ipilimumab in patients with metastatic melanoma" by Hodi et al. was the most cited paper (9,824 citations). Among the journals, the top-paper number (16), average citations per paper (2,510.7), and top-papers rate (100%) of New England Journal of Medicine were the highest. Corresponding authors represented the USA took part in most articles (784). Since 2016, the hottest research area has changed from CTLA-4 to PD-1. Conclusions This bibliometric analysis comprehensively and quantitatively presents the research trends and hotspots based on 2,109 relevant publications, and further suggests future research directions. The researchers can benefit in selecting journals and in finding potential collaborators. This study can help researchers gain a comprehensive impression of the research landscape, historical development, and current hotspots in melanoma immunotherapy and can provide inspiration for future research.
Collapse
Affiliation(s)
- Yanhao Liu
- *Correspondence: Xiaotao Zhang, ; Yanhao Liu,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang L, Chen Y, Wang Y, Kong F, Zhu L. A Novel Glycolysis-Related Gene Signature Predicts Prognosis For Cutaneous Melanoma. Comb Chem High Throughput Screen 2023; 26:965-978. [PMID: 35619291 DOI: 10.2174/1386207325666220520105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND There exists a lack of effective tools predicting prognosis for cutaneous melanoma patients. Glycolysis plays an essential role in the carcinogenesis process. OBJECTIVE We intended to construct a new prognosis model for cutaneous melanoma. METHODS Based on the data from the TCGA database, we conducted a univariate Cox regression analysis and identified prognostic glycolysis-related genes (GRGs). Meanwhile, the GSE15605 dataset was used to identify differentially expressed genes (DEGs). The intersection of prognostic GRGs and DEGs was extracted for the subsequent multivariate Cox regression analysis. RESULTS A prognostic signature containing ten GRGs was built, and the TCGA cohort was classified into high and low risk subgroups based on the risk score of each patient. K-M analysis manifested that the overall survival of the high-risk group was statistically worse than that of the lowrisk group. Further study indicated that the risk-score could be used as an independent prognostic factor that effectively predicted the clinical prognosis in patients of different ages, genders, and stages. GO and KEGG enrichment analysis showed DEGs between high and low risk groups were enriched in immune-related functions and pathways. In addition, a significant difference existed between high and low risk groups in infiltration pattern of immune cells and expression levels of inhibitory immune checkpoint genes. CONCLUSION A new glycolysis-related gene signature was established for identifying cutaneous melanoma patients with poor prognoses and formulating individualized treatment.
Collapse
Affiliation(s)
- Lianghui Zhang
- Department of Oncology, Sir Run Run Hospital, Nanjing 211166, China
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Chen
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yiwen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feifei Kong
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingjun Zhu
- Department of Oncology, Sir Run Run Hospital, Nanjing 211166, China
- Department of Oncology and Cancer Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Dercle L, Sun S, Seban RD, Mekki A, Sun R, Tselikas L, Hans S, Bernard-Tessier A, Mihoubi Bouvier F, Aide N, Vercellino L, Rivas A, Girard A, Mokrane FZ, Manson G, Houot R, Lopci E, Yeh R, Ammari S, Schwartz LH. Emerging and Evolving Concepts in Cancer Immunotherapy Imaging. Radiology 2023; 306:32-46. [PMID: 36472538 DOI: 10.1148/radiol.210518] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Criteria based on measurements of lesion diameter at CT have guided treatment with historical therapies due to the strong association between tumor size and survival. Clinical experience with immune checkpoint modulators shows that editing immune system function can be effective in various solid tumors. Equally, novel immune-related phenomena accompany this novel therapeutic paradigm. These effects of immunotherapy challenge the association of tumor size with response or progression and include risks and adverse events that present new demands for imaging to guide treatment decisions. Emerging and evolving approaches to immunotherapy highlight further key issues for imaging evaluation, such as dissociated response following local administration of immune checkpoint modulators, pseudoprogression due to immune infiltration in the tumor environment, and premature death due to hyperprogression. Research that may offer tools for radiologists to meet these challenges is reviewed. Different modalities are discussed, including immuno-PET, as well as new applications of CT, MRI, and fluorodeoxyglucose PET, such as radiomics and imaging of hematopoietic tissues or anthropometric characteristics. Multilevel integration of imaging and other biomarkers may improve clinical guidance for immunotherapies and provide theranostic opportunities.
Collapse
Affiliation(s)
- Laurent Dercle
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Shawn Sun
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Romain-David Seban
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Ahmed Mekki
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Roger Sun
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Lambros Tselikas
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Sophie Hans
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Alice Bernard-Tessier
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Fadila Mihoubi Bouvier
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Nicolas Aide
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Laetitia Vercellino
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Alexia Rivas
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Antoine Girard
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Fatima-Zohra Mokrane
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Guillaume Manson
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Roch Houot
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Egesta Lopci
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Randy Yeh
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Samy Ammari
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| | - Lawrence H Schwartz
- From the Department of Radiology, New York Presbyterian Hospital-Columbia University Medical Center, 630 W 168th St, New York, NY 10032 (L.D., S.S., L.H.S.); Department of Nuclear Medicine, Institut Curie, Paris, France (R.D.S.); DMU Smart Imaging, Department of Medical Imaging, Assistance Publique-Hôpitaux de Paris, GH Université Paris-Saclay, Raymond Poincaré Teaching Hospital, Garches, France (A.M.); Gustave Roussy-Centrale Supélec-Therapanacea Centre of Artificial Intelligence in Radiation Therapy and Oncology, Gustave Roussy Cancer Campus, Villejuif, France (R.S.); Radiomics Team, Molecular Radiation Therapy INSERM U1030, Paris-Sud University, Gustave Roussy Cancer Campus, and University of Paris-Saclay, Villejuif, France (R.S.); Departments of Radiation Oncology (R.S.) and Interventional Radiology (L.T.), Gustave Roussy Cancer Campus, Villejuif, France; Department of Oncology, Henri Mondor Hospital, Assistance Publique-Hôpitaux de Paris, Créteil, France (S.H.); Drug Development Department (DITEP), Gustave Roussy, Université Paris-Saclay, Villejuif, France (A.B.T.); Department of Radiology, Cochin Hospital, APHP, France (F.M.B.); Department of Nuclear Medicine, University Hospital, INSERM 1199 ANTICIPE, Normandy University, Caen, France (N.A.); Department of Nuclear Medicine, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France (L.V., A.R.); Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France (A.G.); Department of Radiology, Rangueil University Hospital, Toulouse, France (F.Z.M.); Department of Hematology, University Hospital of Rennes, U1236, INSERM, Rennes, France (G.M., R.H.); EANM Oncology Committee, Vienna, Austria (E.L.); Department of Nuclear Medicine, Humanitas Clinical and Research Hospital, Rozzano, Milan, Italy (E.L.); Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY (R.Y.); and Department of Medical Imaging, Diagnostic Imaging Service, Gustave Roussy, Université Paris Saclay, Villejuif, France (S.A.)
| |
Collapse
|
14
|
Metabolic activity via 18F-FDG PET/CT is predictive of microsatellite instability status in colorectal cancer. BMC Cancer 2022; 22:808. [PMID: 35869469 PMCID: PMC9306059 DOI: 10.1186/s12885-022-09871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Identification of microsatellite instability high (MSI-H) colorectal cancer (CRC) is crucial for screening patients most likely to benefit from immunotherapy. We aim to investigate whether the metabolic characteristics is related to MSI status and can be used to predict the MSI-H CRC. Methods A retrospective analysis was conducted on 420 CRC patients who were identified via [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography(CT) prior to therapy. Maximum standardized uptake (SUVmax), mean standardized uptake (SUVmean), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of the primary tumor were calculated and compared between MSI-H and microsatellite stability (MSS). Predictive factors of MSI status were selected from metabolic parameters and clinicopathological profiles via a multivariate analysis. Results Of 420 colorectal cancers, 44 exhibited a high incidence of MSI. Both MTV and TLG were significantly higher in MSI-H group compared with the MSS group (P = 0.004 and P = 0.010, respectively). Logistic regression analysis indicated that CRC with MSI-H were related to younger age (P = 0.013), primary lesion located at right hemi-colon (P < 0.001) and larger MTV on PET/CT imaging (P = 0.019). MTV more than 32.19 of colorectal cancer was linked to the presence of MSI (P = 0.019). Conclusion Tumor metabolic burden were higher in MSI-H CRC which may be useful for predicting the MSI status of CRC patient and thus aid in determination of immunotherapy for patients with CRC.
Collapse
|
15
|
Cui Y, Lin Y, Zhao Z, Long H, Zheng L, Lin X. Comprehensive 18F-FDG PET-based radiomics in elevating the pathological response to neoadjuvant immunochemotherapy for resectable stage III non-small-cell lung cancer: A pilot study. Front Immunol 2022; 13:994917. [PMID: 36466929 PMCID: PMC9713843 DOI: 10.3389/fimmu.2022.994917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
PURPOSE To develop a comprehensive PET radiomics model to predict the pathological response after neoadjuvant toripalimab with chemotherapy in resectable stage III non-small-cell lung cancer (NSCLC) patients. METHODS Stage III NSCLC patients who received three cycles of neoadjuvant toripalimab with chemotherapy and underwent 18F-FDG PET/CT were enrolled. Baseline 18F-FDG PET/CT was performed before treatment, and preoperative 18F-FDG PET/CT was performed three weeks after the completion of neoadjuvant treatment. Surgical resection was performed 4-5 weeks after the completion of neoadjuvant treatment. Standardized uptake value (SUV) statistics features and radiomics features were derived from baseline and preoperative PET images. Delta features were derived. The radiologic response and metabolic response were assessed by iRECIST and iPERCIST, respectively. The correlations between PD-L1 expression, driver-gene status, peripheral blood biomarkers, and the pathological responses (complete pathological response [CPR]; major pathological response [MPR]) were assessed. Associations between PET features and pathological responses were evaluated by logistic regression. RESULTS Thirty patients underwent surgery and 29 of them performed preoperative PET/CT. Twenty patients achieved MPR and 16 of them achieved CPR. In univariate analysis, five SUV statistics features and two radiomics features were significantly associated with pathological responses. In multi-variate analysis, SUVmax, SUVpeak, SULpeak, and End-PET-GLDM-LargeDependenceHighGrayLevelEmphasis (End-GLDM-LDHGLE) were independently associated with CPR. SUVpeak and SULpeak performed better than SUVmax and SULmax for MPR prediction. No significant correlation, neither between the radiologic response and the pathological response, nor among PD-L1, driver gene status, and baseline PET features was found. Inflammatory response biomarkers by peripheral blood showed no difference in different treatment responses. CONCLUSION The logistic regression model using comprehensive PET features contributed to predicting the pathological response after neoadjuvant toripalimab with chemotherapy in resectable stage III NSCLC patients.
Collapse
Affiliation(s)
- Yingpu Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yaobin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zerui Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hao Long
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Thoracic Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lie Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiaoping Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Berz AM, Dromain C, Vietti-Violi N, Boughdad S, Duran R. Tumor response assessment on imaging following immunotherapy. Front Oncol 2022; 12:982983. [PMID: 36387133 PMCID: PMC9641095 DOI: 10.3389/fonc.2022.982983] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various systemic immunotherapies have been developed for cancer treatment, such as monoclonal antibodies (mABs) directed against immune checkpoints (immune checkpoint inhibitors, ICIs), oncolytic viruses, cytokines, cancer vaccines, and adoptive cell transfer. While being estimated to be eligible in 38.5% of patients with metastatic solid or hematological tumors, ICIs, in particular, demonstrate durable disease control across many oncologic diseases (e.g., in melanoma, lung, bladder, renal, head, and neck cancers) and overall survival benefits. Due to their unique mechanisms of action based on T-cell activation, response to immunotherapies is characterized by different patterns, such as progression prior to treatment response (pseudoprogression), hyperprogression, and dissociated responses following treatment. Because these features are not encountered in the Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST 1.1), which is the standard for response assessment in oncology, new criteria were defined for immunotherapies. The most important changes in these new morphologic criteria are, firstly, the requirement for confirmatory imaging examinations in case of progression, and secondly, the appearance of new lesions is not necessarily considered a progressive disease. Until today, five morphologic (immune-related response criteria (irRC), immune-related RECIST (irRECIST), immune RECIST (iRECIST), immune-modified RECIST (imRECIST), and intra-tumoral RECIST (itRECIST)) criteria have been developed to accurately assess changes in target lesion sizes, taking into account the specific response patterns after immunotherapy. In addition to morphologic response criteria, 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) is a promising option for metabolic response assessment and four metabolic criteria are used (PET/CT Criteria for Early Prediction of Response to Immune Checkpoint Inhibitor Therapy (PECRIT), PET Response Evaluation Criteria for Immunotherapy (PERCIMT), immunotherapy-modified PET Response Criteria in Solid Tumors (imPERCIST5), and immune PERCIST (iPERCIST)). Besides, there is evidence that parameters on 18F-FDG-PET/CT, such as the standardized uptake value (SUV)max and several radiotracers, e.g., directed against PD-L1, may be potential imaging biomarkers of response. Moreover, the emerge of human intratumoral immunotherapy (HIT-IT), characterized by the direct injection of immunostimulatory agents into a tumor lesion, has given new importance to imaging assessment. This article reviews the specific imaging patterns of tumor response and progression and available imaging response criteria following immunotherapy.
Collapse
Affiliation(s)
- Antonia M. Berz
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Radiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Naïk Vietti-Violi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sarah Boughdad
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Rafael Duran
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
17
|
Gao Y, Wu C, Chen X, Ma L, Zhang X, Chen J, Liao X, Liu M. PET/CT molecular imaging in the era of immune-checkpoint inhibitors therapy. Front Immunol 2022; 13:1049043. [PMID: 36341331 PMCID: PMC9630646 DOI: 10.3389/fimmu.2022.1049043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 04/24/2024] Open
Abstract
Cancer immunotherapy, especially immune-checkpoint inhibitors (ICIs), has paved a new way for the treatment of many types of malignancies, particularly advanced-stage cancers. Accumulating evidence suggests that as a molecular imaging modality, positron emission tomography/computed tomography (PET/CT) can play a vital role in the management of ICIs therapy by using different molecular probes and metabolic parameters. In this review, we will provide a comprehensive overview of the clinical data to support the importance of 18F-fluorodeoxyglucose PET/CT (18F-FDG PET/CT) imaging in the treatment of ICIs, including the evaluation of the tumor microenvironment, discovery of immune-related adverse events, evaluation of therapeutic efficacy, and prediction of therapeutic prognosis. We also discuss perspectives on the development direction of 18F-FDG PET/CT imaging, with a particular emphasis on possible challenges in the future. In addition, we summarize the researches on novel PET molecular probes that are expected to potentially promote the precise application of ICIs.
Collapse
|
18
|
Ter Maat LS, van Duin IAJ, Elias SG, van Diest PJ, Pluim JPW, Verhoeff JJC, de Jong PA, Leiner T, Veta M, Suijkerbuijk KPM. Imaging to predict checkpoint inhibitor outcomes in cancer. A systematic review. Eur J Cancer 2022; 175:60-76. [PMID: 36096039 DOI: 10.1016/j.ejca.2022.07.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Checkpoint inhibition has radically improved the perspective for patients with metastatic cancer, but predicting who will not respond with high certainty remains difficult. Imaging-derived biomarkers may be able to provide additional insights into the heterogeneity in tumour response between patients. In this systematic review, we aimed to summarise and qualitatively assess the current evidence on imaging biomarkers that predict response and survival in patients treated with checkpoint inhibitors in all cancer types. METHODS PubMed and Embase were searched from database inception to 29th November 2021. Articles eligible for inclusion described baseline imaging predictive factors, radiomics and/or imaging machine learning models for predicting response and survival in patients with any kind of malignancy treated with checkpoint inhibitors. Risk of bias was assessed using the QUIPS and PROBAST tools and data was extracted. RESULTS In total, 119 studies including 15,580 patients were selected. Of these studies, 73 investigated simple imaging factors. 45 studies investigated radiomic features or deep learning models. Predictors of worse survival were (i) higher tumour burden, (ii) presence of liver metastases, (iii) less subcutaneous adipose tissue, (iv) less dense muscle and (v) presence of symptomatic brain metastases. Hazard rate ratios did not exceed 2.00 for any predictor in the larger and higher quality studies. The added value of baseline fluorodeoxyglucose positron emission tomography parameters in predicting response to treatment was limited. Pilot studies of radioactive drug tracer imaging showed promising results. Reports on radiomics were almost unanimously positive, but numerous methodological concerns exist. CONCLUSIONS There is well-supported evidence for several imaging biomarkers that can be used in clinical decision making. Further research, however, is needed into biomarkers that can more accurately identify which patients who will not benefit from checkpoint inhibition. Radiomics and radioactive drug labelling appear to be promising approaches for this purpose.
Collapse
Affiliation(s)
- Laurens S Ter Maat
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Isabella A J van Duin
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Sjoerd G Elias
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Josien P W Pluim
- Image Science Institute, University Medical Center Utrecht, Utrecht, the Netherlands; Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Pim A de Jong
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Tim Leiner
- Utrecht University, Utrecht, the Netherlands; Department of Radiology, Mayo Clinical, Rochester, MN, USA
| | - Mitko Veta
- Medical Image Analysis, Department Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Utrecht University, Utrecht, the Netherlands
| | - Karijn P M Suijkerbuijk
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands; Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Küstner T, Vogel J, Hepp T, Forschner A, Pfannenberg C, Schmidt H, Schwenzer NF, Nikolaou K, la Fougère C, Seith F. Development of a Hybrid-Imaging-Based Prognostic Index for Metastasized-Melanoma Patients in Whole-Body 18F-FDG PET/CT and PET/MRI Data. Diagnostics (Basel) 2022; 12:2102. [PMID: 36140504 PMCID: PMC9498091 DOI: 10.3390/diagnostics12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Besides tremendous treatment success in advanced melanoma patients, the rapid development of oncologic treatment options comes with increasingly high costs and can cause severe life-threatening side effects. For this purpose, predictive baseline biomarkers are becoming increasingly important for risk stratification and personalized treatment planning. Thus, the aim of this pilot study was the development of a prognostic tool for the risk stratification of the treatment response and mortality based on PET/MRI and PET/CT, including a convolutional neural network (CNN) for metastasized-melanoma patients before systemic-treatment initiation. The evaluation was based on 37 patients (19 f, 62 ± 13 y/o) with unresectable metastasized melanomas who underwent whole-body 18F-FDG PET/MRI and PET/CT scans on the same day before the initiation of therapy with checkpoint inhibitors and/or BRAF/MEK inhibitors. The overall survival (OS), therapy response, metastatically involved organs, number of lesions, total lesion glycolysis, total metabolic tumor volume (TMTV), peak standardized uptake value (SULpeak), diameter (Dmlesion) and mean apparent diffusion coefficient (ADCmean) were assessed. For each marker, a Kaplan−Meier analysis and the statistical significance (Wilcoxon test, paired t-test and Bonferroni correction) were assessed. Patients were divided into high- and low-risk groups depending on the OS and treatment response. The CNN segmentation and prediction utilized multimodality imaging data for a complementary in-depth risk analysis per patient. The following parameters correlated with longer OS: a TMTV < 50 mL; no metastases in the brain, bone, liver, spleen or pleura; ≤4 affected organ regions; no metastases; a Dmlesion > 37 mm or SULpeak < 1.3; a range of the ADCmean < 600 mm2/s. However, none of the parameters correlated significantly with the stratification of the patients into the high- or low-risk groups. For the CNN, the sensitivity, specificity, PPV and accuracy were 92%, 96%, 92% and 95%, respectively. Imaging biomarkers such as the metastatic involvement of specific organs, a high tumor burden, the presence of at least one large lesion or a high range of intermetastatic diffusivity were negative predictors for the OS, but the identification of high-risk patients was not feasible with the handcrafted parameters. In contrast, the proposed CNN supplied risk stratification with high specificity and sensitivity.
Collapse
Affiliation(s)
- Thomas Küstner
- MIDAS.Lab, Department of Radiology, University Hospital of Tübingen, 72076 Tubingen, Germany
| | - Jonas Vogel
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University Hospital Tübingen, 72076 Tubingen, Germany
| | - Tobias Hepp
- MIDAS.Lab, Department of Radiology, University Hospital of Tübingen, 72076 Tubingen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital of Tübingen, 72070 Tubingen, Germany
| | - Christina Pfannenberg
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital of Tübingen, 72076 Tubingen, Germany
| | - Holger Schmidt
- Faculty of Medicine, Eberhard-Karls-University Tübingen, 72076 Tubingen, Germany
- Siemens Healthineers, 91052 Erlangen, Germany
| | - Nina F. Schwenzer
- Faculty of Medicine, Eberhard-Karls-University Tübingen, 72076 Tubingen, Germany
| | - Konstantin Nikolaou
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital of Tübingen, 72076 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tubingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tubingen, Germany
| | - Christian la Fougère
- Nuclear Medicine and Clinical Molecular Imaging, Department of Radiology, University Hospital Tübingen, 72076 Tubingen, Germany
- Cluster of Excellence iFIT (EXC 2180) Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tubingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tubingen, Germany
| | - Ferdinand Seith
- Department of Radiology, Diagnostic and Interventional Radiology, University Hospital of Tübingen, 72076 Tubingen, Germany
| |
Collapse
|
20
|
Lopci E, Hicks RJ, Dimitrakopoulou-Strauss A, Dercle L, Iravani A, Seban RD, Sachpekidis C, Humbert O, Gheysens O, Glaudemans AWJM, Weber W, Wahl RL, Scott AM, Pandit-Taskar N, Aide N. Joint EANM/SNMMI/ANZSNM practice guidelines/procedure standards on recommended use of [ 18F]FDG PET/CT imaging during immunomodulatory treatments in patients with solid tumors version 1.0. Eur J Nucl Med Mol Imaging 2022; 49:2323-2341. [PMID: 35376991 PMCID: PMC9165250 DOI: 10.1007/s00259-022-05780-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE The goal of this guideline/procedure standard is to assist nuclear medicine physicians, other nuclear medicine professionals, oncologists or other medical specialists for recommended use of [18F]FDG PET/CT in oncological patients undergoing immunotherapy, with special focus on response assessment in solid tumors. METHODS In a cooperative effort between the EANM, the SNMMI and the ANZSNM, clinical indications, recommended imaging procedures and reporting standards have been agreed upon and summarized in this joint guideline/procedure standard. CONCLUSIONS The field of immuno-oncology is rapidly evolving, and this guideline/procedure standard should not be seen as definitive, but rather as a guidance document standardizing the use and interpretation of [18F]FDG PET/CT during immunotherapy. Local variations to this guideline should be taken into consideration. PREAMBLE The European Association of Nuclear Medicine (EANM) is a professional non-profit medical association founded in 1985 to facilitate worldwide communication among individuals pursuing clinical and academic excellence in nuclear medicine. The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and professional organization founded in 1954 to promote science, technology and practical application of nuclear medicine. The Australian and New Zealand Society of Nuclear Medicine (ANZSNM), founded in 1969, represents the major professional society fostering the technical and professional development of nuclear medicine practice across Australia and New Zealand. It promotes excellence in the nuclear medicine profession through education, research and a commitment to the highest professional standards. EANM, SNMMI and ANZSNM members are physicians, technologists, physicists and scientists specialized in the research and clinical practice of nuclear medicine. All three societies will periodically put forth new standards/guidelines for nuclear medicine practice to help advance the science of nuclear medicine and improve service to patients. Existing standards/guidelines will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each standard/guideline, representing a policy statement by the EANM/SNMMI/ANZSNM, has undergone a thorough consensus process, entailing extensive review. These societies recognize that the safe and effective use of diagnostic nuclear medicine imaging requires particular training and skills, as described in each document. These standards/guidelines are educational tools designed to assist practitioners in providing appropriate and effective nuclear medicine care for patients. These guidelines are consensus documents based on current knowledge. They are not intended to be inflexible rules or requirements of practice, nor should they be used to establish a legal standard of care. For these reasons and those set forth below, the EANM, SNMMI and ANZSNM caution against the use of these standards/guidelines in litigation in which the clinical decisions of a practitioner are called into question. The ultimate judgment regarding the propriety of any specific procedure or course of action must be made by medical professionals considering the unique circumstances of each case. Thus, there is no implication that an action differing from what is laid out in the guidelines/procedure standards, standing alone, is below standard of care. To the contrary, a conscientious practitioner may responsibly adopt a course of action different from that set forth in the standards/guidelines when, in the reasonable judgment of the practitioner, such course of action is indicated by the condition of the patient, limitations of available resources or advances in knowledge or technology subsequent to publication of the guidelines/procedure standards. The practice of medicine involves not only the science, but also the art of dealing with the prevention, diagnosis, alleviation and treatment of disease. The variety and complexity of human conditions make it impossible for general guidelines to consistently allow for an accurate diagnosis to be reached or a particular treatment response to be predicted. Therefore, it should be recognized that adherence to these standards/ guidelines will not ensure a successful outcome. All that should be expected is that practitioners follow a reasonable course of action, based on their level of training, current knowledge, clinical practice guidelines, available resources and the needs/context of the patient being treated. The sole purpose of these guidelines is to assist practitioners in achieving this objective. The present guideline/procedure standard was developed collaboratively by the EANM, the SNMMI and the ANZSNM, with the support of international experts in the field. They summarize also the views of the Oncology and Theranostics and the Inflammation and Infection Committees of the EANM, as well as the procedure standards committee of the SNMMI, and reflect recommendations for which the EANM and SNMMI cannot be held responsible. The recommendations should be taken into the context of good practice of nuclear medicine and do not substitute for national and international legal or regulatory provisions.
Collapse
Affiliation(s)
- E Lopci
- Nuclear Medicine Unit, IRCCS - Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milano, Italy.
| | - R J Hicks
- The Department of Medicine, St Vincent's Medical School, the University of Melbourne, Melbourne, Australia
| | - A Dimitrakopoulou-Strauss
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - L Dercle
- Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York, NY, USA
| | - A Iravani
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - R D Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210, Saint-Cloud, France
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France
| | - C Sachpekidis
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69210, Heidelberg, Germany
| | - O Humbert
- Department of Nuclear Medicine, Centre Antoine-Lacassagne, Université Côte d'Azur, Nice, France
- TIRO-UMR E 4320, Université Côte d'Azur, Nice, France
| | - O Gheysens
- Department of Nuclear Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - A W J M Glaudemans
- Nuclear Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - W Weber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - R L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - A M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Studley Rd, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
| | - N Pandit-Taskar
- Nuclear Medicine Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY, 10021, USA
| | - N Aide
- Nuclear Medicine Department, University Hospital, Caen, France
- INSERM ANTICIPE, Normandie University, Caen, France
| |
Collapse
|
21
|
Lopci E. Meditating on Cancer Management at the Time of Immunotherapy. J Clin Med 2022; 11:jcm11113025. [PMID: 35683412 PMCID: PMC9181255 DOI: 10.3390/jcm11113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine, IRCCS-Humanitas Research Center, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
22
|
Translating Molecules into Imaging—The Development of New PET Tracers for Patients with Melanoma. Diagnostics (Basel) 2022; 12:diagnostics12051116. [PMID: 35626272 PMCID: PMC9139963 DOI: 10.3390/diagnostics12051116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Melanoma is a deadly disease that often exhibits relentless progression and can have both early and late metastases. Recent advances in immunotherapy and targeted therapy have dramatically increased patient survival for patients with melanoma. Similar advances in molecular targeted PET imaging can identify molecular pathways that promote disease progression and therefore offer physiological information. Thus, they can be used to assess prognosis, tumor heterogeneity, and identify instances of treatment failure. Numerous agents tested preclinically and clinically demonstrate promising results with high tumor-to-background ratios in both primary and metastatic melanoma tumors. Here, we detail the development and testing of multiple molecular targeted PET-imaging agents, including agents for general oncological imaging and those specifically for PET imaging of melanoma. Of the numerous radiopharmaceuticals evaluated for this purpose, several have made it to clinical trials and showed promising results. Ultimately, these agents may become the standard of care for melanoma imaging if they are able to demonstrate micrometastatic disease and thus provide more accurate information for staging. Furthermore, these agents provide a more accurate way to monitor response to therapy. Patients will be able to receive treatment based on tumor uptake characteristics and may be able to be treated earlier for lesions that with traditional imaging would be subclinical, overall leading to improved outcomes for patients.
Collapse
|
23
|
Anorectal and Genital Mucosal Melanoma: Diagnostic Challenges, Current Knowledge and Therapeutic Opportunities of Rare Melanomas. Biomedicines 2022; 10:biomedicines10010150. [PMID: 35052829 PMCID: PMC8773579 DOI: 10.3390/biomedicines10010150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/05/2023] Open
Abstract
Mucosal melanomas (MM) are rare tumors, being less than 2% of all diagnosed melanomas, comprising a variegated group of malignancies arising from melanocytes in virtually all mucosal epithelia, even if more frequently found in oral and sino-nasal cavities, ano-rectum and female genitalia (vulva and vagina). To date, there is no consensus about the optimal management strategy of MM. Furthermore, the clinical rationale of molecular tumor characterization regarding BRAF, KIT or NRAS, as well as the therapeutic value of immunotherapy, chemotherapy and targeted therapy, has not yet been deeply explored and clearly established in MM. In this overview, focused on anorectal and genital MM as models of rare melanomas deserving of a multidisciplinary approach, we highlight the need of referring these patients to centers with experts in melanoma, anorectal and uro-genital cancers treatments. Taking into account the rarity, the poor outcomes and the lack of effective treatment options for MM, tailored research needs to be promptly promoted.
Collapse
|
24
|
Aide N, Iravani A, Prigent K, Kottler D, Alipour R, Hicks RJ. PET/CT variants and pitfalls in malignant melanoma. Cancer Imaging 2022; 22:3. [PMID: 34983677 PMCID: PMC8724662 DOI: 10.1186/s40644-021-00440-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022] Open
Abstract
18F-FDG PET/CT plays an increasingly pivotal role in the staging and post-treatment monitoring of high-risk melanoma patients, augmented by the introduction of therapies, including tyrosine kinase inhibitors (TKI) and immune checkpoint inhibitors (ICIs), that have novel modes of action that challenge conventional response assessment. Simultaneously, technological advances have been regularly released, including advanced reconstruction algorithms, digital PET and motion correction, which have allowed the PET community to detect ever-smaller cancer lesions, improving diagnostic performance in the context of indications previously viewed as limitations, such as detection of in-transit disease and confirmation of the nature of small pulmonary metastases apparent on CT.This review will provide advice regarding melanoma-related PET protocols and will focus on variants encountered during the imaging of melanoma patients. Emphasis will be made on pitfalls related to non-malignant diseases and treatment-related findings that may confound accurate interpretation unless recognized. The latter include signs of immune activation and immune-related adverse events (irAEs). Technology-related pitfalls are also discussed, since while new PET technologies improve detection of small lesions, these may also induce false-positive cases and require a learning curve to be observed. In these times of the COVID 19 pandemic, cases illustrating lessons learned from COVID 19 or vaccination-related pitfalls will also be described.
Collapse
Affiliation(s)
- Nicolas Aide
- PET Centre, University Hospital, Service de Médecine Nucléaire, CHU de Caen, Avenue Côte de Nacre, 14000, Caen, France.
| | - Amir Iravani
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, USA
| | - Kevin Prigent
- PET Centre, University Hospital, Service de Médecine Nucléaire, CHU de Caen, Avenue Côte de Nacre, 14000, Caen, France
| | - Diane Kottler
- Dermatology Department, University Hospital, Caen, France
| | - Ramin Alipour
- Peter MacCallum Cancer Institute, Melbourne, Australia
| | - Rodney J Hicks
- Peter MacCallum Cancer Institute, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
25
|
Alipour R, Iravani A, Hicks RJ. PET Imaging of Melanoma. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
First-Line Pembrolizumab Mono- or Combination Therapy of Non-Small Cell Lung Cancer: Baseline Metabolic Biomarkers Predict Outcomes. Cancers (Basel) 2021; 13:cancers13236096. [PMID: 34885206 PMCID: PMC8656760 DOI: 10.3390/cancers13236096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Positron-emission tomography/computed tomography (PET/CT) is used for staging of non-small cell lung cancer (NSCLC) and can help to estimate prognosis in patients treated with immune checkpoint inhibitor (ICI) therapy. Most available data in that field were derived from cohorts treated in higher therapy lines using ICI monotherapy with different drugs. Currently, however, most advanced NSCLC patients receive first-line ICI treatment, often in combination with cytotoxic chemotherapy. We evaluated prognostic PET/CT biomarkers in 85 patients receiving first-line ICI, 70 (82%) of them as a chemotherapy–ICI combination. We found that patients with a higher metabolically active tumor volume (MTV) had a significantly poorer survival and lower radiological response rate. In patients with high MTV, a concomitantly low bone marrow to liver ratio indicated a better prognosis. Our results demonstrate that PET/CT-derived biomarkers can aid therapeutic decision-making in ICI-treated NSCLC. Abstract Quantitative biomarkers derived from positron-emission tomography/computed tomography (PET/CT) have been suggested as prognostic variables in immune-checkpoint inhibitor (ICI) treated non-small cell lung cancer (NSCLC). As such, data for first-line ICI therapy and especially for chemotherapy–ICI combinations are still scarce, we retrospectively evaluated baseline 18F-FDG-PET/CT of 85 consecutive patients receiving first-line pembrolizumab with chemotherapy (n = 70) or as monotherapy (n = 15). Maximum and mean standardized uptake value, total metabolic tumor volume (MTV), total lesion glycolysis, bone marrow-/and spleen to liver ratio (BLR/SLR) were calculated. Kaplan–Meier analyses and Cox regression models were used to assess progression-free/overall survival (PFS/OS) and their determinant variables. Median follow-up was 12 months (M; 95% confidence interval 10–14). Multivariate selection for PFS/OS revealed MTV as most relevant PET/CT biomarker (p < 0.001). Median PFS/OS were significantly longer in patients with MTV ≤ 70 mL vs. >70 mL (PFS: 10 M (4–16) vs. 4 M (3–5), p = 0.001; OS: not reached vs. 10 M (5–15), p = 0.004). Disease control rate was 81% vs. 53% for MTV ≤/> 70 mL (p = 0.007). BLR ≤ 1.06 vs. >1.06 was associated with better outcomes (PFS: 8 M (4–13) vs. 4 M (3–6), p = 0.034; OS: 19 M (12-/) vs. 6 M (4–12), p = 0.005). In patients with MTV > 70 mL, concomitant BLR ≤ 1.06 indicated a better prognosis. Higher MTV is associated with inferior PFS/OS in first-line ICI-treated NSCLC, with BLR allowing additional risk stratification.
Collapse
|
27
|
Lopci E. Immunotherapy Monitoring with Immune Checkpoint Inhibitors Based on [ 18F]FDG PET/CT in Metastatic Melanomas and Lung Cancer. J Clin Med 2021; 10:jcm10215160. [PMID: 34768681 PMCID: PMC8584484 DOI: 10.3390/jcm10215160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy with checkpoint inhibitors has prompted a major change not only in cancer treatment but also in medical imaging. In parallel with the implementation of new drugs modulating the immune system, new response criteria have been developed, aiming to overcome clinical drawbacks related to the new, unusual, patterns of response characterizing both solid tumors and lymphoma during the course of immunotherapy. The acknowledgement of pseudo-progression, hyper-progression, immune-dissociated response and so forth, has become mandatory for all imagers dealing with this clinical scenario. A long list of acronyms, i.e., irRC, iRECIST, irRECIST, imRECIST, PECRIT, PERCIMT, imPERCIST, iPERCIST, depicts the enormous effort made by radiology and nuclear medicine physicians in the last decade to optimize imaging parameters for better prediction of clinical benefit in immunotherapy regimens. Quite frequently, a combination of clinical-laboratory data with imaging findings has been tested, proving the ability to stratify patients into various risk groups. The next steps necessarily require a large scale validation of the most robust criteria, as well as the clinical implementation of immune-targeting tracers for immuno-PET or the exploitation of radiomics and artificial intelligence as complementary tools during the course of immunotherapy administration. For the present review article, a summary of PET/CT role for immunotherapy monitoring will be provided. By scrolling into various cancer types and applied response criteria, the reader will obtain necessary information for better understanding the potentials and limitations of the modality in the clinical setting.
Collapse
Affiliation(s)
- Egesta Lopci
- Nuclear Medicine Unit, IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, MI, Italy
| |
Collapse
|
28
|
Dall'Olio FG, Marabelle A, Caramella C, Garcia C, Aldea M, Chaput N, Robert C, Besse B. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat Rev Clin Oncol 2021; 19:75-90. [PMID: 34642484 DOI: 10.1038/s41571-021-00564-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
Accumulating evidence suggests that a high tumour burden has a negative effect on anticancer immunity. The concept of tumour burden, simply defined as the total amount of cancer in the body, in contrast to molecular tumour burden, is often poorly understood by the wider medical community; nonetheless, a possible role exists in defining the optimal treatment strategy for many patients. Historically, tumour burden has been assessed using imaging. In particular, CT scans have been used to evaluate both the number and size of metastases as well as the number of organs involved. These methods are now often complemented by metabolic tumour burden, measured using the more recently developed 2-deoxy-2-[18F]-fluoro-D-glucose (FDG)-PET/CT. Serum-based biomarkers, such as lactate dehydrogenase, can also reflect tumour burden and are often also correlated with a poor response to immune-checkpoint inhibitors. Other circulating markers (such as circulating free tumour DNA and/or circulating tumour cells) are also attracting research interest as surrogate markers of tumour burden. In this Review, we summarize evidence supporting the utility of tumour burden as a biomarker to guide the use of immune-checkpoint inhibitors. We also describe data and provide perspective on the various tools used for tumour burden assessment, with a particular emphasis on future therapeutic strategies that might address the issue of inferior outcomes among patients with cancer with a high tumour burden.
Collapse
Affiliation(s)
- Filippo G Dall'Olio
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Bologna, Italy
| | - Aurélien Marabelle
- Drug Development Department, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Caroline Caramella
- Department of Radiology, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Camilo Garcia
- Department of Nuclear Medicine and Endocrine Oncology, Institut Gustave Roussy and University Paris-Saclay, Villejuif, France
| | - Mihaela Aldea
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, Gustave Roussy, Villejuif, France.,Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France
| | - Caroline Robert
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France.,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.,Institut national de la santé et de la recherche médicale (INSERM), Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France. .,Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, France.
| |
Collapse
|
29
|
Orlhac F, Nioche C, Klyuzhin I, Rahmim A, Buvat I. Radiomics in PET Imaging:: A Practical Guide for Newcomers. PET Clin 2021; 16:597-612. [PMID: 34537132 DOI: 10.1016/j.cpet.2021.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Radiomics has undergone considerable development in recent years. In PET imaging, very promising results concerning the ability of handcrafted features to predict the biological characteristics of lesions and to assess patient prognosis or response to treatment have been reported in the literature. This article presents a checklist for designing a reliable radiomic study, gives an overview of the steps of the pipeline, and outlines approaches for data harmonization. Tips are provided for critical reading of the content of articles. The advantages and limitations of handcrafted radiomics compared with deep-learning approaches for the characterization of PET images are also discussed.
Collapse
Affiliation(s)
- Fanny Orlhac
- Institut Curie Centre de Recherche, Centre Universitaire, Bat 101B, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France.
| | - Christophe Nioche
- Institut Curie Centre de Recherche, Centre Universitaire, Bat 101B, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France
| | - Ivan Klyuzhin
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Irène Buvat
- Institut Curie Centre de Recherche, Centre Universitaire, Bat 101B, Rue Henri Becquerel, CS 90030, 91401 Orsay Cedex, France
| |
Collapse
|
30
|
Leung D, Bonacorsi S, Smith RA, Weber W, Hayes W. Molecular Imaging and the PD-L1 Pathway: From Bench to Clinic. Front Oncol 2021; 11:698425. [PMID: 34497758 PMCID: PMC8420047 DOI: 10.3389/fonc.2021.698425] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2021] [Indexed: 01/24/2023] Open
Abstract
Programmed death-1 (PD-1) and programmed death ligand 1 (PD-L1) inhibitors target the important molecular interplay between PD-1 and PD-L1, a key pathway contributing to immune evasion in the tumor microenvironment (TME). Long-term clinical benefit has been observed in patients receiving PD-(L)1 inhibitors, alone and in combination with other treatments, across multiple tumor types. PD-L1 expression has been associated with response to immune checkpoint inhibitors, and treatment strategies are often guided by immunohistochemistry-based diagnostic tests assessing expression of PD-L1. However, challenges related to the implementation, interpretation, and clinical utility of PD-L1 diagnostic tests have led to an increasing number of preclinical and clinical studies exploring interrogation of the TME by real-time imaging of PD-(L)1 expression by positron emission tomography (PET). PET imaging utilizes radiolabeled molecules to non-invasively assess PD-(L)1 expression spatially and temporally. Several PD-(L)1 PET tracers have been tested in preclinical and clinical studies, with clinical trials in progress to assess their use in a number of cancer types. This review will showcase the development of PD-(L)1 PET tracers from preclinical studies through to clinical use, and will explore the opportunities in drug development and possible future clinical implementation.
Collapse
Affiliation(s)
- David Leung
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Samuel Bonacorsi
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Ralph Adam Smith
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| | - Wolfgang Weber
- Technische Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wendy Hayes
- Translational Medicine, Bristol Myers Squibb, Princeton, NJ, United States
| |
Collapse
|
31
|
Seban RD, Assié JB, Giroux-Leprieur E, Massiani MA, Bonardel G, Chouaid C, Deleval N, Richard C, Mezquita L, Girard N, Champion L. Prognostic value of inflammatory response biomarkers using peripheral blood and [18F]-FDG PET/CT in advanced NSCLC patients treated with first-line chemo- or immunotherapy. Lung Cancer 2021; 159:45-55. [PMID: 34311344 DOI: 10.1016/j.lungcan.2021.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
OBJECTIVES We aimed to compare the prognostic value of inflammatory biomarkers extracted from pretreatment peripheral blood and [18F]-FDG PET for estimating outcomes in non-small cell lung cancer (NSCLC) patients treated with first-line immunotherapy (IT) or chemotherapy (CT). MATERIALS AND METHODS In this retrospective multicenter study, we evaluated 111 patients with advanced NSCLC who underwent baseline [18F]-FDG PET/CT before IT or CT between 2016 and 2019. Several blood inflammatory indices were evaluated: derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), C-reactive protein (CRP) and systemic immune-inflammation index (SII). FDG-PET inflammatory parameters were extracted from lymphoid tissues (BLR and SLR: bone marrow or spleen-to-Liver SUVmax ratios). Association with survival and relationships between parameters were evaluated using Cox prediction models and Spearman's correlation respectively. RESULTS Overall, 90 patients were included (IT:CT) (51:39pts). Median PFS was 8.6:6.6 months and median OS was not reached:21.2 months. In the IT cohort, high dNLR (>3), high SII (≥1,270) and high SLR (0.77) were independent statistically significant prognostic factors for one-year progression-free survival (1y-PFS) and two-year overall survival (2y-OS) on multivariable analysis. In the CT cohort, high BLR (≥0.80) and high dNLR (>3) were associated with shorter 1y-PFS (HR 2.2, 95% CI 1.0-4.9) and 2y-OS (HR 3.4, 95CI 1.1-10.3) respectively, on multivariable analysis. Finally, BLR significantly but moderately correlated with most blood-based inflammatory indices (CRP, PLR and SII) while SLR was only associated with CRP (p < 0.01 for all). CONCLUSION In advanced NSCLC patients undergoing first-line IT or CT, pretreatment blood and inflammatory factors evaluating the spleen or bone marrow on [18F]-FDG PET/CT provided prognostic information for 1y-PFS and 2y-OS. These biomarkers should be further evaluated for potential clinical application.
Collapse
Affiliation(s)
- Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France; Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France.
| | - Jean-Baptiste Assié
- Department of Pneumology, Paris-Est University, Centre Hospitalier Inter-Communal de Créteil, Inserm U955, UPEC, IMRB, équipe CEpiA, 94010 Créteil, France; Inserm, Centre de Recherche des Cordeliers, Sorbonne University, Université de Paris, Functionnal Genomics of Solid Tumors Laboratory, F-75006 Paris, France
| | - Etienne Giroux-Leprieur
- Department of Respiratory Diseases and Thoracic Oncology, APHP, Hôpital Ambroise Paré, 92100 Boulogne-Billancourt, France
| | | | - Gérald Bonardel
- Department of Nuclear Medicine, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| | - Christos Chouaid
- Department of Pneumology, Paris-Est University, Centre Hospitalier Inter-Communal de Créteil, Inserm U955, UPEC, IMRB, équipe CEpiA, 94010 Créteil, France
| | - Nicolas Deleval
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
| | - Capucine Richard
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France
| | - Laura Mezquita
- Department of Medical Oncology, Hospital Clínic, Laboratory of Translational Genomics and Target Therapeutics in Solid Tumors, IDIBAPS, 08036 Barcelona, Spain
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Institut Curie, F-75006 Paris, France
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud, France; Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, 91401, Orsay, France
| |
Collapse
|
32
|
Seban RD, Synn S, Muneer I, Champion L, Schwartz LH, Dercle L. Don't overlook spleen glucose metabolism on [18F]-FDG PET/CT for cancer drug discovery and development. Curr Cancer Drug Targets 2021; 21:944-952. [PMID: 34288841 DOI: 10.2174/1568009621666210720143826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
Fluorine-18-fluorodeoxyglucose ([18F]-FDG) positron emission tomography/computed tomography (PET/CT) is a useful tool that assesses glucose metabolism in tumor cells to help guide management of cancer patients. However, the clinical relevance of glucose metabolism in healthy tissues, including hematopoietic tissues such as the spleen, has been potentially overlooked. Recent studies suggested that spleen glucose metabolism could improve the management of different cancers. Overall, the current literature includes 1,157 patients, with a wide range of tumor types. The prognostic and/or predictive value of spleen metabolism have been demonstrated in a broad spectrum of therapies including surgery and systemic cancer therapies. Most of these studies showed that high spleen glucose metabolism at baseline is associated with a poor outcome while treatment-induce change in spleen glucose metabolism is a multi-faceted surrogate of cancer-related inflammation, which correlates with immunosuppressive tumor microenvironment as well as with immune activation. In this systematic review, we seek to unravel the prognostic/predictive significance of spleen glucose metabolism on [18F]-FDG PET/CT and discuss how it could potentially guide cancer patient management in the future.
Collapse
Affiliation(s)
- Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud. France
| | - Shwe Synn
- Department of Internal Medicine, Montefiore/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Izza Muneer
- Department of Internal Medicine, Montefiore/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie, 92210 Saint-Cloud. France
| | - Lawrence H Schwartz
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, New York, United States
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York, New York, United States
| |
Collapse
|
33
|
18F-FDG PET/CT versus Diagnostic Contrast-Enhanced CT for Follow-Up of Stage IV Melanoma Patients Treated by Immune Checkpoint Inhibitors: Frequency and Management of Discordances over a 3-Year Period in a University Hospital. Diagnostics (Basel) 2021; 11:diagnostics11071198. [PMID: 34359281 PMCID: PMC8304093 DOI: 10.3390/diagnostics11071198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Aim: To perform a comprehensive analysis of discordances between contrast-enhanced CT (ceCT) and 18F-FDG PET/CT in the evaluation of the extra-cerebral treatment monitoring in patients with stage IV melanoma. Materials and methods: We conducted a retrospective monocentric observational study over a 3-year period in patients referred for 18F-FDG PET/CT and ceCT in the framework of therapy monitoring of immune checkpoint (ICIs) as of January 2017. Imaging reports were analyzed by two physicians in consensus. The anatomical site responsible for discordances, as well as induced changes in treatment were noted. Results: Eighty patients were included and 195 pairs of scans analyzed. Overall, discordances occurred in 65 cases (33%). Eighty percent of the discordances (52/65) were due to 18F-FDG PET/CT scans upstaging the patient. Amongst these discordances, 17/52 (33%) led to change in patient’s management, the most frequent being radiotherapy of a progressing site. ceCT represented 13/65 (20%) of discordances and induced changes in patients’ management in 2/13 cases (15%). The most frequent anatomical site involved was subcutaneous for 18F-FDG PET/CT findings and lung or liver for ceCT. Conclusions: Treatment monitoring with 18F-FDG PET/CT is more efficient than ceCT and has a greater impact in patient’s management.
Collapse
|
34
|
Han A, Schug ZT, Aplin AE. Metabolic Alterations and Therapeutic Opportunities in Rare Forms of Melanoma. Trends Cancer 2021; 7:671-681. [PMID: 34127435 DOI: 10.1016/j.trecan.2021.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is derived from melanocytes located in multiple regions of the body. Cutaneous melanoma (CM) represents the major subgroup, but less-common subtypes including uveal melanoma (UM), mucosal melanoma (MM), and acral melanoma (AM) arise that have distinct genetic profiles. Treatments effective for CM are ineffective in UM, AM, and MM, and patient survival remains poor. As reprogrammed cancer metabolism is associated with tumorigenesis, the underlying mechanisms are well studied and provide therapeutic opportunities in many cancers; however, metabolism is less well studied in rarer melanoma subtypes. We summarize current knowledge of the metabolic alterations in rare melanoma and potential applications of targeting cancer metabolism to improve the therapeutic options available to UM, AM, and MM patients.
Collapse
Affiliation(s)
- Anna Han
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Zachary T Schug
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA19104, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
35
|
Vercellino L, de Jong D, di Blasi R, Kanoun S, Reshef R, Schwartz LH, Dercle L. Current and Future Role of Medical Imaging in Guiding the Management of Patients With Relapsed and Refractory Non-Hodgkin Lymphoma Treated With CAR T-Cell Therapy. Front Oncol 2021; 11:664688. [PMID: 34123825 PMCID: PMC8195284 DOI: 10.3389/fonc.2021.664688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cells are a novel immunotherapy available for patients with refractory/relapsed non-Hodgkin lymphoma. In this indication, clinical trials have demonstrated that CAR T-cells achieve high rates of response, complete response, and long-term response (up to 80%, 60%, and 40%, respectively). Nonetheless, the majority of patients ultimately relapsed. This review provides an overview about the current and future role of medical imaging in guiding the management of non-Hodgkin lymphoma patients treated with CAR T-cells. It discusses the value of predictive and prognostic biomarkers to better stratify the risk of relapse, and provide a patient-tailored therapeutic strategy. At baseline, high tumor volume (assessed on CT-scan or on [18F]-FDG PET/CT) is a prognostic factor associated with treatment failure. Response assessment has not been studied extensively yet. Available data suggests that current response assessment developed on CT-scan or on [18F]-FDG PET/CT for cytotoxic systemic therapies remains relevant to estimate lymphoma response to CAR T-cell therapy. Nonetheless, atypical patterns of response and progression have been observed and should be further analyzed. The potential advantages as well as limitations of artificial intelligence and radiomics as tools providing high throughput quantitative imaging features is described.
Collapse
Affiliation(s)
- Laetitia Vercellino
- Nuclear Medicine Department Saint Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Dorine de Jong
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Roberta di Blasi
- Onco-Hematology Department Saint Louis Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Salim Kanoun
- Cancer Research Center of Toulouse (CRCT), Team 9, INSERM UMR 1037, Toulouse, France
| | - Ran Reshef
- Blood and Marrow Transplantation and Cell Therapy Program, Division of Hematology/Oncology and Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York City, NY, United States
| | - Lawrence H. Schwartz
- Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York City, NY, United States
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian, Columbia University Irving Medical Center, New York City, NY, United States
| |
Collapse
|
36
|
Wang JH, Wahid KA, van Dijk LV, Farahani K, Thompson RF, Fuller CD. Radiomic biomarkers of tumor immune biology and immunotherapy response. Clin Transl Radiat Oncol 2021; 28:97-115. [PMID: 33937530 PMCID: PMC8076712 DOI: 10.1016/j.ctro.2021.03.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Immunotherapies are leading to improved outcomes for many cancers, including those with devastating prognoses. As therapies like immune checkpoint inhibitors (ICI) become a mainstay in treatment regimens, many concurrent challenges have arisen - for instance, delineating clinical responders from non-responders. Predicting response has proven to be difficult given a lack of consistent and accurate biomarkers, heterogeneity of the tumor microenvironment (TME), and a poor understanding of resistance mechanisms. For the most part, imaging data have remained an untapped, yet abundant, resource to address these challenges. In recent years, quantitative image analyses have highlighted the utility of medical imaging in predicting tumor phenotypes, prognosis, and therapeutic response. These studies have been fueled by an explosion of resources in high-throughput mining of image features (i.e. radiomics) and artificial intelligence. In this review, we highlight current progress in radiomics to understand tumor immune biology and predict clinical responses to immunotherapies. We also discuss limitations in these studies and future directions for the field, particularly if high-dimensional imaging data are to play a larger role in precision medicine.
Collapse
Affiliation(s)
- Jarey H. Wang
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Kareem A. Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisanne V. van Dijk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Keyvan Farahani
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, MD, United States
| | - Reid F. Thompson
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
37
|
Early Reassessment of Total Metabolic Tumor Volume on FDG-PET/CT in Advanced Melanoma Patients Treated with Pembrolizumab Predicts Long-Term Outcome. ACTA ACUST UNITED AC 2021; 28:1630-1640. [PMID: 33925392 PMCID: PMC8161820 DOI: 10.3390/curroncol28030152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/24/2021] [Indexed: 12/26/2022]
Abstract
PD-1 Immune checkpoint inhibitors, such as Pembrolizumab, can have a durable beneficial therapeutic effect in patients with advanced melanoma. However, not all patients will benefit equally from these therapies, and (potentially life-threatening) immune-related adverse events may occur. In this study, we investigate the value of early response assessment by FDG-PET/CT as a biomarker for predicting survival. We identified all patients with advanced melanoma who were treated with Pembrolizumab in our medical center and underwent a baseline and at least one follow-up FDG-PET/CT. The total metabolic tumor volume (TMTV) was calculated, and the evolution was compared to survival parameters. A total of 77 patients underwent a baseline and at least one follow-up FDG-PET/CT, 36 patients had follow-up imaging within 2–4 months, and 21 patients an FDG-PET/CT 5–6 months after baseline. When the TMTV evolution was categorized into two subgroups (stable/decrease versus increase), an association was found between stability or decrease in TMTV and better PFS and OS. A similar trend, however non-significant, was observed at 5–6 months. The evolution in TMTV as assessed by FDG-PET/CT 2–4 months after treatment initiation is associated with long-term outcomes in patients with advanced melanoma treated with Pembrolizumab.
Collapse
|
38
|
Seban RD, Rouzier R, Latouche A, Deleval N, Guinebretiere JM, Buvat I, Bidard FC, Champion L. Total metabolic tumor volume and spleen metabolism on baseline [18F]-FDG PET/CT as independent prognostic biomarkers of recurrence in resected breast cancer. Eur J Nucl Med Mol Imaging 2021; 48:3560-3570. [PMID: 33774685 DOI: 10.1007/s00259-021-05322-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE We evaluated whether biomarkers on baseline [18F]-FDG PET/CT are associated with recurrence after surgery in patients with invasive breast cancer of no special type (NST). METHODS In this retrospective single-center study, we included consecutive patients with non-metastatic breast cancer of NST who underwent [18F]-FDG PET/CT before treatment, including surgery, between 2011 and 2016. Clinicopathological data were collected. Tumor SUVmax, total metabolic tumor volume (TMTV), and spleen- and bone marrow-to-liver SUVmax ratios (SLR, BLR) were measured from the PET images. Cut-off values were determined using predictiveness curves to predict 5-year recurrence-free survival (5y-RFS). A multivariable prediction model was developed using Cox regression. The association with stromal tumor-infiltrating lymphocytes (TILs) levels (low if <50%) was studied by logistic regression. RESULTS Three hundred and three women were eligible, including 93 (31%) with triple-negative breast carcinoma. After a median follow-up of 6.2 years, 56 and 35 patients experienced recurrence and death, respectively. The 5y-RFS rate was 86%. In multivariable analyses, high TMTV (>20 cm3) and high SLR (>0.76) were associated with shorter 5y-RFS (HR 2.4, 95%CI 1.3-4.5, and HR 1.9, 95%CI 1.0-3.6). In logistic regression, high SLR was the only independent factor associated with low stromal TILs (OR 2.8, 95%CI 1.4-5.7). CONCLUSION High total metabolic tumor volume and high spleen glucose metabolism on baseline [18F]-FDG PET/CT were associated with poor 5y-RFS after surgical resection in patients with breast cancer of NST. Spleen metabolism was inversely correlated with stromal TILs and might be a surrogate for an immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Romain-David Seban
- Department of Nuclear Medicine, Institut Curie, 92210, Saint-Cloud, France. .,Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm U1288, PSL Research University, Institut Curie, 91400, Orsay, France.
| | - Roman Rouzier
- Department of Surgery, Institut Curie, PSL Research University, 75005 Paris &, 92210, Saint-Cloud, France
| | - Aurelien Latouche
- Bioinformatics and Computational Systems Biology of Cancer, PSL Research University, Mines Paris Tech, INSERM U900, 75005, Paris, France.,Conservatoire national des arts et métiers, Paris, France
| | - Nicolas Deleval
- Department of Nuclear Medicine, Institut Curie, 92210, Saint-Cloud, France
| | | | - Irene Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm U1288, PSL Research University, Institut Curie, 91400, Orsay, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Institut Curie, PSL Research University, 75005 Paris &, 92210, Saint-Cloud, France.,Circulating Tumor Biomarkers Laboratory, SiRIC, Institut Curie, PSL Research University, Paris, France
| | - Laurence Champion
- Department of Nuclear Medicine, Institut Curie, 92210, Saint-Cloud, France.,Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm U1288, PSL Research University, Institut Curie, 91400, Orsay, France
| |
Collapse
|
39
|
Ayati N, Sadeghi R, Kiamanesh Z, Lee ST, Zakavi SR, Scott AM. The value of 18F-FDG PET/CT for predicting or monitoring immunotherapy response in patients with metastatic melanoma: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2021; 48:428-448. [PMID: 32728798 DOI: 10.1007/s00259-020-04967-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/19/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE To investigate the ability of 18F-FDG PET/CT to assess the response of patients with metastatic melanoma to immunotherapy. METHODS A comprehensive search of the literature for studies examining the prognostic value of 18F-FDG PET/CT in monitoring the response of patients with metastatic melanoma to immunotherapy was performed. We also screened the references of the selected articles to identify any other relevant studies. Detailed data were extracted and categorized. Comprehensive meta-analysis software was used for analysis. RESULTS Twenty four eligible articles were included in the systematic review. Based on the baseline 18F-FDG PET/CT imaging, the pooled hazard ratios of MTV, SLR, SUV/SULmax, SUV/SULpeak, and TLG for overall survival (OS) were 1.777 (95%CI: 1.389-2.275, p < 0.001), 3.425 (95%CI: 1.707-6.869, p = 0.001), 0.941 (95%CI: 0.599-1.477, p = 0.791), 1.704 (95%CI: 1.253-2.316, p = 0.016), and 1.755 (95%CI: 1.315-2.342, p < 0.001), respectively. The conventional and modified response assessment criteria exhibited a pooled sensitivity of 64% (95%CI: 46-79%) and 94% (95%CI: 81-99%) and a pooled specificity of 80% (95%CI: 59-93%) and 84% (95%CI: 64-95%), respectively, for the early 18F-FDG PET/CT scan. On the other hand, based on the late 18F-FDG PET/CT scan, the pooled sensitivity of 67% (95%CI: 35-90%) and 92% (95%CI: 73-99%) and pooled specificity of 77% (95%CI: 56-91%) and 76% (95%CI: 50-93%) were observed for the conventional and modified criteria, respectively. PET-detectable immune-related adverse events (irAEs) were associated with the response to therapy. CONCLUSIONS The baseline SUVpeak, MTV, and TLG parameters represent promising predictors of the final response of metastatic melanoma patients to immunotherapy. Modified response assessment criteria are potentially an appropriate method for monitoring immunotherapy. irAEs are also valuable for predicting eventual clinical benefit of treatment.
Collapse
Affiliation(s)
- Narjess Ayati
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute; and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Sadeghi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Kiamanesh
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sze Ting Lee
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, 3084, Australia
- Olivia Newton-John Cancer Research Institute; and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - S Rasoul Zakavi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Andrew M Scott
- Department of Molecular Imaging & Therapy, Austin Health, 145 Studley Road, Heidelberg, Victoria, 3084, Australia.
- Olivia Newton-John Cancer Research Institute; and School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia.
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
40
|
Hindié E. Metastatic melanoma: can FDG-PET predict success of anti-PD-1 therapy and help determine when it can be discontinued? Eur J Nucl Med Mol Imaging 2021; 47:2227-2232. [PMID: 32322914 DOI: 10.1007/s00259-020-04826-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Elif Hindié
- Department of Nuclear Medicine, Bordeaux University and Hospitals, Bordeaux, France. .,Hôpital Haut-Lévêque, Avenue Magellan, 33604, Pessac, France.
| |
Collapse
|
41
|
Prigent K, Lasnon C, Ezine E, Janson M, Coudrais N, Joly E, Césaire L, Stefan A, Depontville M, Aide N. Assessing immune organs on 18F-FDG PET/CT imaging for therapy monitoring of immune checkpoint inhibitors: inter-observer variability, prognostic value and evolution during the treatment course of melanoma patients. Eur J Nucl Med Mol Imaging 2021; 48:2573-2585. [PMID: 33432374 DOI: 10.1007/s00259-020-05103-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have significantly improved survival in advanced melanoma. There is a need for robust biomarkers to identify patients who do not respond. We analysed 14 baseline 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) metrics and their evolution to assess their correlation with patient outcome, compared with 7 established biological markers and 7 clinical variables. METHODS We conducted a retrospective monocentric observational study of 29 patients with advanced melanoma who underwent baseline 18F-FDG PET/CT, followed by an early monitoring PET/CT (iPET) scan after 1 month of treatment and follow-up studies at 3rd (M3PET) and 6th month (M6PET). 18F-FDG uptake in immune organs (spleen, bone marrow, ileocecal valve) and derived spleen-to-liver (SLR) and bone-to-liver (BLR) ratios were reviewed by two PET readers for reproducibility analysis purposes including 14 PET variables. The most reproducible indexes were used for evaluation as predictors of overall survival (OS) in comparison with PET response using imPERCIST5, whole-body metabolic active tumour volume (WB-MATV) and biological parameters (lactate dehydrogenases (LDH), reactive protein c (CRP), white blood count (WBC), absolute lymphocyte count (ALC), neutrophil to lymphocyte ratio (NLR) and derived neutrophils to lymphocyte ratio). RESULTS Strong reproducibility's (intraclass coefficients of correlation (ICC) > 0.90) were observed for spleen anterior SUVpeak, spleen MV, spleen TLG, spleen length and BLRmean. ICC for SLRmean and ileocecal SUVmean were 0.86 and 0.65, respectively. In the 1-year OS 1 group, SLRmean tended to increase at each time point to reach a significant difference at M6-PET (p = 0.019). The same trends were observed with spleen SUVpeak anterior and spleen length. In the 1-year OS 0 group, a significative increase of spleen length was found at iPET, as compared with baseline PET (p = 0.014) and M3-PET (p = 0.0239). Univariable Kaplan-Meier survival analysis found that i%var spleen length, M3%var SLRmean, baseline LDH, i%var NLR and response at M6PET were all predictors of 1-year OS. CONCLUSIONS SLRmean is recommended as a prognosticator in melanoma patients under immunotherapy: its increase greater than 25% at 3 months, compared with baseline, was associated with poor outcome after ICIs.
Collapse
Affiliation(s)
- Kevin Prigent
- Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France
| | - Charline Lasnon
- Nuclear Medicine Department, François Baclesse Cancer Centre, Caen, France
| | - Emilien Ezine
- Dermatology Department, University Hospital, Caen, France
| | | | - Nicolas Coudrais
- Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France
| | - Elisa Joly
- Dermatology Department, University Hospital, Caen, France
| | - Laure Césaire
- Dermatology Department, University Hospital, Caen, France
| | - Andrea Stefan
- Dermatology Department, University Hospital, Caen, France
| | | | - Nicolas Aide
- Nuclear Medicine Department, University Hospital, Avenue Côte de Nacre, 14000, Caen, France. .,Normandy University, Caen, France.
| |
Collapse
|
42
|
Spleen glucose metabolism on [ 18F]-FDG PET/CT: a dynamic double-edged biomarker predicting outcome in cancer patients. Eur J Nucl Med Mol Imaging 2021; 48:2309-2311. [PMID: 33420612 DOI: 10.1007/s00259-020-05126-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
|
43
|
Girard A, Vila Reyes H, Dercle L, Rouanne M. "Future role of [18F]-FDG PET/CT in patients with bladder cancer in the new era of neoadjuvant immunotherapy?". Urol Oncol 2020; 39:139-141. [PMID: 33353865 DOI: 10.1016/j.urolonc.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France.
| | - Helena Vila Reyes
- Department of Urology, New York Presbyterian Hospital - Columbia University Medical Center, New York, NY
| | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital - Columbia University Medical Center, New York, NY
| | - Mathieu Rouanne
- Department of Urology, Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Suresnes, France
| |
Collapse
|
44
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
45
|
Lang D, Wahl G, Poier N, Graf S, Kiesl D, Lamprecht B, Gabriel M. Impact of PET/CT for Assessing Response to Immunotherapy-A Clinical Perspective. J Clin Med 2020; 9:jcm9113483. [PMID: 33126715 PMCID: PMC7694130 DOI: 10.3390/jcm9113483] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Cancer immunotherapy using immune-checkpoint inhibitors (ICI) has revolutionized the therapeutic landscape of various malignancies like non-small-cell lung cancer or melanoma. Pre-therapy response prediction and assessment during ICI treatment is challenging due to the lack of reliable biomarkers and the possibility of atypical radiological response patterns. Positron emission tomography/computed tomography (PET/CT) enables the visualization and quantification of metabolic lesion activity additional to conventional CT imaging. Various biomarkers derived from PET/CT have been reported as predictors for response to ICI and may aid to overcome the challenges clinicians currently face in the management of ICI-treated patients. In this narrative review, experts in nuclear medicine, thoracic oncology, dermatooncology, hemato- and internal oncology, urological and head/neck tumors performed literature reviews in their respective field and a joint discussion on the use of PET/CT in the context of ICI treatment. The aims were to give a clinical overview on present standards and evidence, to identify current challenges and fields of research and to enable an outlook to future developments and their possible implications. Multiple promising studies concerning ICI response assessment or prediction using biomarkers derived from PET/CT alone or as composite biomarkers have been identified for various malignancies and disease stages. Of interest, additional major incentives in the field may evolve from novel tracers specifically targeting immune-checkpoint molecules which could allow not only response assessment and prognosis, but also visualization of histological tumor cell properties like programmed death-ligand (PD-L1) expression in vivo. Despite the broad range of existing literature on PET/CT-derived biomarkers in ICI therapy, implications for daily clinical practice remain elusive. High-quality prospective data are urgently warranted to determine whether patients benefit from the application of PET/CT in terms of prognosis. At the moment, the lack of such evidence as well as the absence of standardized imaging methods and biomarkers still precludes PET/CT imaging to be included in the relevant clinical practice guidelines.
Collapse
Affiliation(s)
- David Lang
- Department of Pulmonology Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (D.L.); (B.L.)
| | - Gerald Wahl
- Department of Dermatology and Venerology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria;
| | - Nikolaus Poier
- Department of Otorhinolaryngology, Head and Neck Surgery, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria;
| | - Sebastian Graf
- Department of Urology and Andrology, Johannes Kepler University Hospital Linz Krankenhausstrasse 9, 4020 Linz, Austria;
| | - David Kiesl
- University Clinic of Hematology and Internal Oncology Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria;
| | - Bernd Lamprecht
- Department of Pulmonology Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria; (D.L.); (B.L.)
| | - Michael Gabriel
- Institute of Nuclear Medicine and Endocrinology, Johannes Kepler University Hospital Linz, Krankenhausstrasse 9, 4020 Linz, Austria
- Correspondence: ; Tel.: +43-5-7680-83-6166; Fax: +43-5-7680-83-6165
| |
Collapse
|
46
|
van Sluis J, de Heer EC, Boellaard M, Jalving M, Brouwers AH, Boellaard R. Clinically feasible semi-automatic workflows for measuring metabolically active tumour volume in metastatic melanoma. Eur J Nucl Med Mol Imaging 2020; 48:1498-1510. [PMID: 33099667 PMCID: PMC8113298 DOI: 10.1007/s00259-020-05068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Purpose Metabolically active tumour volume (MATV) is a potential quantitative positron emission tomography (PET) imaging biomarker in melanoma. Accumulating data indicate that low MATV may predict increased chance of response to immunotherapy and overall survival. However, metastatic melanoma can present with numerous (small) tumour lesions, making manual tumour segmentation time-consuming. The aim of this study was to evaluate multiple semi-automatic segmentation workflows to determine reliability and reproducibility of MATV measurements in patients with metastatic melanoma. Methods An existing cohort of 64 adult patients with histologically proven metastatic melanoma was used in this study. 18F-FDG PET/CT diagnostic baseline images were acquired using a European Association of Nuclear Medicine (EANM) Research Limited–accredited Siemens Biograph mCT PET/CT system (Siemens Healthineers, Knoxville, USA). PET data were analysed using manual, gradient-based segmentation and five different semi-automatic methods: three direct PET image–derived delineations (41MAX, A50P and SUV40) and two based on a majority-vote approach (MV2 and MV3), without and with (suffix ‘+’) manual lesion addition. Correlation between the different segmentation methods and their respective associations with overall survival was assessed. Results Correlation between the MATVs derived by the manual segmentation and semi-automated tumour segmentations ranged from R2 = 0.41 for A50P to R2 = 0.85 for SUV40+ and MV2+, respectively. Manual MATV segmentation did not differ significantly from the semi-automatic methods SUV40 (∆MATV mean ± SD 0.08 ± 0.60 mL, P = 0.303), SUV40+ (∆MATV − 0.10 ± 0.51 mL, P = 0.126), MV2+ (∆MATV − 0.09 ± 0.62 mL, P = 0.252) and MV3+ (∆MATV − 0.03 ± 0.55 mL, P = 0.615). Log-rank tests showed statistically significant overall survival differences between above and below median MATV patients for all segmentation methods with areas under the ROC curves of 0.806 for manual segmentation and between 0.756 [41MAX] and 0.807 [MV3+] for semi-automatic segmentations. Conclusions Simple and fast semi-automated FDG PET segmentation workflows yield accurate and reproducible MATV measurements that correlate well with manual segmentation in metastatic melanoma. The most readily applicable and user-friendly SUV40 method allows feasible MATV measurement in prospective multicentre studies required for validation of this potential PET imaging biomarker for clinical use. Electronic supplementary material The online version of this article (10.1007/s00259-020-05068-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Ellen C de Heer
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Mayke Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Mathilde Jalving
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands. .,Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Cancer Center Amsterdam UMC, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
47
|
García-Figueiras R, Baleato-González S, Luna A, Muñoz-Iglesias J, Oleaga L, Vallejo Casas JA, Martín-Noguerol T, Broncano J, Areses MC, Vilanova JC. Assessing Immunotherapy with Functional and Molecular Imaging and Radiomics. Radiographics 2020; 40:1987-2010. [PMID: 33035135 DOI: 10.1148/rg.2020200070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy is changing the treatment paradigm for cancer and has introduced new challenges in medical imaging. Because not all patients benefit from immunotherapy, pretreatment imaging should be performed to identify not only prognostic factors but also factors that allow prediction of response to immunotherapy. Follow-up studies must allow detection of nonresponders, without confusion of pseudoprogression with real progression to prevent premature discontinuation of treatment that can benefit the patient. Conventional imaging techniques and classic tumor response criteria are limited for the evaluation of the unusual patterns of response that arise from the specific mechanisms of action of immunotherapy, so advanced imaging methods must be developed to overcome these shortcomings. The authors present the fundamentals of the tumor immune microenvironment and immunotherapy and how they influence imaging findings. They also discuss advances in functional and molecular imaging techniques for the assessment of immunotherapy in clinical practice, including their use to characterize immune phenotypes, assess patient prognosis and response to therapy, and evaluate immune-related adverse events. Finally, the development of radiomics and radiogenomics in these therapies and the future role of imaging biomarkers for immunotherapy are discussed. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Sandra Baleato-González
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Antonio Luna
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - José Muñoz-Iglesias
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Laura Oleaga
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Juan Antonio Vallejo Casas
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Teodoro Martín-Noguerol
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Jordi Broncano
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - María Carmen Areses
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| | - Joan C Vilanova
- From the Department of Radiology, Oncologic Imaging, Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706, Santiago de Compostela, Spain (R.G.F., S.B.G.); Department of Radiology, HT Medica, Jaén, Spain (A.L, J.B.); Department of Nuclear Medicine, Complexo Hospitalario Universitario de Vigo, Vigo, Spain (J.M.I.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.); Unidad de Gestión Clínica de Medicina Nuclear, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain (J.A.V.C.); MRI Unit, HT Medica, Jaén, Spain (T.M.N.); Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain (M.C.A.); and Department of Radiology, Clínica Girona, Institute of Diagnostic Imaging, Girona, Spain (J.C.V.)
| |
Collapse
|
48
|
Girard A, Vila Reyes H, Shaish H, Grellier JF, Dercle L, Salaün PY, Delcroix O, Rouanne M. The Role of 18F-FDG PET/CT in Guiding Precision Medicine for Invasive Bladder Carcinoma. Front Oncol 2020; 10:565086. [PMID: 33117695 PMCID: PMC7574640 DOI: 10.3389/fonc.2020.565086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common cancer worldwide. Approximately one quarter of patients with BC have muscle-invasive disease (MIBC). Muscle-invasive disease carries a poor prognosis and choosing the optimal treatment option is critical to improve patients’ outcomes. Ongoing research supports the role of 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18F-FDG PET) in guiding patient-specific management decisions throughout the course of MIBC. As an imaging modality, 18F-FDG PET is acquired simultaneously with either computed tomography (CT) or MRI to offer a hybrid approach combining anatomical and metabolic information that complement each other. At initial staging, 18F-FDG PET/CT enhances the detection of extravesical disease, particularly in patients classified as oligometastatic by conventional imaging. 18F-FDG PET/CT has value in monitoring response to neoadjuvant and systemic chemotherapy, as well as in localizing relapse after treatment. In the new era of immunotherapy, 18F-FDG PET/CT may also be useful to monitor treatment efficacy as well as to detect immune-related adverse events. With the advent of artificial intelligence techniques such as radiomics and deep learning, these hybrid medical images can be mined for quantitative data, providing incremental value over current standard-of-care clinical and biological data. This approach has the potential to produce a major paradigm shift toward data-driven precision medicine with the ultimate goal of personalized medicine. In this review, we highlight current literature reporting the role of 18F-FDG PET in supporting personalized management decisions for patients with MIBC. Specific topics reviewed include the incremental value of 18F-FDG PET in prognostication, pre-operative planning, response assessment, prediction of recurrence, and diagnosing drug toxicity.
Collapse
Affiliation(s)
- Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, Rennes, France
| | - Helena Vila Reyes
- Department of Urology, Columbia University Irving Medical Center - New York Presbyterian Hospital, New York, NY, United States
| | - Hiram Shaish
- Department of Radiology, Columbia University Medical Center, New York, NY, United States
| | | | - Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital - Columbia University Medical Center, New York, NY, United States
| | - Pierre-Yves Salaün
- Department of Nuclear Medicine, Centre Hospitalier Régional Universitaire de Brest, Brest cedex, France
| | - Olivier Delcroix
- Department of Nuclear Medicine, Centre Hospitalier Régional Universitaire de Brest, Brest cedex, France
| | - Mathieu Rouanne
- Department of Urology, Hôpital Foch, Université Versailles-Saint-Quentin-en-Yvelines, Université Paris-Saclay, Suresnes, France
| |
Collapse
|
49
|
Association of the Metabolic Score Using Baseline FDG-PET/CT and dNLR with Immunotherapy Outcomes in Advanced NSCLC Patients Treated with First-Line Pembrolizumab. Cancers (Basel) 2020; 12:cancers12082234. [PMID: 32785166 PMCID: PMC7463532 DOI: 10.3390/cancers12082234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Background: We aimed to assess the clinical utility of a previously published score combining the total metabolic tumor volume (TMTV) on baseline FDG-PET/CT and pretreatment derived from the neutrophils to lymphocytes ratio (dNLR) for prognostication in NSCLC patients undergoing first-line immunotherapy (IT). Methods: In this multicenter retrospective study, 63 advanced NSCLC patients with a PD-L1 tumor proportion score (TPS) ≥50%, who underwent FDG-PET/CT before first-line IT, treated from January 2017 to September 2019, were enrolled. Associations between this score and the progression-free survival (PFS), overall survival (OS), disease control rate (DCR), and overall response rate (ORR) were evaluated. Results: The median (m) PFS and mOS were 7.7 (95% CI 4.9–10.6) and 12.1 (8.6–15.6) months, respectively, and DCR and ORR were 65% and 58%, respectively. mOS was 17.9 months (14.6 not reached) for the good group versus 13.8 (95%CI 8.4–18.9) and 6.6 (CI 2.0–11.2) months for the intermediate and poor groups, respectively. mPFS was 15.1 (95%CI 12.1–20.0) months for the good group versus 5.2 (1.9–8.5) and 1.9 (95%CI 1.3–2.5) months for the intermediate and poor groups, respectively. The poor prognosis group was associated with DCR and ORR (p < 0.05). Conclusions: The metabolic score combining TMTV on the baseline FDG-PET/CT scan and pretreatment dNLR was associated with the survival and response in a cohort of advanced NSCLC patients with ≥50% PD-L1 receiving frontline IT.
Collapse
|
50
|
Donegani MI, Ferrarazzo G, Marra S, Miceli A, Raffa S, Bauckneht M, Morbelli S. Positron Emission Tomography-Based Response to Target and Immunotherapies in Oncology. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:373. [PMID: 32722205 PMCID: PMC7466359 DOI: 10.3390/medicina56080373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) is a promising tool to support the evaluation of response to either target therapies or immunotherapy with immune checkpoint inhibitors both in clinical trials and, in selected patients, at the single patient's level. The present review aims to discuss available evidence related to the use of [18F]FDG PET (Positron Emission Tomography) to evaluate the response to target therapies and immune checkpoint inhibitors. Criteria proposed for the standardization of the definition of the PET-based response and complementary value with respect to morphological imaging are commented on. The use of PET-based assessment of the response through metabolic pathways other than glucose metabolism is also relevant in the framework of personalized cancer treatment. A brief discussion of the preliminary evidence for the use of non-FDG PET tracers in the evaluation of the response to new therapies is also provided.
Collapse
Affiliation(s)
- Maria Isabella Donegani
- Nuclear Medicine Unit, Department of Health SciencesUniversity of Genoa, 16132 Genoa, Italy; (M.I.D.); (G.F.); (S.M.); (A.M.); (S.R.); (M.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giulia Ferrarazzo
- Nuclear Medicine Unit, Department of Health SciencesUniversity of Genoa, 16132 Genoa, Italy; (M.I.D.); (G.F.); (S.M.); (A.M.); (S.R.); (M.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Stefano Marra
- Nuclear Medicine Unit, Department of Health SciencesUniversity of Genoa, 16132 Genoa, Italy; (M.I.D.); (G.F.); (S.M.); (A.M.); (S.R.); (M.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alberto Miceli
- Nuclear Medicine Unit, Department of Health SciencesUniversity of Genoa, 16132 Genoa, Italy; (M.I.D.); (G.F.); (S.M.); (A.M.); (S.R.); (M.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Stefano Raffa
- Nuclear Medicine Unit, Department of Health SciencesUniversity of Genoa, 16132 Genoa, Italy; (M.I.D.); (G.F.); (S.M.); (A.M.); (S.R.); (M.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Unit, Department of Health SciencesUniversity of Genoa, 16132 Genoa, Italy; (M.I.D.); (G.F.); (S.M.); (A.M.); (S.R.); (M.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, Department of Health SciencesUniversity of Genoa, 16132 Genoa, Italy; (M.I.D.); (G.F.); (S.M.); (A.M.); (S.R.); (M.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|