1
|
Li A, Qi F, Zeng Y, Liu R, Cai H, He M, Li D, Gu Y, Liu J. Cryoshocked Adipocytes Mediated Dual-Modal Strategy Combining Photodynamic Therapy and Triptolide Palmitate for Pulmonary Metastatic Melanoma Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414307. [PMID: 39804941 PMCID: PMC11884613 DOI: 10.1002/advs.202414307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy. CsA substantially enhances the drug-loading capacity of adipocytes, with its particle size characteristics enabling targeted delivery of pTP to the lungs. The combination of photodynamic therapy (PDT) and pTP activates the caspase cascade, promoting apoptosis in tumor cells. Notably, the cleavage of disulfide bonds in pTP depletes glutathione (GSH), reducing its scavenging effect on reactive oxygen species (ROS) and enhancing the efficacy of PDT. Results demonstrate that Ce6-pTP-CsA effectively inhibits the proliferation and invasion of pulmonary metastatic melanoma cells in vitro and induces apoptosis, while significantly suppressing lung metastasis of SCID mice models in vivo. In conclusion, this novel biomimetic drug delivery system based on adipocytes provides a promising strategy for targeted therapy in pulmonary metastatic melanoma.
Collapse
Affiliation(s)
- Aixue Li
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Fu Qi
- Department of PharmacyTongji HospitalSchool of MedicineTongji UniversityShanghai200092China
| | - Yuanye Zeng
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Rongmei Liu
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Huanhuan Cai
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Mengyuan He
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| | - Dan Li
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yongwei Gu
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiyong Liu
- Department of PharmacyFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- College of PharmacyShandong University of Traditional Chinese MedicineJinanShandong250355China
| |
Collapse
|
2
|
Kohan A, Hanneman K, Mirshahvalad SA, Afaq A, Mallak N, Metser U, Veit-Haibach P. Current Applications of PET/MR: Part II: Clinical Applications II. Can Assoc Radiol J 2024; 75:826-837. [PMID: 38836428 DOI: 10.1177/08465371241255904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.
Collapse
Affiliation(s)
- Andres Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
van Nijnatten TJA, de Mooij CM, Mitea C, Houwers J, de Boer M, Smidt ML, Mottaghy FM, Wildberger JE. [ 18F]FDG whole-body PET-MR including an integrated breast MR protocol for locoregional and distant staging in breast cancer patients-a feasibility study. Insights Imaging 2024; 15:243. [PMID: 39382796 PMCID: PMC11464706 DOI: 10.1186/s13244-024-01830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
PURPOSE To investigate in a feasibility study the combination of [18F]FDG whole-body (WB) positron emission tomography-magnetic resonance (PET-MR), including an integrated breast MR within a single protocol for locoregional and distant staging in breast cancer patients. METHODS Consecutive patients with breast cancer diagnoses according to conventional imaging modalities (full-field digital mammography (FFDM) and ultrasound (US)) were prospectively included. All patients underwent [18F]FDG WB PET-MR, including an integrated dedicated breast MR (prone position) and WB PET-MR (supine position) protocol. Results of [18F]FDG WB PET-MR, including integrated breast MR, versus conventional imaging modalities were compared. RESULTS From April 2021-April 2022, 28 patients were included. On conventional imaging, cT1-2 breast cancer was present in 22 (FFDM) and 23 (US) out of 28 patients. With regard to clinical nodal status, eight patients were considered cN0, eighteen cN1 (1-3 suspicious lymph nodes), and two patients were cN2 (four suspicious axillary lymph nodes/internal mammary lymph node metastasis). [18F]FDG WB PET-MR, including an integrated breast MR protocol, upstaged clinical tumor status in two patients and clinical nodal status in nine patients according to both [18F]FDG WB PET-MR and breast MR findings. In addition, distant metastases were detected in three patients (liver/bone), and another patient was diagnosed with a synchronous primary tumor (lung cancer). CONCLUSION [18F]FDG WB PET-MR, including an integrated breast MR within a single protocol in breast cancer patients, is feasible and provides a promising new approach in breast cancer patients with regard to locoregional and distant staging. CRITICAL RELEVANCE STATEMENT: [18F]FDG whole-body PET-MR, including an integrated breast MR protocol, is feasible and allows locoregional and distant staging within a single imaging exam in breast cancer patients. KEY POINTS [18F]FDG PET-MR allows the combination of breast MR and whole-body staging. Therefore, a single protocol of whole-body [18F]FDG PET-MR, including an integrated breast MRI, is investigated. [18F]FDG PET-MR, including an integrated breast MR is feasible and can be considered in daily clinical practice.
Collapse
Affiliation(s)
- Thiemo J A van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands.
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands.
| | - Cornelis M de Mooij
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Division of Internal Medicine, Department of Medical Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Janneke Houwers
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Maaike de Boer
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Division of Internal Medicine, Department of Medical Oncology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marjolein L Smidt
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Surgery, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Felix M Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
4
|
van de Weijer T, van der Meer WL, Moonen RPM, van Nijnatten TJA, Gietema HA, Mitea C, van der Pol JAJ, Wildberger JE, Mottaghy FM. Limited Additional Value of a Chest CT in Whole-Body Staging with PET-MRI: A Retrospective Cohort Study. Cancers (Basel) 2024; 16:2265. [PMID: 38927970 PMCID: PMC11201796 DOI: 10.3390/cancers16122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Hybrid PET-MRI systems are being used more frequently. One of the drawbacks of PET-MRI imaging is its inferiority in detecting lung nodules, so it is often combined with a computed tomography (CT) of the chest. However, chest CT often detects additional, indeterminate lung nodules. The objective of this study was to assess the sensitivity of detecting metastatic versus indeterminate nodules with PET-MRI compared to chest CT. A total of 328 patients were included. All patients had a PET/MRI whole-body scan for (re)staging of cancer combined with an unenhanced chest CT performed at our center between 2014 and 2020. Patients had at least a two-year follow-up. Six percent of the patients had lung metastases at initial staging. The sensitivity and specificity of PET-MRI for detecting lung metastases were 85% and 100%, respectively. The incidence of indeterminate lung nodules on chest CT was 30%. The sensitivity of PET-MRI to detect indeterminate lung nodules was poor (23.0%). The average size of the indeterminate lung nodules detected on PET-MRI was 7 ± 4 mm, and the missed indeterminate nodules on PET-MRI were 4 ± 1 mm (p < 0.001). The detection of metastatic lung nodules is fairly good with PET-MRI, whereas the sensitivity of PET-MRI for detecting indeterminate lung nodules is size-dependent. This may be an advantage, limiting unnecessary follow-up of small, indeterminate lung nodules while adequately detecting metastases.
Collapse
Affiliation(s)
- Tineke van de Weijer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School of Nutrition and Translational Research in Metabolism (NUTRIM), 6200 MD Maastricht, The Netherlands
| | - Wilhelmina L. van der Meer
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
| | - Thiemo J. A. van Nijnatten
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Hester A. Gietema
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Cristina Mitea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Jochem A. J. van der Pol
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Cardiovascular Diseases (CARIM), 6202 AZ Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- School for Oncology and Reproduction (GROW), 6200 MD Maastricht, The Netherlands
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P. Debeylaan 25, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; (T.v.d.W.); (W.L.v.d.M.); (R.P.M.M.); (T.J.A.v.N.); (H.A.G.); (J.A.J.v.d.P.); (J.E.W.)
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
5
|
Sun J, Sheng J, Zhang LJ. Gastrointestinal tract. TRANSPATHOLOGY 2024:281-296. [DOI: 10.1016/b978-0-323-95223-1.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Martin MD, Henry TS, Berry MF, Johnson GB, Kelly AM, Ko JP, Kuzniewski CT, Lee E, Maldonado F, Morris MF, Munden RF, Raptis CA, Shim K, Sirajuddin A, Small W, Tong BC, Wu CC, Donnelly EF. ACR Appropriateness Criteria® Incidentally Detected Indeterminate Pulmonary Nodule. J Am Coll Radiol 2023; 20:S455-S470. [PMID: 38040464 DOI: 10.1016/j.jacr.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 12/03/2023]
Abstract
Incidental pulmonary nodules are common. Although the majority are benign, most are indeterminate for malignancy when first encountered making their management challenging. CT remains the primary imaging modality to first characterize and follow-up incidental lung nodules. This document reviews available literature on various imaging modalities and summarizes management of indeterminate pulmonary nodules detected incidentally. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
- Maria D Martin
- University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | | | - Mark F Berry
- Stanford University Medical Center, Stanford, California; Society of Thoracic Surgeons
| | - Geoffrey B Johnson
- Mayo Clinic, Rochester, Minnesota; Commission on Nuclear Medicine and Molecular Imaging
| | | | - Jane P Ko
- New York University Langone Health, New York, New York; IF Committee
| | | | - Elizabeth Lee
- University of Michigan Health System, Ann Arbor, Michigan
| | - Fabien Maldonado
- Vanderbilt University Medical Center, Nashville, Tennessee; American College of Chest Physicians
| | | | - Reginald F Munden
- Medical University of South Carolina, Charleston, South Carolina; IF Committee
| | | | - Kyungran Shim
- John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois; American College of Physicians
| | | | - William Small
- Loyola University Chicago, Stritch School of Medicine, Department of Radiation Oncology, Cardinal Bernardin Cancer Center, Maywood, Illinois; Commission on Radiation Oncology
| | - Betty C Tong
- Duke University School of Medicine, Durham, North Carolina; Society of Thoracic Surgeons
| | - Carol C Wu
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin F Donnelly
- Specialty Chair, Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
7
|
Sabeghi P, Katal S, Chen M, Taravat F, Werner TJ, Saboury B, Gholamrezanezhad A, Alavi A. Update on Positron Emission Tomography/Magnetic Resonance Imaging: Cancer and Inflammation Imaging in the Clinic. Magn Reson Imaging Clin N Am 2023; 31:517-538. [PMID: 37741639 DOI: 10.1016/j.mric.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid PET/MRI is highly valuable, having made significant strides in overcoming technical challenges and offering unique advantages such as reduced radiation, precise data coregistration, and motion correction. Growing evidence highlights the value of PET/MRI in broad clinical aspects, including inflammatory and oncological imaging in adults, pregnant women, and pediatrics, potentially surpassing PET/CT. This newly integrated solution may be preferred over PET/CT in many clinical conditions. However, further technological advancements are required to facilitate its broader adoption as a routine diagnostic modality.
Collapse
Affiliation(s)
- Paniz Sabeghi
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Sanaz Katal
- Medical Imaging Department of St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Michelle Chen
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Farzaneh Taravat
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Babak Saboury
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ali Gholamrezanezhad
- Department of Radiology, Keck School of Medicine of University of Southern California, Health Science Campus, 1500 San Pablo Street, Los Angeles, CA 90033, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Navin PJ, Ehman EC, Liu JB, Halfdanarson TR, Gupta A, Laghi A, Yoo DC, Carucci LR, Schima W, Sheedy SP. Imaging of Small-Bowel Neuroendocrine Neoplasms: AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2023; 221:289-301. [PMID: 36752369 DOI: 10.2214/ajr.22.28877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Neuroendocrine neoplasms (NENs) of the small bowel are typically slow-growing lesions that remain asymptomatic until reaching an advanced stage. Imaging modalities for lesion detection, staging, and follow-up in patients with known or suspected NEN include CT enterography, MR enterography, and PET/CT using a somatostatin receptor analog. FDG PET/CT may have a role in the evaluation of poorly differentiated NENs. Liver MRI, ideally with a hepatocyte-specific contrast agent, should be used in the evaluation of hepatic metastases. Imaging informs decisions regarding both surgical approaches and systematic therapy (specifically, peptide receptor radionuclide therapy). This AJR Expert Panel Narrative Review describes the multimodality imaging features of small-bowel NENs; explores the optimal imaging modalities for their diagnosis, staging, and follow-up; and discusses how imaging may be used to guide therapy.
Collapse
Affiliation(s)
- Patrick J Navin
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Eric C Ehman
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Jason B Liu
- Department of Surgery, Division of Surgical Oncology, Brigham and Women's Hospital, Boston, MA
| | | | - Akshya Gupta
- Department of Imaging Sciences, University of Rochester, Rochester, NY
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, AOU Sant'Andrea, Sapienza University of Rome, Rome, Italy
| | - Don C Yoo
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Laura R Carucci
- Department of Radiology, Virginia Commonwealth University Medical Center, Richmond, VA
| | - Wolfgang Schima
- Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus and Sankt Josef Krankenhaus, Vienna, Austria
| | - Shannon P Sheedy
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
9
|
Furtado FS, Suarez-Weiss KE, Amorim BJ, Clark JW, Picchio M, Harisinghani M, Catalano OA. Gastrointestinal imaging. CLINICAL PET/MRI 2023:333-364. [DOI: 10.1016/b978-0-323-88537-9.00015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Herold A, Wassipaul C, Weber M, Lindenlaub F, Rasul S, Stift A, Stift J, Mayerhoefer ME, Hacker M, Ba-Ssalamah A, Haug AR, Tamandl D. Added value of quantitative, multiparametric 18F-FDG PET/MRI in the locoregional staging of rectal cancer. Eur J Nucl Med Mol Imaging 2022; 50:205-217. [PMID: 36063201 PMCID: PMC9668962 DOI: 10.1007/s00259-022-05936-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/05/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE The purpose of this study was to determine whether multiparametric positron emission tomography/magnetic resonance imaging (mpPET/MRI) can improve locoregional staging of rectal cancer (RC) and to assess its prognostic value after resection. METHODS In this retrospective study, 46 patients with primary RC, who underwent multiparametric 18F-fluorodeoxyglucose (FDG) PET/MRI, followed by surgical resection without chemoradiotherapy, were included. Two readers reviewed T- and N- stage, mesorectal involvement, sphincter infiltration, tumor length, and distance from anal verge. In addition, diffusion-weighted imaging (DWI) and PET parameters were extracted from the multiparametric protocol and were compared to radiological staging as well as to the histopathological reference standard. Clinical and imaging follow-up was systematically assessed for tumor recurrence and death. RESULTS Locally advanced rectal cancers (LARC) exhibited significantly higher metabolic tumor volume (MTV, AUC 0.74 [95% CI 0.59-0.89], p = 0.004) and total lesion glycolysis (TLG, AUC 0.70 [95% CI 0.53-0.87], p = 0.022) compared to early tumors. T-stage was associated with MTV (AUC 0.70 [95% CI 0.54-0.85], p = 0.021), while N-stage was better assessed using anatomical MRI sequences (AUC 0.72 [95% CI 0.539-0.894], p = 0.032). In the multivariate regression analysis, depending on the model, both anatomical MRI sequences and MTV/TLG were capable of detecting LARC. Combining anatomical MRI stage and MTV/TLG led to a superior diagnostic performance for detecting LARC (AUC 0.81, [95% CI 0.68-0.94], p < 0.001). In the survival analysis, MTV was independently associated with overall survival (HR 1.05 [95% CI 1.01-1.10], p = 0.044). CONCLUSION Multiparametric PET-MRI can improve identification of locally advanced tumors and, hence, help in treatment stratification. It provides additional information on RC tumor biology and may have prognostic value.
Collapse
Affiliation(s)
- Alexander Herold
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Christian Wassipaul
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Florian Lindenlaub
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Anton Stift
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Judith Stift
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- INNPATH GmbH, Tirolkliniken, Innsbruck, Austria
| | - Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Dietmar Tamandl
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
11
|
Chodyla M, Barbato F, Dirksen U, Kirchner J, Schaarschmidt BM, Schweiger B, Forsting M, Herrmann K, Umutlu L, Grueneisen J. Utility of Integrated PET/MRI for the Primary Diagnostic Work-Up of Patients with Ewing Sarcoma: Preliminary Results. Diagnostics (Basel) 2022; 12:diagnostics12102278. [PMID: 36291967 PMCID: PMC9600118 DOI: 10.3390/diagnostics12102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background: This study was conducted to evaluate the clinical applicability of integrated PET/MRI for staging and monitoring the effectiveness of neoadjuvant chemotherapy in Ewing sarcoma patients. Methods: A total of 11 juvenile patients with confirmed Ewing sarcoma, scheduled for induction polychemotherapy, were prospectively enrolled for a PET/MR examination before, during and after the end of treatment. Two experienced physicians analysed the imaging datasets. They were asked to perform a whole-body staging in all three examinations and to define treatment response according to the RECIST1.1 and PERCIST criteria for each patient. Results: In eight patients lymph node and/or distant metastases were detected at initial diagnosis. According to the reference standard, three patients achieved complete response, six patients partial response, and one patient showed stable disease while another patient showed progressive disease. RECIST1.1 categorized the response to treatment in 5/11 patients correctly and showed a tendency to underestimate the response to treatment in the remaining six patients. PERCIST defined response to treatment in 9/11 patients correctly and misclassified two patients with a PR as CR. Conclusion: PET/MRI may serve as a valuable imaging tool for primary staging and response assessment of juvenile patients with Ewing sarcoma to induction chemotherapy, accompanied by a reasonable radiation dose for the patient.
Collapse
Affiliation(s)
- Michal Chodyla
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Francesco Barbato
- Clinic of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Uta Dirksen
- Clinic for Pediatrics III, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University of Dusseldorf, D-40225 Dusseldorf, Germany
| | - Benedikt M. Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Bernd Schweiger
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Ken Herrmann
- Clinic of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
- Correspondence: ; Tel.: +49-(0)-201-723-1501
| |
Collapse
|
12
|
Nakamoto Y, Kitajima K, Toriihara A, Nakajo M, Hirata K. Recent topics of the clinical utility of PET/MRI in oncology and neuroscience. Ann Nucl Med 2022; 36:798-803. [PMID: 35896912 DOI: 10.1007/s12149-022-01780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022]
Abstract
Since the inline positron emission tomography (PET)/magnetic resonance imaging (MRI) system appeared in clinical, more than a decade has passed. In this article, we have reviewed recently-published articles about PET/MRI. There have been articles about staging in rectal and breast cancers by PET/MRI using fluorodeoxyglucose (FDG) with higher diagnostic performance in oncology. Assessing possible metastatic bone lesions is considered a proper target by FDG PET/MRI. Other than FDG, PET/MRI with prostate specific membrane antigen (PSMA)-targeted tracers or fibroblast activation protein inhibitor have been reported. Especially, PSMA PET/MRI has been reported to be a promising tool for determining appropriate sites in biopsy. Independent of tracers, the clinical application of artificial intelligence (AI) for images obtained by PET/MRI is one of the current topics in this field, suggesting clinical usefulness for differentiating breast lesions or grading prostate cancer. In addition, AI has been reported to be helpful for noise reduction for reconstructing images, which would be promising for reducing radiation exposure. Furthermore, PET/MRI has a clinical role in neuroscience, including localization of the epileptogenic zone. PET/MRI with new PET tracers could be useful for differentiation among neurological disorders. Clinical applications of integrated PET/MRI in various fields are expected to be reported in the future.
Collapse
Affiliation(s)
- Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kazuhiro Kitajima
- Department of Radiology, Division of Nuclear Medicine and PET Center, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Akira Toriihara
- PET Imaging Center, Asahi General Hospital, 1326 I, Asahi, Chiba, 289-2511, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
13
|
Jannusch K, Bruckmann NM, Geuting CJ, Morawitz J, Dietzel F, Rischpler C, Herrmann K, Bittner AK, Hoffmann O, Mohrmann S, Quick HH, Umutlu L, Antoch G, Kirchner J. Lung Nodules Missed in Initial Staging of Breast Cancer Patients in PET/MRI-Clinically Relevant? Cancers (Basel) 2022; 14:cancers14143454. [PMID: 35884513 PMCID: PMC9321171 DOI: 10.3390/cancers14143454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Image-based primary staging in women with newly-diagnosed breast cancer is important to exclude distant metastases, which affect up to 10% of women. The increasing implementation of [18F]FDG-PET/MRI as a radiation-saving primary staging tool bears the risk of missing lung nodules. Thus, chest CT serves as the diagnostic of choice for the detection and classification of pulmonary nodules. The aim of this study was the evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. We demonstrated in an homogeneous population of 152 patients that all patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity of MRI in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, a supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup. Abstract Purpose: The evaluation of the clinical relevance of missed lung nodules at initial staging of breast cancer patients in [18F]FDG-PET/MRI compared with CT. Methods: A total of 152 patients underwent an initial whole-body [18F]FDG-PET/MRI and a thoracoabdominal CT for staging. Presence, size, shape and location for each lung nodule in [18F]FDG-PET/MRI was noted. The reference standard was established by taking initial CT and follow-up imaging into account (a two-step approach) to identify clinically-relevant lung nodules. Patient-based and lesion-based data analysis was performed. Results: No patient with clinically-relevant lung nodules was missed on a patient-based analysis with MRI VIBE, while 1/84 females was missed with MRI HASTE (1%). Lesion-based analysis revealed 4/96 (4%, VIBE) and 8/138 (6%, HASTE) missed clinically-relevant lung nodules. The average size of missed lung nodules was 3.2 mm ± 1.2 mm (VIBE) and 3.6 mm ± 1.4 mm (HASTE) and the predominant location was in the left lower quadrant and close to the hilum. Conclusion: All patients with newly-diagnosed breast cancer and clinically-relevant lung nodules were detected at initial [18F]FDG-PET/MRI staging. However, due to the lower sensitivity in detecting lung nodules, a small proportion of clinically-relevant lung nodules were missed. Thus, supplemental low-dose chest CT after neoadjuvant therapy should be considered for backup.
Collapse
Affiliation(s)
- Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Charlotte Johanna Geuting
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (C.R.); (K.H.)
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; (A.-K.B.); (O.H.)
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany;
| | - Harald H. Quick
- High-Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany;
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141 Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany; (K.J.); (N.M.B.); (C.J.G.); (J.M.); (F.D.); (G.A.)
- Correspondence: ; Tel.: +49-211-8-11-77-54
| |
Collapse
|
14
|
Abrishami Kashani M, Campbell-Washburn AE, Murphy MC, Catalano OA, McDermott S, Fintelmann FJ. Magnetic Resonance Imaging for Guidance and Follow-up of Thoracic Needle Biopsies and Thermal Ablations. J Thorac Imaging 2022; 37:201-216. [PMID: 35426857 PMCID: PMC10441002 DOI: 10.1097/rti.0000000000000651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Magnetic resonance imaging (MRI) is used for the guidance and follow-up of percutaneous minimally invasive interventions in many body parts. In the thorax, computed tomography (CT) is currently the most used imaging modality for the guidance and follow-up of needle biopsies and thermal ablations. Compared with CT, MRI provides excellent soft tissue contrast, lacks ionizing radiation, and allows functional imaging. The role of MRI is limited in the thorax due to the low hydrogen proton density and many air-tissue interfaces of the lung, as well as respiratory and cardiac motion. Here, we review the current experience of MR-guided thoracic needle biopsies and of MR-guided thermal ablations targeting lesions in the lung, mediastinum, and the chest wall. We provide an overview of MR-compatible biopsy needles and ablation devices. We detail relevant MRI sequences and their relative advantages and disadvantages for procedural guidance, assessment of complications, and long-term follow-up. We compare the advantages and disadvantages of CT and MR for thoracic interventions and identify areas in need of improvement and additional research.
Collapse
Affiliation(s)
| | - Adrienne E Campbell-Washburn
- Division of Intramural Research, Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Mark C Murphy
- Division of Thoracic Imaging and Intervention, Department of Radiology
| | - Onofrio A Catalano
- Division of Abdominal Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA
| | | | | |
Collapse
|
15
|
Galgano SJ, Iravani A, Bodei L, El-Haddad G, Hofman MS, Kong G. Imaging of Neuroendocrine Neoplasms: Monitoring Treatment Response- AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2022; 218:767-780. [PMID: 34985313 DOI: 10.2214/ajr.21.27159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Neuroendocrine neoplasms (NENs) encompass a broad spectrum of tumors throughout the body and range in biologic behavior from indolent to aggressive. Consequently, a wide spectrum of treatment options are available for NENs, including observation, somatostatin analogues, targeted therapy, chemotherapy, surgical resection, liver-directed therapy (embolization and ablation), and peptide receptor radionuclide therapy. Given the wide variety of tumor behaviors and treatments, precise criteria for treatment response in NENs are lacking. Though conventional anatomic imaging with CT and MRI remains important for NEN response assessment, the use of somatostatin receptor (SSR) PET is increasing and often provides synergistic and complementary information. Additionally, in certain clinical scenarios, a particular imaging strategy may prove superior or inferior to others for the detection of metastatic disease and evaluation of therapy response. A strong need exists to further define appropriate and standardized assessment criteria for tumor response and progression in NEN. This article presents the strengths and weaknesses of individual imaging modalities for evaluating NEN therapy response, including conventional anatomic imaging, SSR PET, FDG PET, dual-tracer PET, and PET/MRI. Ongoing challenges and unmet needs in the use of imaging for NEN response evaluation are explored.
Collapse
Affiliation(s)
- Samuel J Galgano
- Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Amir Iravani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ghassan El-Haddad
- Department of Diagnostic Imaging and Interventional Radiology, Moffitt Cancer Center, Tampa, FL
| | - Michael S Hofman
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Grace Kong
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Huang S, Qi Z, Huang R, Su M. IgA Nephropathy in a Patient With Metastatic Carcinoma of Unknown Primary: Findings on 18F-FDG PET/MRI. Clin Nucl Med 2022; 47:346-347. [PMID: 35020667 DOI: 10.1097/rlu.0000000000003970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ABSTRACT A 35-year-old man with mesenteric metastases of unknown primary was referred for 18F-FDG PET/MRI. The images demonstrated that FDG accumulated in the chest, abdomen, bilateral kidneys, and external genitalia. Renal and testicular metastases were suspected. The primary tumor was still not found. In addition, kidney biopsy findings indicated a diagnosis of IgA nephropathy.
Collapse
Affiliation(s)
- Shuhui Huang
- From the Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | |
Collapse
|
17
|
Bruckmann NM, Kirchner J, Morawitz J, Umutlu L, Fendler WP, Herrmann K, Bittner AK, Hoffmann O, Fehm T, Lindemann ME, Buchbender C, Antoch G, Sawicki LM. Free-breathing 3D Stack of Stars GRE (StarVIBE) sequence for detecting pulmonary nodules in 18F-FDG PET/MRI. EJNMMI Phys 2022; 9:11. [PMID: 35129774 PMCID: PMC8821742 DOI: 10.1186/s40658-022-00439-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The free-breathing T1-weighted 3D Stack of Stars GRE (StarVIBE) MR sequence potentially reduces artifacts in chest MRI. The purpose of this study was to evaluate StarVIBE for the detection of pulmonary nodules in 18F-FDG PET/MRI. MATERIAL AND METHODS In this retrospective analysis, conducted on a prospective clinical trial cohort, 88 consecutive women with newly diagnosed breast cancer underwent both contrast-enhanced whole-body 18F-FDG PET/MRI and computed tomography (CT). Patients' chests were examined on CT as well as on StarVIBE and conventional T1-weighted VIBE and T2-weighted HASTE MR sequences, with CT serving as the reference standard. Presence, size, and location of all detectable lung nodules were assessed. Wilcoxon test was applied to compare nodule features and Pearson's, and Spearman's correlation coefficients were calculated. RESULTS Out of 65 lung nodules detected in 36 patients with CT (3.7 ± 1.4 mm), StarVIBE was able to detect 31 (47.7%), VIBE 26 (40%) and HASTE 11 (16.8%), respectively. Overall, CT showed a significantly higher detectability than all MRI sequences combined (65 vs. 36, difference 44.6%, p < 0.001). The VIBE showed a significantly better detection rate than the HASTE (23.1%, p = 0.001). Detection rates between StarVIBE and VIBE did not significantly differ (7.7%, p = 0.27), but the StarVIBE showed a significant advantage detecting centrally located pulmonary nodules (66.7% vs. 16.7%, p = 0.031). There was a strong correlation in nodule size between CT and MRI sequences (HASTE: ρ = 0.80, p = 0.003; VIBE: ρ = 0.77, p < 0.001; StarVIBE: ρ = 0.78, p < 0.001). Mean image quality was rated as good to excellent for CT and MRI sequences. CONCLUSION The overall lung nodule detection rate of StarVIBE was slightly, but not significantly, higher than conventional T1w VIBE and significantly higher than T2w HASTE. Detectability of centrally located nodules is better with StarVIBE than with VIBE. Nevertheless, all MRI analyses demonstrated considerably lower detection rates for small lung nodules, when compared to CT.
Collapse
Affiliation(s)
- Nils Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen and German Cancer Consortium (DKTK), Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Tanja Fehm
- Department of Gynecology, Medical Faculty, University Dusseldorf, 40225, Düsseldorf, Germany
| | - Maike E Lindemann
- High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Christian Buchbender
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Lino M Sawicki
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
18
|
Seifert R, Kersting D, Rischpler C, Opitz M, Kirchner J, Pabst KM, Mavroeidi IA, Laschinsky C, Grueneisen J, Schaarschmidt B, Catalano OA, Herrmann K, Umutlu L. Clinical Use of PET/MR in Oncology: An Update. Semin Nucl Med 2021; 52:356-364. [PMID: 34980479 DOI: 10.1053/j.semnuclmed.2021.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022]
Abstract
The combination of PET and MRI is one of the recent advances of hybrid imaging. Yet to date, the adoption rate of PET/MRI systems has been rather slow. This seems to be partially caused by the high costs of PET/MRI systems and the need to verify an incremental benefit over PET/CT or sequential PET/CT and MRI. In analogy to PET/CT, the MRI part of PET/MRI was primarily used for anatomical imaging. Though this can be advantageous, for example in diseases where the superior soft tissue contrast of MRI is highly appreciated, the sole use of MRI for anatomical orientation lessens the potential of PET/MRI. Consequently, more recent studies focused on its multiparametric potential and employed diffusion weighted sequences and other functional imaging sequences in PET/MRI. This integration puts the focus on a more wholesome approach to PET/MR imaging, in terms of releasing its full potential for local primary staging based on multiparametric imaging and an included one-stop shop approach for whole-body staging. This approach as well as the implementation of computational analysis, in terms of radiomics analysis, has been shown valuable in several oncological diseases, as will be discussed in this review article.
Collapse
Affiliation(s)
- Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; Department of Nuclear Medicine, University Hospital Münster, Münster, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany.
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Marcel Opitz
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, Dusseldorf, Germany
| | - Kim M Pabst
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Ilektra-Antonia Mavroeidi
- West German Cancer Center, University Hospital Essen, Essen, Germany.; Clinic for Internal Medicine (Tumor Research), University Hospital Essen, Essen, Germany
| | - Christina Laschinsky
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Johannes Grueneisen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Benedikt Schaarschmidt
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Onofrio Antonio Catalano
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA; Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany; West German Cancer Center, University Hospital Essen, Essen, Germany.; German Cancer Consortium (DKTK), University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
19
|
Galgano SJ, Calderone CE, Xie C, Smith EN, Porter KK, McConathy JE. Applications of PET/MRI in Abdominopelvic Oncology. Radiographics 2021; 41:1750-1765. [PMID: 34597228 DOI: 10.1148/rg.2021210035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With PET/MRI, the strengths of PET and MRI are combined to allow simultaneous image acquisition and near-perfect image coregistration. MRI is increasingly being used for staging and restaging of abdominopelvic oncologic lesions, including prostate, hepatobiliary, pancreatic, neuroendocrine, cervical, and rectal cancers. Fluorine 18-fluorodeoxyglucose PET/CT has long been considered a cornerstone of oncologic imaging, and the development of multiple targeted radiotracers has led to increased research on and use of these agents in clinical practice. Thus, simultaneously performed PET/MRI enables the acquisition of complementary imaging information, with distinct advantages over PET/CT and MR image acquisitions. The authors provide an overview of PET/MRI, including descriptions of the major differences between PET/MRI and PET/CT, as well as case examples and treatment protocols for patients with commonly encountered malignancies in the abdomen and pelvis. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Samuel J Galgano
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Carli E Calderone
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Charlies Xie
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Elainea N Smith
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Kristin K Porter
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Jonathan E McConathy
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| |
Collapse
|
20
|
Vermersch M, Mulé S, Chalaye J, Galletto Pregliasco A, Emsen B, Amaddeo G, Monnet A, Stemmer A, Baranes L, Laurent A, Leroy V, Itti E, Luciani A. Impact of the 18F-FDG-PET/MRI on Metastatic Staging in Patients with Hepatocellular Carcinoma: Initial Results from 104 Patients. J Clin Med 2021; 10:jcm10174017. [PMID: 34501465 PMCID: PMC8432497 DOI: 10.3390/jcm10174017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Optimal HCC therapeutic management relies on accurate tumor staging. Our aim was to assess the impact of 18F-FDG-WB-PET/MRI on HCC metastatic staging, compared with the standard of care CT-CAP/liver MRI combination, in patients with HCC referred on a curative intent or before transarterial radioembolization. One hundred and four consecutive patients followed for HCC were retrospectively included. The WB-PET/MRI was compared with the standard of care CT-CAP/liver MRI combination for HCC metastatic staging, with pathology, followup, and multidisciplinary board assessment as a reference standard. Thirty metastases were identified within 14 metastatic sites in 11 patients. The sensitivity of WB-PET/MRI for metastatic sites and metastatic patients was significantly higher than that of the CT-CAP/liver MRI combination (respectively 100% vs. 43%, p = 0.002; and 100% vs. 45%, p = 0.01). Metastatic sites missed by CT-CAP were bone (n = 5) and distant lymph node (n = 3) in BCLC C patients. For the remaining 93 nonmetastatic patients, three BCLC A patients identified as potentially metastatic on the CT-CAP/liver MRI combination were correctly ruled out with the WB-PET/MRI without significant increase in specificity (100% vs. 97%; p = 0.25). The WB-PET/MRI may improve HCC metastatic staging and could be performed as a “one-stop-shop” examination for HCC staging with a significant impact on therapeutic management in about 10% of patients especially in locally advanced HCC.
Collapse
Affiliation(s)
- Mathilde Vermersch
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
- Institut Mondor de la Recherche Biomédicale (IMRB) Team 18, INSERM Unit 955, Henri Mondor Hospital, 94000 Créteil, France
- Medical Imaging Department, Lille University Hospital, 59000 Lille, France
- Correspondence: ; Tel.: +33-6-3119-1558
| | - Sébastien Mulé
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
- Institut Mondor de la Recherche Biomédicale (IMRB) Team 18, INSERM Unit 955, Henri Mondor Hospital, 94000 Créteil, France
| | - Julia Chalaye
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Athena Galletto Pregliasco
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| | - Berivan Emsen
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Giuliana Amaddeo
- Department of Hepatogastroenterology, Henri Mondor Hospital, APHP, 94000 Créteil, France; (G.A.); (V.L.)
| | - Aurélien Monnet
- Siemens Healthineers, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (A.M.); (A.S.)
| | - Alto Stemmer
- Siemens Healthineers, Siemens Healthcare GmbH, 91052 Erlangen, Germany; (A.M.); (A.S.)
| | - Laurence Baranes
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| | - Alexis Laurent
- Hepatobiliary Surgery and Liver Transplantation, Henri Mondor Hospital, APHP, 94000 Créteil, France;
| | - Vincent Leroy
- Department of Hepatogastroenterology, Henri Mondor Hospital, APHP, 94000 Créteil, France; (G.A.); (V.L.)
| | - Emmanuel Itti
- Nuclear Medicine Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (J.C.); (B.E.); (E.I.)
| | - Alain Luciani
- Medical Imaging Department, Henri Mondor Hospital, APHP, 94000 Créteil, France; (S.M.); (A.G.P.); (L.B.); (A.L.)
| |
Collapse
|
21
|
Furtado FS, Suarez-Weiss KE, Vangel M, Clark JW, Cusack JC, Hong T, Blaszkowsky L, Wo J, Striar R, Umutlu L, Daldrup-Link HE, Groshar D, Rocco R, Bordeianou L, Anderson MA, Mojtahed A, Qadan M, Ferrone C, Catalano OA. Clinical impact of PET/MRI in oligometastatic colorectal cancer. Br J Cancer 2021; 125:975-982. [PMID: 34282295 DOI: 10.1038/s41416-021-01494-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Oligometastatic colorectal cancer (CRC) is potentially curable and demands individualised strategies. METHODS This single-centre retrospective study investigated if positron emission tomography (PET)/magnetic resonance imaging (MR) had a clinical impact on oligometastatic CRC relative to the standard of care imaging (SCI). Adult patients with oligometastatic CRC on SCI who also underwent PET/MR between 3/2016 and 3/2019 were included. The exclusion criterion was lack of confirmatory standard of reference, either surgical pathology, intraoperative gross confirmation or imaging follow-up. SCI consisted of contrast-enhanced (CE) computed tomography (CT) of the chest/abdomen/pelvis, abdominal/pelvic CE-MR, and/or CE whole-body PET/CT with diagnostic quality (i.e. standard radiation dose) CT. Follow-up was evaluated until 3/2020. RESULTS Thirty-one patients constituted the cohort, 16 (52%) male, median patient age was 53 years (interquartile range: 49-65 years). PET/MR and SCI results were divergent in 19% (95% CI 9-37%) of the cases, with PET/MR leading to management changes in all of them. The diagnostic accuracy of PET/MR was 90 ± 5%, versus 71 ± 8% for SCI. In a pairwise analysis, PET/MR outperformed SCI when compared to the reference standard (p = 0.0412). CONCLUSIONS These findings suggest the potential usefulness of PET/MR in the management of oligometastatic CRC.
Collapse
Affiliation(s)
- Felipe S Furtado
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | | | - Mark Vangel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.,Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Clark
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James C Cusack
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore Hong
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence Blaszkowsky
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Newton-Wellesley Hospital, Newton, MA, USA
| | - Jennifer Wo
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robin Striar
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | | | | | - David Groshar
- Assuta Medical Centers, Tel Aviv, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ricciardi Rocco
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mark A Anderson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Motaz Qadan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Ferrone
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|