1
|
Tripathi D, Hardaniya M, Pande S, Maity D. Advances in Optical Contrast Agents for Medical Imaging: Fluorescent Probes and Molecular Imaging. J Imaging 2025; 11:87. [PMID: 40137199 PMCID: PMC11942650 DOI: 10.3390/jimaging11030087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025] Open
Abstract
Optical imaging is an excellent non-invasive method for viewing visceral organs. Most importantly, it is safer as compared to ionizing radiation-based methods like X-rays. By making use of the properties of photons, this technique generates high-resolution images of cells, molecules, organs, and tissues using visible, ultraviolet, and infrared light. Moreover, optical imaging enables real-time evaluation of soft tissue properties, metabolic alterations, and early disease markers in real time by utilizing a variety of techniques, including fluorescence and bioluminescence. Innovative biocompatible fluorescent probes that may provide disease-specific optical signals are being used to improve diagnostic capabilities in a variety of clinical applications. However, despite these promising advancements, several challenges remain unresolved. The primary obstacle includes the difficulty of developing efficient fluorescent probes, and the tissue autofluorescence, which complicates signal detection. Furthermore, the depth penetration restrictions of several imaging modalities limit their use in imaging of deeper tissues. Additionally, enhancing biocompatibility, boosting fluorescent probe signal-to-noise ratios, and utilizing cutting-edge imaging technologies like machine learning for better image processing should be the main goals of future research. Overcoming these challenges and establishing optical imaging as a fundamental component of modern medical diagnoses and therapeutic treatments would require cooperation between scientists, physicians, and regulatory bodies.
Collapse
Affiliation(s)
- Divya Tripathi
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Mayurakshi Hardaniya
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Suchita Pande
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Dipak Maity
- Integrated Nanosystems Development Institute, Indiana University, Indianapolis, IN 46202, USA
- Department of Chemistry and Chemical Biology, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Martinelli S, Fortuna L, Coratti F, Passagnoli F, Amedei A, Cianchi F. Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer. Cancers (Basel) 2024; 16:4141. [PMID: 39766041 PMCID: PMC11675003 DOI: 10.3390/cancers16244141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract associated with high mortality rates and accounting for approximately 1 million new cases diagnosed annually. Surgery, particularly radical gastrectomy, remains the primary treatment; however, there are currently no specific approaches to better distinguish malignant from healthy tissue or to differentiate between metastatic and non-metastatic lymph nodes. As a result, surgeons have to remove all lymph nodes indiscriminately, increasing intraoperative risks for patients and prolonging hospital stay. Near-infrared fluorescence imaging with indocyanine green (ICG) can provide real-time visualization of the surgical field using both conventional laparoscopy and robotic mini-invasive precision surgery platforms. However, its application shows some limits, as ICG is a non-targeted contrast agent. Several studies are now investigating the potential efficacy of fluorescent targeted agents that could selectively bind to the tumor tissue, offering a valuable tool for metastatic mapping during robotic gastrectomy. This review aims to summarize the key fluorescent agents that have been developed to recognize GC markers, as well as those targeting the tumor microenvironment (TME) and metabolic features. These agents hold great potential as valuable tools for enhancing precision surgery in robotic gastrectomy procedures improving the clinical recovery of GC patients.
Collapse
Affiliation(s)
- Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Laura Fortuna
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Francesco Coratti
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Federico Passagnoli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50134 Florence, Italy
| | - Fabio Cianchi
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy; (L.F.); (F.C.); (F.P.); (A.A.); (F.C.)
| |
Collapse
|
3
|
Hitchcock CL, Chapman GJ, Mojzisik CM, Mueller JK, Martin EW. A Concept for Preoperative and Intraoperative Molecular Imaging and Detection for Assessing Extent of Disease of Solid Tumors. Oncol Rev 2024; 18:1409410. [PMID: 39119243 PMCID: PMC11306801 DOI: 10.3389/or.2024.1409410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/28/2024] [Indexed: 08/10/2024] Open
Abstract
The authors propose a concept of "systems engineering," the approach to assessing the extent of diseased tissue (EODT) in solid tumors. We modeled the proof of this concept based on our clinical experience with colorectal carcinoma (CRC) and gastrinoma that included short and long-term survival data of CRC patients. This concept, applicable to various solid tumors, combines resources from surgery, nuclear medicine, radiology, pathology, and oncology needed for preoperative and intraoperative assessments of a patient's EODT. The concept begins with a patient presenting with biopsy-proven cancer. An appropriate preferential locator (PL) is a molecule that preferentially binds to a cancer-related molecular target (i.e., tumor marker) lacking in non-malignant tissue and is the essential element. Detecting the PL after an intravenous injection requires the PL labeling with an appropriate tracer radionuclide, a fluoroprobe, or both. Preoperative imaging of the tracer's signal requires molecular imaging modalities alone or in combination with computerized tomography (CT). These include positron emission tomography (PET), PET/CT, single-photon emission computed tomography (SPECT), SPECT/CT for preoperative imaging, gamma cameras for intraoperative imaging, and gamma-detecting probes for precise localization. Similarly, fluorescent-labeled PLs require appropriate cameras and probes. This approach provides the surgeon with real-time information needed for R0 resection.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Actis Medical, LLC, Powell, OH, United States
| | - Gregg J. Chapman
- Actis Medical, LLC, Powell, OH, United States
- Department of Electrical and Computer Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | | | | | - Edward W. Martin
- Actis Medical, LLC, Powell, OH, United States
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Cressoni C, Malandra S, Milan E, Boschi F, Nicolato E, Negri A, Veccia A, Bontempi P, Mangiameli D, Pietrobono S, Melisi D, Marzola P, Antonelli A, Speghini A. Injectable Thermogelling Nanostructured Ink as Simultaneous Optical and Magnetic Resonance Imaging Contrast Agent for Image-Guided Surgery. Biomacromolecules 2024; 25:3741-3755. [PMID: 38783486 DOI: 10.1021/acs.biomac.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of efficient and biocompatible contrast agents is particularly urgent for modern clinical surgery. Nanostructured materials raised great interest as contrast agents for different imaging techniques, for which essential features are high contrasts, and in the case of precise clinical surgery, minimization of the signal spatial dispersion when embedded in biological tissues. This study deals with the development of a multimodal contrast agent based on an injectable hydrogel nanocomposite containing a lanthanide-activated layered double hydroxide coupled to a biocompatible dye (indocyanine green), emitting in the first biological window. This novel nanostructured thermogelling hydrogel behaves as an efficient tissue marker for optical and magnetic resonance imaging because the particular formulation strongly limits its spatial diffusion in biological tissue by exploiting a simple injection. The synergistic combination of these properties permits to employ the hydrogel ink simultaneously for both optical and magnetic resonance imaging, easy monitoring of the biological target, and, at the same time, increasing the spatial resolution during a clinical surgery. The biocompatibility and excellent performance as contrast agents are very promising for possible use in image-guided surgery, which is currently one of the most challenging topics in clinical research.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Sarah Malandra
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Emil Milan
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Elena Nicolato
- Centre of Tecnological Platforms, University of Verona, Strada le Grazie 8, 37134 Verona, Italy
| | - Alessandro Negri
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alessandro Veccia
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Pietro Bontempi
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Domenico Mangiameli
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Silvia Pietrobono
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Davide Melisi
- Department of Medicine, University of Verona, Piazzale Ludovico Antonio Scuro 10, 37124 Verona, Italy
| | - Pasquina Marzola
- Department of Engineering for Innovation Medicine, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Alessandro Antonelli
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Urology Unit, University of Verona, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), P.le A. Stefani 1, 37126 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials Research Group, Department of Biotechnology and INSTM, RU of Verona, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
5
|
van Dam MA, Bijlstra OD, Faber RA, Warmerdam MI, Achiam MP, Boni L, Cahill RA, Chand M, Diana M, Gioux S, Kruijff S, Van der Vorst JR, Rosenthal RJ, Polom K, Vahrmeijer AL, Mieog JSD. Consensus conference statement on fluorescence-guided surgery (FGS) ESSO course on fluorescence-guided surgery. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:107317. [PMID: 38104355 DOI: 10.1016/j.ejso.2023.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Fluorescence-guided surgery (FGS) has emerged as an innovative technique with promising applications in various surgical specialties. However, clinical implementation is hampered by limited availability of evidence-based reference work supporting the translation towards standard-of-care use in surgical practice. Therefore, we developed a consensus statement on current applications of FGS. METHODS During an international FGS course, participants anonymously voted on 36 statements. Consensus was defined as agreement ≥70% with participation grade of ≥80%. All participants of the questionnaire were stratified for user and handling experience within five domains of applicability (lymphatics & lymph node imaging; tissue perfusion; biliary anatomy and urinary tracts; tumor imaging in colorectal, HPB, and endocrine surgery, and quantification and (tumor-) targeted imaging). Results were pooled to determine consensus for each statement within the respective sections based on the degree of agreement. RESULTS In total 43/52 (81%) course participants were eligible as voting members for consensus, comprising the expert panel (n = 12) and trained users (n = 31). Consensus was achieved in 17 out of 36 (45%) statements with highest level of agreement for application of FGS in tissue perfusion and biliary/urinary tract visualization (71% and 67%, respectively) and lowest within the tumor imaging section (0%). CONCLUSIONS FGS is currently established for tissue perfusion and vital structure imaging. Lymphatics & lymph node imaging in breast cancer and melanoma are evolving, and tumor tissue imaging holds promise in early-phase trials. Quantification and (tumor-)targeted imaging are advancing toward clinical validation. Additional research is needed for tumor imaging due to a lack of consensus.
Collapse
Affiliation(s)
- M A van Dam
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - O D Bijlstra
- Department of Surgery, Leiden University Medical Center, the Netherlands; Department of Surgery, Amsterdam University Medical Centers, the Netherlands
| | - R A Faber
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - M I Warmerdam
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - M P Achiam
- Department of Surgery and Transplantation, Copenhagen University Hospital Rigshospitalet, Denmark
| | - L Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - R A Cahill
- Department of Surgery, UCD Centre for Precision Surgery, University College Dublin, Ireland
| | - M Chand
- Division of Surgery and Interventional Sciences, University College London, London, UK
| | - M Diana
- IRCAD, Research Institute Against Digestive Cancer, Strasbourg, France
| | - S Gioux
- Intuitive Surgical, Aubonne, Switzerland
| | - S Kruijff
- Department of Surgical Oncology, University Medical Center Groningen, the Netherlands; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, the Netherlands
| | - J R Van der Vorst
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | | | - K Polom
- The Academy of Applied Medical and Social Sciences, Lotnicza 2, Elblag, Poland; Gastrointestinal Surgical Oncology Department, Greater Poland Cancer Centre, Garbary 15, Poznan, Poland
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, the Netherlands
| | - J S D Mieog
- Department of Surgery, Leiden University Medical Center, the Netherlands.
| |
Collapse
|
6
|
Sutton PA, van Dam MA, Cahill RA, Mieog S, Polom K, Vahrmeijer AL, van der Vorst J. Fluorescence-guided surgery: comprehensive review. BJS Open 2023; 7:7162090. [PMID: 37183598 PMCID: PMC10183714 DOI: 10.1093/bjsopen/zrad049] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Despite significant improvements in preoperative workup and surgical planning, surgeons often rely on their eyes and hands during surgery. Although this can be sufficient in some patients, intraoperative guidance is highly desirable. Near-infrared fluorescence has been advocated as a potential technique to guide surgeons during surgery. METHODS A literature search was conducted to identify relevant articles for fluorescence-guided surgery. The literature search was performed using Medical Subject Headings on PubMed for articles in English until November 2022 and a narrative review undertaken. RESULTS The use of invisible light, enabling real-time imaging, superior penetration depth, and the possibility to use targeted imaging agents, makes this optical imaging technique increasingly popular. Four main indications are described in this review: tissue perfusion, lymph node assessment, anatomy of vital structures, and tumour tissue imaging. Furthermore, this review provides an overview of future opportunities in the field of fluorescence-guided surgery. CONCLUSION Fluorescence-guided surgery has proven to be a widely innovative technique applicable in many fields of surgery. The potential indications for its use are diverse and can be combined. The big challenge for the future will be in bringing experimental fluorophores and conjugates through trials and into clinical practice, as well as validation of computer visualization with large data sets. This will require collaborative surgical groups focusing on utility, efficacy, and outcomes for these techniques.
Collapse
Affiliation(s)
- Paul A Sutton
- The Colorectal and Peritoneal Oncology Centre, Christie Hospital, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Martijn A van Dam
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ronan A Cahill
- RAC, UCD Centre for Precision Surgery, University College Dublin, Dublin, Ireland
- RAC, Department of Surgery, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Sven Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Karol Polom
- Clinic of Oncological, Transplantation and General Surgery, Gdansk Medical University, Gdansk, Poland
| | | | - Joost van der Vorst
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Wei X, Huang J, Zhang C, Xu C, Pu K, Zhang Y. Highly Bright Near-Infrared Chemiluminescent Probes for Cancer Imaging and Laparotomy. Angew Chem Int Ed Engl 2023; 62:e202213791. [PMID: 36579889 DOI: 10.1002/anie.202213791] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Near-infrared (NIR) chemiluminescence imaging holds potential for sensitive imaging of cancer due to its low background; however, few NIR chemiluminophores are available, which share the drawback of low chemiluminescence quantum yields (ΦCL ). Herein, we report the synthesis of NIR chemiluminophores for cancer imaging and laparotomy. Molecular engineering of the electron-withdrawing group at the para-position of the phenol-dioxetane leads to a highly bright NIR chemiluminophore (DPT), showing the ΦCL (4.6×10-2 Einstein mol-1 ) that is 3 to 5-fold higher than existing NIR chemiluminophores. By caging the phenol group of DPT with a cathepsin B (CatB) responsive moiety, an activatable chemiluminescence probe (DPTCB ) is developed for real-time turn-on detection of deeply buried tumor tissues in living mice. Due to its high brightness, DPTCB permits accurate chemiluminescence-guided laparotomy.
Collapse
Affiliation(s)
- Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Chi Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P.R. China
| |
Collapse
|
8
|
The effect of an evidence-based Tai chi intervention on the fatigue-sleep disturbance-depression symptom cluster in breast cancer patients: A preliminary randomised controlled trial. Eur J Oncol Nurs 2022; 61:102202. [DOI: 10.1016/j.ejon.2022.102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/25/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
|
9
|
Zhang W, Liang X, Zhu L, Zhang X, Jin Z, Du Y, Tian J, Xue H. Optical magnetic multimodality imaging of plectin-1-targeted imaging agent for the precise detection of orthotopic pancreatic ductal adenocarcinoma in mice. EBioMedicine 2022; 80:104040. [PMID: 35525203 PMCID: PMC9079778 DOI: 10.1016/j.ebiom.2022.104040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts. METHODS The PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe3O4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation. FINDINGS PTP-Fe3O4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe3O4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe3O4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe3O4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe3O4-IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes. INTERPRETATION These data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy. FUNDING This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Liang Zhu
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
| | - Xinyu Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
| | - Zhengyu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China; The University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing 100191, China.
| | - Huadan Xue
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China.
| |
Collapse
|
10
|
Van Den Hoven P, Tange F, Van Der Valk J, Nerup N, Putter H, Van Rijswijk C, Van Schaik J, Schepers A, Vahrmeijer A, Hamming J, Van Der Vorst J. Normalization of Time-Intensity Curves for Quantification of Foot Perfusion Using Near-Infrared Fluorescence Imaging With Indocyanine Green. J Endovasc Ther 2022; 30:364-371. [PMID: 35236169 DOI: 10.1177/15266028221081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Near-infrared (NIR) fluorescence imaging using indocyanine green (ICG) is gaining popularity for the quantification of tissue perfusion, including foot perfusion in patients with lower extremity arterial disease (LEAD). However, the absolute fluorescence intensity is influenced by patient-and system-related factors limiting reliable and valid quantification. To enhance the quality of quantitative perfusion assessment using ICG NIR fluorescence imaging, normalization of the measured time-intensity curves seems useful. MATERIALS AND METHODS In this cohort study, the effect of normalization on 2 aspects of ICG NIR fluorescence imaging in assessment of foot perfusion was measured: the repeatability and the region selection. Following intravenous administration of ICG, the NIR fluorescence intensity in both feet was recorded for 10 mins using the Quest Spectrum platform®. The effect of normalization on repeatability was measured in the nontreated foot in patients undergoing unilateral revascularization preprocedural and postprocedural (repeatability group). The effect of normalization on region selection was performed in patients without LEAD (region selection group). Absolute and normalized time-intensity curves were compared. RESULTS Successful ICG NIR fluorescence imaging was performed in 54 patients (repeatability group, n = 38; region selection group, n = 16). For the repeatability group, normalization of the time-intensity curves displayed a comparable inflow pattern for repeated measurements. For the region selection group, the maximum fluorescence intensity (Imax) demonstrated significant differences between the 3 measured regions of the foot (P = .002). Following normalization, the time-intensity curves in both feet were comparable for all 3 regions. CONCLUSION This study shows the effect of normalization of time-intensity curves on both the repeatability and region selection in ICG NIR fluorescence imaging. The significant difference between absolute parameters in various regions of the foot demonstrates the limitation of absolute intensity in interpreting tissue perfusion. Therefore, normalization and standardization of camera settings are essential steps toward reliable and valid quantification of tissue perfusion using ICG NIR fluorescence imaging.
Collapse
Affiliation(s)
- Pim Van Den Hoven
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Floris Tange
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurrian Van Der Valk
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Nikolaj Nerup
- Department of Surgical Gastroenterology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hein Putter
- Department of Medical Statistics, Leiden University Medical Center, Leiden, The Netherlands
| | - Catharina Van Rijswijk
- Department of Interventional Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Van Schaik
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Abbey Schepers
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Alexander Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Hamming
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Van Der Vorst
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Zhang Z, He K, Chi C, Hu Z, Tian J. Intraoperative fluorescence molecular imaging accelerates the coming of precision surgery in China. Eur J Nucl Med Mol Imaging 2022; 49:2531-2543. [PMID: 35230491 PMCID: PMC9206608 DOI: 10.1007/s00259-022-05730-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/13/2022] [Indexed: 02/06/2023]
Abstract
Purpose China has the largest cancer population globally. Surgery is the main choice for most solid cancer patients. Intraoperative fluorescence molecular imaging (FMI) has shown its great potential in assisting surgeons in achieving precise resection. We summarized the typical applications of intraoperative FMI and several new trends to promote the development of precision surgery. Methods The academic database and NIH clinical trial platform were systematically evaluated. We focused on the clinical application of intraoperative FMI in China. Special emphasis was placed on a series of typical studies with new technologies or high-level evidence. The emerging strategy of combining FMI with other modalities was also discussed. Results The clinical applications of clinically approved indocyanine green (ICG), methylene blue (MB), or fluorescein are on the rise in different surgical departments. Intraoperative FMI has achieved precise lesion detection, sentinel lymph node mapping, and lymphangiography for many cancers. Nerve imaging is also exploring to reduce iatrogenic injuries. Through different administration routes, these fluorescent imaging agents provided encouraging results in surgical navigation. Meanwhile, designing new cancer-specific fluorescent tracers is expected to be a promising trend to further improve the surgical outcome. Conclusions Intraoperative FMI is in a rapid development in China. In-depth understanding of cancer-related molecular mechanisms is necessary to achieve precision surgery. Molecular-targeted fluorescent agents and multi-modal imaging techniques might play crucial roles in the era of precision surgery.
Collapse
Affiliation(s)
- Zeyu Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kunshan He
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Computer Science and Beijing Key Lab of Human-Computer Interaction, Institute of Software, Chinese Academy of Sciences, Beijing, China
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Jung HY, Kim B, Jeon MH, Kim Y. Reversible Near-Infrared Fluorescence Photoswitching in Aqueous Media by Diarylethene: Toward High-Accuracy Live Optical Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103523. [PMID: 35023602 DOI: 10.1002/smll.202103523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Fluorescence imaging is an indispensable tool in modern biological research, allowing simple and inexpensive color-coded visualizations of real-time events in living cells and animals, as well as of fixed states of ex vivo specimens. The accuracy of fluorescence imaging in living systems is, however, impeded by autofluorescence, light scattering, and limited penetration depth of light. Nevertheless, the clinical use of fluorescence imaging is expected to grow along with advances in imaging equipment, and will increasingly demand high-accuracy probes to avoid false-positive results in disease detection. To this end, a water-soluble and relatively safe diarylethene (DAE)-based reversible near-infrared (NIR) fluorescence photoswitch for living systems is prepared here. Furthermore, to facilitate excellent switching performance, the photoirradiation results obtained is compared using three different visible light sources to turn on NIR fluorescence through cycloreversion of DAE. While photoswitching using 589 nm light leads to slightly higher cell viability, fluorescence quenching efficiency and fatigue resistance are higher when 532 nm light with low photobleaching is used in both aqueous solution and living systems. The authors anticipate that their reversible NIR fluorescence photoswitch mediated by DAE can be beneficial for fluorescence imaging in aqueous media requiring accurate detection, such as in the autofluorescence-rich living environment.
Collapse
Affiliation(s)
- Hye-Youn Jung
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Boram Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Min Ho Jeon
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Yoonkyung Kim
- Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Bioscience Major, KRIBB School, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| |
Collapse
|
13
|
Sterkenburg AJ, Hooghiemstra WTR, Schmidt I, Ntziachristos V, Nagengast WB, Gorpas D. Standardization and implementation of fluorescence molecular endoscopy in the clinic. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-210302SS-PERR. [PMID: 35170264 PMCID: PMC8847121 DOI: 10.1117/1.jbo.27.7.074704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/19/2022] [Indexed: 05/26/2023]
Abstract
SIGNIFICANCE Near-infrared fluorescence molecular endoscopy (NIR-FME) is an innovative technique allowing for in vivo visualization of molecular processes in hollow organs. Despite its potential for clinical translation, NIR-FME still faces challenges, for example, the lack of consensus in performing quality control and standardization of procedures and systems. This may hamper the clinical approval of the technology by authorities and its acceptance by endoscopists. Until now, several clinical trials using NIR-FME have been performed. However, most of these trials had different study designs, making comparison difficult. AIM We describe the need for standardization in NIR-FME, provide a pathway for setting up a standardized clinical study, and describe future perspectives for NIR-FME. Body: Standardization is challenging due to many parameters. Invariable parameters refer to the hardware specifications. Variable parameters refer to movement or tissue optical properties. Phantoms can be of aid when defining the influence of these variables or when standardizing a procedure. CONCLUSION There is a need for standardization in NIR-FME and hurdles still need to be overcome before a widespread clinical implementation of NIR-FME can be realized. When these hurdles are overcome, clinical outcomes can be compared and systems can be benchmarked, enabling clinical implementation.
Collapse
Affiliation(s)
- Andrea J. Sterkenburg
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Wouter T. R. Hooghiemstra
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Iris Schmidt
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Wouter B. Nagengast
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Dimitris Gorpas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
| |
Collapse
|
14
|
Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol 2022; 19:9-22. [PMID: 34493858 DOI: 10.1038/s41571-021-00548-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Fluorescence-guided surgery using tumour-targeted imaging agents has emerged over the past decade as a promising and effective method of intraoperative cancer detection. An impressive number of fluorescently labelled antibodies, peptides, particles and other molecules related to cancer hallmarks have been developed for the illumination of target lesions. New approaches are being implemented to translate these imaging agents into the clinic, although only a few have made it past early-phase clinical trials. For this translational process to succeed, target selection, imaging agents and their related detection systems and clinical implementation have to operate in perfect harmony to enable real-time intraoperative visualization that can benefit patients. Herein, we review key aspects of this imaging cascade and focus on imaging approaches and methods that have helped to shed new light onto the field of intraoperative fluorescence-guided cancer surgery with the singular goal of improving patient outcomes.
Collapse
|
15
|
Hernandez Vargas S, Lin C, Tran Cao HS, Ikoma N, AghaAmiri S, Ghosh SC, Uselmann AJ, Azhdarinia A. Receptor-Targeted Fluorescence-Guided Surgery With Low Molecular Weight Agents. Front Oncol 2021; 11:674083. [PMID: 34277418 PMCID: PMC8279813 DOI: 10.3389/fonc.2021.674083] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Cancer surgery remains the primary treatment option for most solid tumors and can be curative if all malignant cells are removed. Surgeons have historically relied on visual and tactile cues to maximize tumor resection, but clinical data suggest that relapse occurs partially due to incomplete cancer removal. As a result, the introduction of technologies that enhance the ability to visualize tumors in the operating room represents a pressing need. Such technologies have the potential to revolutionize the surgical standard-of-care by enabling real-time detection of surgical margins, subclinical residual disease, lymph node metastases and synchronous/metachronous tumors. Fluorescence-guided surgery (FGS) in the near-infrared (NIRF) spectrum has shown tremendous promise as an intraoperative imaging modality. An increasing number of clinical studies have demonstrated that tumor-selective FGS agents can improve the predictive value of fluorescence over non-targeted dyes. Whereas NIRF-labeled macromolecules (i.e., antibodies) spearheaded the widespread clinical translation of tumor-selective FGS drugs, peptides and small-molecules are emerging as valuable alternatives. Here, we first review the state-of-the-art of promising low molecular weight agents that are in clinical development for FGS; we then discuss the significance, application and constraints of emerging tumor-selective FGS technologies.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | | | - Hop S Tran Cao
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Naruhiko Ikoma
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Solmaz AghaAmiri
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sukhen C Ghosh
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Ali Azhdarinia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States.,Therapeutics & Pharmacology Program, The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
16
|
Sier VQ, van der Vorst JR, Quax PHA, de Vries MR, Zonoobi E, Vahrmeijer AL, Dekkers IA, de Geus-Oei LF, Smits AM, Cai W, Sier CFM, Goumans MJTH, Hawinkels LJAC. Endoglin/CD105-Based Imaging of Cancer and Cardiovascular Diseases: A Systematic Review. Int J Mol Sci 2021; 22:4804. [PMID: 33946583 PMCID: PMC8124553 DOI: 10.3390/ijms22094804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging of pathologic lesions can improve efficient detection of cancer and cardiovascular diseases. A shared pathophysiological feature is angiogenesis, the formation of new blood vessels. Endoglin (CD105) is a coreceptor for ligands of the Transforming Growth Factor-β (TGF-β) family and is highly expressed on angiogenic endothelial cells. Therefore, endoglin-based imaging has been explored to visualize lesions of the aforementioned diseases. This systematic review highlights the progress in endoglin-based imaging of cancer, atherosclerosis, myocardial infarction, and aortic aneurysm, focusing on positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), near-infrared fluorescence (NIRF) imaging, and ultrasound imaging. PubMed was searched combining the following subjects and their respective synonyms or relevant subterms: "Endoglin", "Imaging/Image-guided surgery". In total, 59 papers were found eligible to be included: 58 reporting about preclinical animal or in vitro models and one ex vivo study in human organs. In addition to exact data extraction of imaging modality type, tumor or cardiovascular disease model, and tracer (class), outcomes were described via a narrative synthesis. Collectively, the data identify endoglin as a suitable target for intraoperative and diagnostic imaging of the neovasculature in tumors, whereas for cardiovascular diseases, the evidence remains scarce but promising.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Paul H. A. Quax
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Elham Zonoobi
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Edinburgh Molecular Imaging Ltd. (EMI), Edinburgh EH16 4UX, UK
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
| | - Ilona A. Dekkers
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7500 AE Enschede, The Netherlands
| | - Anke M. Smits
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (J.R.v.d.V.); (P.H.A.Q.); (M.R.d.V.); (E.Z.); (A.L.V.)
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Marie José T. H. Goumans
- Department of Cell & Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (A.M.S.); (M.J.T.H.G.)
| | - Lukas J. A. C. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| |
Collapse
|