1
|
Wu BZ, Hu LH, Cao SF, Tan J, Danzeng NZ, Fan JF, Zhang WB, Peng X. Deep learning-based multimodal CT/MRI image fusion and segmentation strategies for surgical planning of oral and maxillofacial tumors: A pilot study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102324. [PMID: 40174752 DOI: 10.1016/j.jormas.2025.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE This pilot study aims to evaluate the feasibility and accuracy of deep learning-based multimodal computed tomography/magnetic resonance imaging (CT/MRI) fusion and segmentation strategies for the surgical planning of oral and maxillofacial tumors. MATERIALS AND METHODS This study enrolled 30 oral and maxillofacial tumor patients visiting our department between 2016 and 2022. All patients underwent enhanced CT and MRI scanning of the oral and maxillofacial region. Furthermore, three fusion models (Elastix, ANTs, and NiftyReg) and three segmentation models (nnU-Net, 3D UX-Net, and U-Net) were combined to generate nine hybrid deep learning models that were trained. The performance of each model was evaluated via the Fusion Index (FI), Dice similarity coefficient (Dice), 95th-percentile Hausdorff distance (HD95), mean surface distance (MSD), precision, and recall analysis. RESULTS All three image fusion models (Elastix, ANTs, and NiftyReg) demonstrated satisfactory accuracy, with Elastix exhibiting the best performance. Among the tested segmentation models, the highest degree of accuracy for segmenting the maxilla and mandible was achieved by combining NiftyReg and nnU-Net. Furthermore, the highest overall accuracy of the nine hybrid models was observed with the Elastix and nnU-Net combination, which yielded a Dice coefficient of 0.89 for tumor segmentation. CONCLUSION In this study, deep learning models capable of automatic multimodal CT/MRI image fusion and segmentation of oral and maxillofacial tumors were successfully trained with a high degree of accuracy. The results demonstrated the feasibility of using deep learning-based image fusion and segmentation to establish a basis for virtual surgical planning.
Collapse
Affiliation(s)
- Bin-Zhang Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China; First Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Lei-Hao Hu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China; Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| | - Si-Fan Cao
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, PR China
| | - Ji Tan
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, PR China
| | - Nian-Zha Danzeng
- Department of stomatology, People's Hospital of Tibet Autonomous Region, Tibet Autonomous Region, PR China
| | - Jing-Fan Fan
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing, PR China.
| | - Wen-Bo Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China.
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, PR China
| |
Collapse
|
2
|
Zhao Y, Wang X, Phan J, Chen X, Lee A, Yu C, Huang K, Court LE, Pan T, Wang H, Wahid KA, Mohamed ASR, Naser M, Fuller CD, Yang J. Multi-modal segmentation with missing image data for automatic delineation of gross tumor volumes in head and neck cancers. Med Phys 2024; 51:7295-7307. [PMID: 38896829 PMCID: PMC11479854 DOI: 10.1002/mp.17260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Head and neck (HN) gross tumor volume (GTV) auto-segmentation is challenging due to the morphological complexity and low image contrast of targets. Multi-modality images, including computed tomography (CT) and positron emission tomography (PET), are used in the routine clinic to assist radiation oncologists for accurate GTV delineation. However, the availability of PET imaging may not always be guaranteed. PURPOSE To develop a deep learning segmentation framework for automated GTV delineation of HN cancers using a combination of PET/CT images, while addressing the challenge of missing PET data. METHODS Two datasets were included for this study: Dataset I: 524 (training) and 359 (testing) oropharyngeal cancer patients from different institutions with their PET/CT pairs provided by the HECKTOR Challenge; Dataset II: 90 HN patients(testing) from a local institution with their planning CT, PET/CT pairs. To handle potentially missing PET images, a model training strategy named the "Blank Channel" method was implemented. To simulate the absence of a PET image, a blank array with the same dimensions as the CT image was generated to meet the dual-channel input requirement of the deep learning model. During the model training process, the model was randomly presented with either a real PET/CT pair or a blank/CT pair. This allowed the model to learn the relationship between the CT image and the corresponding GTV delineation based on available modalities. As a result, our model had the ability to handle flexible inputs during prediction, making it suitable for cases where PET images are missing. To evaluate the performance of our proposed model, we trained it using training patients from Dataset I and tested it with Dataset II. We compared our model (Model 1) with two other models which were trained for specific modality segmentations: Model 2 trained with only CT images, and Model 3 trained with real PET/CT pairs. The performance of the models was evaluated using quantitative metrics, including Dice similarity coefficient (DSC), mean surface distance (MSD), and 95% Hausdorff Distance (HD95). In addition, we evaluated our Model 1 and Model 3 using the 359 test cases in Dataset I. RESULTS Our proposed model(Model 1) achieved promising results for GTV auto-segmentation using PET/CT images, with the flexibility of missing PET images. Specifically, when assessed with only CT images in Dataset II, Model 1 achieved DSC of 0.56 ± 0.16, MSD of 3.4 ± 2.1 mm, and HD95 of 13.9 ± 7.6 mm. When the PET images were included, the performance of our model was improved to DSC of 0.62 ± 0.14, MSD of 2.8 ± 1.7 mm, and HD95 of 10.5 ± 6.5 mm. These results are comparable to those achieved by Model 2 and Model 3, illustrating Model 1's effectiveness in utilizing flexible input modalities. Further analysis using the test dataset from Dataset I showed that Model 1 achieved an average DSC of 0.77, surpassing the overall average DSC of 0.72 among all participants in the HECKTOR Challenge. CONCLUSIONS We successfully refined a multi-modal segmentation tool for accurate GTV delineation for HN cancer. Our method addressed the issue of missing PET images by allowing flexible data input, thereby providing a practical solution for clinical settings where access to PET imaging may be limited.
Collapse
Affiliation(s)
- Yao Zhao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xin Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jack Phan
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xinru Chen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anna Lee
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Cenji Yu
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Huang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tinsu Pan
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - He Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kareem Abdul Wahid
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abdalah S R Mohamed
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mohamed Naser
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Clifton D Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Huynh BN, Groendahl AR, Tomic O, Liland KH, Knudtsen IS, Hoebers F, van Elmpt W, Dale E, Malinen E, Futsaether CM. Deep learning with uncertainty estimation for automatic tumor segmentation in PET/CT of head and neck cancers: impact of model complexity, image processing and augmentation. Biomed Phys Eng Express 2024; 10:055038. [PMID: 39127060 DOI: 10.1088/2057-1976/ad6dcd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Objective.Target volumes for radiotherapy are usually contoured manually, which can be time-consuming and prone to inter- and intra-observer variability. Automatic contouring by convolutional neural networks (CNN) can be fast and consistent but may produce unrealistic contours or miss relevant structures. We evaluate approaches for increasing the quality and assessing the uncertainty of CNN-generated contours of head and neck cancers with PET/CT as input.Approach.Two patient cohorts with head and neck squamous cell carcinoma and baseline18F-fluorodeoxyglucose positron emission tomography and computed tomography images (FDG-PET/CT) were collected retrospectively from two centers. The union of manual contours of the gross primary tumor and involved nodes was used to train CNN models for generating automatic contours. The impact of image preprocessing, image augmentation, transfer learning and CNN complexity, architecture, and dimension (2D or 3D) on model performance and generalizability across centers was evaluated. A Monte Carlo dropout technique was used to quantify and visualize the uncertainty of the automatic contours.Main results. CNN models provided contours with good overlap with the manually contoured ground truth (median Dice Similarity Coefficient: 0.75-0.77), consistent with reported inter-observer variations and previous auto-contouring studies. Image augmentation and model dimension, rather than model complexity, architecture, or advanced image preprocessing, had the largest impact on model performance and cross-center generalizability. Transfer learning on a limited number of patients from a separate center increased model generalizability without decreasing model performance on the original training cohort. High model uncertainty was associated with false positive and false negative voxels as well as low Dice coefficients.Significance.High quality automatic contours can be obtained using deep learning architectures that are not overly complex. Uncertainty estimation of the predicted contours shows potential for highlighting regions of the contour requiring manual revision or flagging segmentations requiring manual inspection and intervention.
Collapse
Affiliation(s)
- Bao Ngoc Huynh
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Aurora Rosvoll Groendahl
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
- Section of Oncology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Oliver Tomic
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ingerid Skjei Knudtsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht, Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Reproduction, Maastricht, Netherlands
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | | |
Collapse
|
4
|
Ha S, Seo SY, Park BS, Han S, Oh JS, Chae SY, Kim JS, Moon DH. Fully Automatic Quantitative Measurement of Equilibrium Radionuclide Angiocardiography Using a Convolutional Neural Network. Clin Nucl Med 2024; 49:727-732. [PMID: 38967505 DOI: 10.1097/rlu.0000000000005275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE The aim of this study was to generate deep learning-based regions of interest (ROIs) from equilibrium radionuclide angiography datasets for left ventricular ejection fraction (LVEF) measurement. PATIENTS AND METHODS Manually drawn ROIs (mROIs) on end-systolic and end-diastolic images were extracted from reports in a Picture Archiving and Communications System. To reduce observer variability, preprocessed ROIs (pROIs) were delineated using a 41% threshold of the maximal pixel counts of the extracted mROIs and were labeled as ground-truth. Background ROIs were automatically created using an algorithm to identify areas with minimum counts within specified probability areas around the end-systolic ROI. A 2-dimensional U-Net convolutional neural network architecture was trained to generate deep learning-based ROIs (dlROIs) from pROIs. The model's performance was evaluated using Lin's concordance correlation coefficient (CCC). Bland-Altman plots were used to assess bias and 95% limits of agreement. RESULTS A total of 41,462 scans (19,309 patients) were included. Strong concordance was found between LVEF measurements from dlROIs and pROIs (CCC = 85.6%; 95% confidence interval, 85.4%-85.9%), and between LVEF measurements from dlROIs and mROIs (CCC = 86.1%; 95% confidence interval, 85.8%-86.3%). In the Bland-Altman analysis, the mean differences and 95% limits of agreement of the LVEF measurements were -0.6% and -6.6% to 5.3%, respectively, for dlROIs and pROIs, and -0.4% and -6.3% to 5.4% for dlROIs and mROIs, respectively. In 37,537 scans (91%), the absolute LVEF difference between dlROIs and mROIs was <5%. CONCLUSIONS Our 2-dimensional U-Net convolutional neural network architecture showed excellent performance in generating LV ROIs from equilibrium radionuclide angiography scans. It may enhance the convenience and reproducibility of LVEF measurements.
Collapse
Affiliation(s)
- Sejin Ha
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seung Yeon Seo
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Byung Soo Park
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sangwon Han
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jungsu S Oh
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sun Young Chae
- Department of Nuclear Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Republic of Korea
| | - Jae Seung Kim
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae Hyuk Moon
- From the Department of Nuclear Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Choi Y, Bang J, Kim SY, Seo M, Jang J. Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net. Eur Radiol 2024; 34:5389-5400. [PMID: 38243135 DOI: 10.1007/s00330-024-10585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 12/05/2023] [Accepted: 12/17/2023] [Indexed: 01/21/2024]
Abstract
PURPOSE To evaluate deep learning-based segmentation models for oropharyngeal squamous cell carcinoma (OPSCC) using CT and MRI with nnU-Net. METHODS This single-center retrospective study included 91 patients with OPSCC. The patients were grouped into the development (n = 56), test 1 (n = 13), and test 2 (n = 22) cohorts. In the development cohort, OPSCC was manually segmented on CT, MR, and co-registered CT-MR images, which served as the ground truth. The multimodal and multichannel input images were then trained using a self-configuring nnU-Net. For evaluation metrics, dice similarity coefficient (DSC) and mean Hausdorff distance (HD) were calculated for test cohorts. Pearson's correlation and Bland-Altman analyses were performed between ground truth and prediction volumes. Intraclass correlation coefficients (ICCs) of radiomic features were calculated for reproducibility assessment. RESULTS All models achieved robust segmentation performances with DSC of 0.64 ± 0.33 (CT), 0.67 ± 0.27 (MR), and 0.65 ± 0.29 (CT-MR) in test cohort 1 and 0.57 ± 0.31 (CT), 0.77 ± 0.08 (MR), and 0.73 ± 0.18 (CT-MR) in test cohort 2. No significant differences were found in DSC among the models. HD of CT-MR (1.57 ± 1.06 mm) and MR models (1.36 ± 0.61 mm) were significantly lower than that of the CT model (3.48 ± 5.0 mm) (p = 0.037 and p = 0.014, respectively). The correlation coefficients between the ground truth and prediction volumes for CT, MR, and CT-MR models were 0.88, 0.93, and 0.9, respectively. MR models demonstrated excellent mean ICCs of radiomic features (0.91-0.93). CONCLUSION The self-configuring nnU-Net demonstrated reliable and accurate segmentation of OPSCC on CT and MRI. The multimodal CT-MR model showed promising results for the simultaneous segmentation on CT and MRI. CLINICAL RELEVANCE STATEMENT Deep learning-based automatic detection and segmentation of oropharyngeal squamous cell carcinoma on pre-treatment CT and MRI would facilitate radiologic response assessment and radiotherapy planning. KEY POINTS • The nnU-Net framework produced a reliable and accurate segmentation of OPSCC on CT and MRI. • MR and CT-MR models showed higher DSC and lower Hausdorff distance than the CT model. • Correlation coefficients between the ground truth and predicted segmentation volumes were high in all the three models.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea.
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Centre, 43 Olympic-Ro 88, Songpa-Gu, Seoul, 05505, Republic of Korea.
| | - Jooin Bang
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Sang-Yeon Kim
- Department of Otolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Minkook Seo
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| | - Jinhee Jang
- Department of Radiology, Seoul St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
6
|
Artesani A, Bruno A, Gelardi F, Chiti A. Empowering PET: harnessing deep learning for improved clinical insight. Eur Radiol Exp 2024; 8:17. [PMID: 38321340 PMCID: PMC10847083 DOI: 10.1186/s41747-023-00413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 02/08/2024] Open
Abstract
This review aims to take a journey into the transformative impact of artificial intelligence (AI) on positron emission tomography (PET) imaging. To this scope, a broad overview of AI applications in the field of nuclear medicine and a thorough exploration of deep learning (DL) implementations in cancer diagnosis and therapy through PET imaging will be presented. We firstly describe the behind-the-scenes use of AI for image generation, including acquisition (event positioning, noise reduction though time-of-flight estimation and scatter correction), reconstruction (data-driven and model-driven approaches), restoration (supervised and unsupervised methods), and motion correction. Thereafter, we outline the integration of AI into clinical practice through the applications to segmentation, detection and classification, quantification, treatment planning, dosimetry, and radiomics/radiogenomics combined to tumour biological characteristics. Thus, this review seeks to showcase the overarching transformation of the field, ultimately leading to tangible improvements in patient treatment and response assessment. Finally, limitations and ethical considerations of the AI application to PET imaging and future directions of multimodal data mining in this discipline will be briefly discussed, including pressing challenges to the adoption of AI in molecular imaging such as the access to and interoperability of huge amount of data as well as the "black-box" problem, contributing to the ongoing dialogue on the transformative potential of AI in nuclear medicine.Relevance statementAI is rapidly revolutionising the world of medicine, including the fields of radiology and nuclear medicine. In the near future, AI will be used to support healthcare professionals. These advances will lead to improvements in diagnosis, in the assessment of response to treatment, in clinical decision making and in patient management.Key points• Applying AI has the potential to enhance the entire PET imaging pipeline.• AI may support several clinical tasks in both PET diagnosis and prognosis.• Interpreting the relationships between imaging and multiomics data will heavily rely on AI.
Collapse
Affiliation(s)
- Alessia Artesani
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele, 20090, Italy
| | - Alessandro Bruno
- Department of Business, Law, Economics and Consumer Behaviour "Carlo A. Ricciardi", IULM Libera Università Di Lingue E Comunicazione, Via P. Filargo 38, Milan, 20143, Italy
| | - Fabrizia Gelardi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Milan, Pieve Emanuele, 20090, Italy.
- Vita-Salute San Raffaele University, Via Olgettina 58, Milan, 20132, Italy.
| | - Arturo Chiti
- Vita-Salute San Raffaele University, Via Olgettina 58, Milan, 20132, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Via Olgettina 60, Milan, 20132, Italy
| |
Collapse
|
7
|
Shiri I, Amini M, Yousefirizi F, Vafaei Sadr A, Hajianfar G, Salimi Y, Mansouri Z, Jenabi E, Maghsudi M, Mainta I, Becker M, Rahmim A, Zaidi H. Information fusion for fully automated segmentation of head and neck tumors from PET and CT images. Med Phys 2024; 51:319-333. [PMID: 37475591 DOI: 10.1002/mp.16615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND PET/CT images combining anatomic and metabolic data provide complementary information that can improve clinical task performance. PET image segmentation algorithms exploiting the multi-modal information available are still lacking. PURPOSE Our study aimed to assess the performance of PET and CT image fusion for gross tumor volume (GTV) segmentations of head and neck cancers (HNCs) utilizing conventional, deep learning (DL), and output-level voting-based fusions. METHODS The current study is based on a total of 328 histologically confirmed HNCs from six different centers. The images were automatically cropped to a 200 × 200 head and neck region box, and CT and PET images were normalized for further processing. Eighteen conventional image-level fusions were implemented. In addition, a modified U2-Net architecture as DL fusion model baseline was used. Three different input, layer, and decision-level information fusions were used. Simultaneous truth and performance level estimation (STAPLE) and majority voting to merge different segmentation outputs (from PET and image-level and network-level fusions), that is, output-level information fusion (voting-based fusions) were employed. Different networks were trained in a 2D manner with a batch size of 64. Twenty percent of the dataset with stratification concerning the centers (20% in each center) were used for final result reporting. Different standard segmentation metrics and conventional PET metrics, such as SUV, were calculated. RESULTS In single modalities, PET had a reasonable performance with a Dice score of 0.77 ± 0.09, while CT did not perform acceptably and reached a Dice score of only 0.38 ± 0.22. Conventional fusion algorithms obtained a Dice score range of [0.76-0.81] with guided-filter-based context enhancement (GFCE) at the low-end, and anisotropic diffusion and Karhunen-Loeve transform fusion (ADF), multi-resolution singular value decomposition (MSVD), and multi-level image decomposition based on latent low-rank representation (MDLatLRR) at the high-end. All DL fusion models achieved Dice scores of 0.80. Output-level voting-based models outperformed all other models, achieving superior results with a Dice score of 0.84 for Majority_ImgFus, Majority_All, and Majority_Fast. A mean error of almost zero was achieved for all fusions using SUVpeak , SUVmean and SUVmedian . CONCLUSION PET/CT information fusion adds significant value to segmentation tasks, considerably outperforming PET-only and CT-only methods. In addition, both conventional image-level and DL fusions achieve competitive results. Meanwhile, output-level voting-based fusion using majority voting of several algorithms results in statistically significant improvements in the segmentation of HNC.
Collapse
Affiliation(s)
- Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Alireza Vafaei Sadr
- Institute of Pathology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, USA
| | - Ghasem Hajianfar
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Yazdan Salimi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Zahra Mansouri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Elnaz Jenabi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Maghsudi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ismini Mainta
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Minerva Becker
- Service of Radiology, Geneva University Hospital, Geneva, Switzerland
| | - Arman Rahmim
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Department of Radiology and Physics, University of British Columbia, Vancouver, Canada
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Hussain D, Al-Masni MA, Aslam M, Sadeghi-Niaraki A, Hussain J, Gu YH, Naqvi RA. Revolutionizing tumor detection and classification in multimodality imaging based on deep learning approaches: Methods, applications and limitations. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:857-911. [PMID: 38701131 DOI: 10.3233/xst-230429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
BACKGROUND The emergence of deep learning (DL) techniques has revolutionized tumor detection and classification in medical imaging, with multimodal medical imaging (MMI) gaining recognition for its precision in diagnosis, treatment, and progression tracking. OBJECTIVE This review comprehensively examines DL methods in transforming tumor detection and classification across MMI modalities, aiming to provide insights into advancements, limitations, and key challenges for further progress. METHODS Systematic literature analysis identifies DL studies for tumor detection and classification, outlining methodologies including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and their variants. Integration of multimodality imaging enhances accuracy and robustness. RESULTS Recent advancements in DL-based MMI evaluation methods are surveyed, focusing on tumor detection and classification tasks. Various DL approaches, including CNNs, YOLO, Siamese Networks, Fusion-Based Models, Attention-Based Models, and Generative Adversarial Networks, are discussed with emphasis on PET-MRI, PET-CT, and SPECT-CT. FUTURE DIRECTIONS The review outlines emerging trends and future directions in DL-based tumor analysis, aiming to guide researchers and clinicians toward more effective diagnosis and prognosis. Continued innovation and collaboration are stressed in this rapidly evolving domain. CONCLUSION Conclusions drawn from literature analysis underscore the efficacy of DL approaches in tumor detection and classification, highlighting their potential to address challenges in MMI analysis and their implications for clinical practice.
Collapse
Affiliation(s)
- Dildar Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Mohammed A Al-Masni
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Muhammad Aslam
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Abolghasem Sadeghi-Niaraki
- Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul, Korea
| | - Jamil Hussain
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Yeong Hyeon Gu
- Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Korea
| | - Rizwan Ali Naqvi
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Korea
| |
Collapse
|
9
|
Rokhshad R, Salehi SN, Yavari A, Shobeiri P, Esmaeili M, Manila N, Motamedian SR, Mohammad-Rahimi H. Deep learning for diagnosis of head and neck cancers through radiographic data: a systematic review and meta-analysis. Oral Radiol 2024; 40:1-20. [PMID: 37855976 DOI: 10.1007/s11282-023-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/23/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE This study aims to review deep learning applications for detecting head and neck cancer (HNC) using magnetic resonance imaging (MRI) and radiographic data. METHODS Through January 2023, a PubMed, Scopus, Embase, Google Scholar, IEEE, and arXiv search were carried out. The inclusion criteria were implementing head and neck medical images (computed tomography (CT), positron emission tomography (PET), MRI, Planar scans, and panoramic X-ray) of human subjects with segmentation, object detection, and classification deep learning models for head and neck cancers. The risk of bias was rated with the quality assessment of diagnostic accuracy studies (QUADAS-2) tool. For the meta-analysis diagnostic odds ratio (DOR) was calculated. Deeks' funnel plot was used to assess publication bias. MIDAS and Metandi packages were used to analyze diagnostic test accuracy in STATA. RESULTS From 1967 studies, 32 were found eligible after the search and screening procedures. According to the QUADAS-2 tool, 7 included studies had a low risk of bias for all domains. According to the results of all included studies, the accuracy varied from 82.6 to 100%. Additionally, specificity ranged from 66.6 to 90.1%, sensitivity from 74 to 99.68%. Fourteen studies that provided sufficient data were included for meta-analysis. The pooled sensitivity was 90% (95% CI 0.820.94), and the pooled specificity was 92% (CI 95% 0.87-0.96). The DORs were 103 (27-251). Publication bias was not detected based on the p-value of 0.75 in the meta-analysis. CONCLUSION With a head and neck screening deep learning model, detectable screening processes can be enhanced with high specificity and sensitivity.
Collapse
Affiliation(s)
- Rata Rokhshad
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group, AI On Health, Berlin, Germany
| | - Seyyede Niloufar Salehi
- Executive Secretary of Research Committee, Board Director of Scientific Society, Dental Faculty, Azad University, Tehran, Iran
| | - Amirmohammad Yavari
- Student Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parnian Shobeiri
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahdieh Esmaeili
- Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nisha Manila
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group, AI On Health, Berlin, Germany
- Department of Diagnostic Sciences, Louisiana State University Health Science Center School of Dentistry, Louisiana, USA
| | - Saeed Reza Motamedian
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group, AI On Health, Berlin, Germany.
- Dentofacial Deformities Research Center, Research Institute of Dental, Sciences & Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Daneshjou Blvd, Tehran, Iran.
| | - Hossein Mohammad-Rahimi
- Topic Group Dental Diagnostics and Digital Dentistry, ITU/WHO Focus Group, AI On Health, Berlin, Germany
| |
Collapse
|
10
|
Bollen H, Gulyban A, Nuyts S. Impact of consensus guidelines on delineation of primary tumor clinical target volume (CTVp) for head and neck cancer: Results of a national review project. Radiother Oncol 2023; 189:109915. [PMID: 37739317 DOI: 10.1016/j.radonc.2023.109915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND PURPOSE A significant interobserver variability (IOV) for clinical target volume of the primary tumor (CTVp) delineation was shown in a previous national review project. Since then, international expert consensus guidelines (CG) for the delineation of CTVp were published. The aim of this follow-up study was to 1) objectify the extent of implementation of the CG, 2) assess its impact on delineation quality and consistency, 3) identify any remaining ambiguities. MATERIALS AND METHODS All Belgian RT departments were invited to complete an online survey and submit CTVp for 5 reference cases. Organs at risk and GTV of the primary tumor were predefined. Margins, volumes, IOV between all participating centers (IOVall) and IOV compared to a reference consensus delineation (IOVref) were calculated and compared to the previous analysis. A qualitative analysis was performed assessing the correct interpretation of the CG for each case. RESULTS 17 RT centers completed both survey and delineations, of which 88% had implemented CG. Median DSCref for CTVp_total was 0.80-0.92. IOVall and IOVref improved significantly for the centers following CG (p = 0.005). IOVref for CTVp_high was small with a DSC higher than 0.90 for all cases. A significant volume decrease for the CTVp receiving 70 Gy was observed. Interpretation of CG was more accurate for (supra)glottic carcinoma. 60% of the radiation oncologists thinks clarification of CG is indicated. CONCLUSION Implementation of consensus guidelines for CTVp delineation is already fairly advanced on a national level, resulting in significantly increased delineation uniformity. The accompanying substantial decrease of CTV receiving high dose RT calls for caution and correct interpretation of CG. Clarification of the existing guidelines seems appropriate especially for oropharyngeal and hypopharyngeal carcinoma.
Collapse
Affiliation(s)
- Heleen Bollen
- KU Leuven, Dept. Oncology, Laboratory of Experimental Radiotherapy, & UZ Leuven, Radiation Oncology, B-3000, Leuven, Belgium.
| | - Akos Gulyban
- Medical Physics department, Institut Jules Bordet, Brussels, Belgium; Radiophysics and MRI physics laboratory, Faculty of Medicine, Free University of Bruxelles (ULB), Brussels, Belgium
| | - Sandra Nuyts
- KU Leuven, Dept. Oncology, Laboratory of Experimental Radiotherapy, & UZ Leuven, Radiation Oncology, B-3000, Leuven, Belgium
| |
Collapse
|
11
|
Tsilivigkos C, Athanasopoulos M, Micco RD, Giotakis A, Mastronikolis NS, Mulita F, Verras GI, Maroulis I, Giotakis E. Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review. J Clin Med 2023; 12:6973. [PMID: 38002588 PMCID: PMC10672270 DOI: 10.3390/jcm12226973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, the field of medicine has witnessed significant progress in artificial intelligence (AI), the Internet of Medical Things (IoMT), and deep learning (DL) systems. Otorhinolaryngology, and imaging in its various subspecialties, has not remained untouched by this transformative trend. As the medical landscape evolves, the integration of these technologies becomes imperative in augmenting patient care, fostering innovation, and actively participating in the ever-evolving synergy between computer vision techniques in otorhinolaryngology and AI. To that end, we conducted a thorough search on MEDLINE for papers published until June 2023, utilizing the keywords 'otorhinolaryngology', 'imaging', 'computer vision', 'artificial intelligence', and 'deep learning', and at the same time conducted manual searching in the references section of the articles included in our manuscript. Our search culminated in the retrieval of 121 related articles, which were subsequently subdivided into the following categories: imaging in head and neck, otology, and rhinology. Our objective is to provide a comprehensive introduction to this burgeoning field, tailored for both experienced specialists and aspiring residents in the domain of deep learning algorithms in imaging techniques in otorhinolaryngology.
Collapse
Affiliation(s)
- Christos Tsilivigkos
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Michail Athanasopoulos
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Riccardo di Micco
- Department of Otolaryngology and Head and Neck Surgery, Medical School of Hannover, 30625 Hannover, Germany;
| | - Aris Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Nicholas S. Mastronikolis
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Georgios-Ioannis Verras
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Ioannis Maroulis
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Evangelos Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| |
Collapse
|
12
|
Huynh BN, Groendahl AR, Tomic O, Liland KH, Knudtsen IS, Hoebers F, van Elmpt W, Malinen E, Dale E, Futsaether CM. Head and neck cancer treatment outcome prediction: a comparison between machine learning with conventional radiomics features and deep learning radiomics. Front Med (Lausanne) 2023; 10:1217037. [PMID: 37711738 PMCID: PMC10498924 DOI: 10.3389/fmed.2023.1217037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023] Open
Abstract
Background Radiomics can provide in-depth characterization of cancers for treatment outcome prediction. Conventional radiomics rely on extraction of image features within a pre-defined image region of interest (ROI) which are typically fed to a classification algorithm for prediction of a clinical endpoint. Deep learning radiomics allows for a simpler workflow where images can be used directly as input to a convolutional neural network (CNN) with or without a pre-defined ROI. Purpose The purpose of this study was to evaluate (i) conventional radiomics and (ii) deep learning radiomics for predicting overall survival (OS) and disease-free survival (DFS) for patients with head and neck squamous cell carcinoma (HNSCC) using pre-treatment 18F-fluorodeoxuglucose positron emission tomography (FDG PET) and computed tomography (CT) images. Materials and methods FDG PET/CT images and clinical data of patients with HNSCC treated with radio(chemo)therapy at Oslo University Hospital (OUS; n = 139) and Maastricht University Medical Center (MAASTRO; n = 99) were collected retrospectively. OUS data was used for model training and initial evaluation. MAASTRO data was used for external testing to assess cross-institutional generalizability. Models trained on clinical and/or conventional radiomics features, with or without feature selection, were compared to CNNs trained on PET/CT images without or with the gross tumor volume (GTV) included. Model performance was measured using accuracy, area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), and the F1 score calculated for both classes separately. Results CNNs trained directly on images achieved the highest performance on external data for both endpoints. Adding both clinical and radiomics features to these image-based models increased performance further. Conventional radiomics including clinical data could achieve competitive performance. However, feature selection on clinical and radiomics data lead to overfitting and poor cross-institutional generalizability. CNNs without tumor and node contours achieved close to on-par performance with CNNs including contours. Conclusion High performance and cross-institutional generalizability can be achieved by combining clinical data, radiomics features and medical images together with deep learning models. However, deep learning models trained on images without contours can achieve competitive performance and could see potential use as an initial screening tool for high-risk patients.
Collapse
Affiliation(s)
- Bao Ngoc Huynh
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | | | - Oliver Tomic
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Kristian Hovde Liland
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Ingerid Skjei Knudtsen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Frank Hoebers
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | - Eirik Malinen
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
13
|
Nikulin P, Zschaeck S, Maus J, Cegla P, Lombardo E, Furth C, Kaźmierska J, Rogasch JMM, Holzgreve A, Albert NL, Ferentinos K, Strouthos I, Hajiyianni M, Marschner SN, Belka C, Landry G, Cholewinski W, Kotzerke J, Hofheinz F, van den Hoff J. A convolutional neural network with self-attention for fully automated metabolic tumor volume delineation of head and neck cancer in
[
18
F]FDG PET/CT. Eur J Nucl Med Mol Imaging 2023; 50:2751-2766. [PMID: 37079128 PMCID: PMC10317885 DOI: 10.1007/s00259-023-06197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE PET-derived metabolic tumor volume (MTV) and total lesion glycolysis of the primary tumor are known to be prognostic of clinical outcome in head and neck cancer (HNC). Including evaluation of lymph node metastases can further increase the prognostic value of PET but accurate manual delineation and classification of all lesions is time-consuming and prone to interobserver variability. Our goal, therefore, was development and evaluation of an automated tool for MTV delineation/classification of primary tumor and lymph node metastases in PET/CT investigations of HNC patients. METHODS Automated lesion delineation was performed with a residual 3D U-Net convolutional neural network (CNN) incorporating a multi-head self-attention block. 698[ 18 F]FDG PET/CT scans from 3 different sites and 5 public databases were used for network training and testing. An external dataset of 181[ 18 F]FDG PET/CT scans from 2 additional sites was employed to assess the generalizability of the network. In these data, primary tumor and lymph node (LN) metastases were interactively delineated and labeled by two experienced physicians. Performance of the trained network models was assessed by 5-fold cross-validation in the main dataset and by pooling results from the 5 developed models in the external dataset. The Dice similarity coefficient (DSC) for individual delineation tasks and the primary tumor/metastasis classification accuracy were used as evaluation metrics. Additionally, a survival analysis using univariate Cox regression was performed comparing achieved group separation for manual and automated delineation, respectively. RESULTS In the cross-validation experiment, delineation of all malignant lesions with the trained U-Net models achieves DSC of 0.885, 0.805, and 0.870 for primary tumor, LN metastases, and the union of both, respectively. In external testing, the DSC reaches 0.850, 0.724, and 0.823 for primary tumor, LN metastases, and the union of both, respectively. The voxel classification accuracy was 98.0% and 97.9% in cross-validation and external data, respectively. Univariate Cox analysis in the cross-validation and the external testing reveals that manually and automatically derived total MTVs are both highly prognostic with respect to overall survival, yielding essentially identical hazard ratios (HR) (HR man = 1.9 ;p < 0.001 vs.HR cnn = 1.8 ;p < 0.001 in cross-validation andHR man = 1.8 ;p = 0.011 vs.HR cnn = 1.9 ;p = 0.004 in external testing). CONCLUSION To the best of our knowledge, this work presents the first CNN model for successful MTV delineation and lesion classification in HNC. In the vast majority of patients, the network performs satisfactory delineation and classification of primary tumor and lymph node metastases and only rarely requires more than minimal manual correction. It is thus able to massively facilitate study data evaluation in large patient groups and also does have clear potential for supervised clinical application.
Collapse
Affiliation(s)
- Pavel Nikulin
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jens Maus
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
| | - Elia Lombardo
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Christian Furth
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna Kaźmierska
- Electroradiology Department, University of Medical Sciences, Poznan, Poland
- Radiotherapy Department II, Greater Poland Cancer Centre, Poznan, Poland
| | - Julian M M Rogasch
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Konstantinos Ferentinos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Iosif Strouthos
- Department of Radiation Oncology, German Oncology Center, European University Cyprus, Limassol, Cyprus
| | - Marina Hajiyianni
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian N Marschner
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | - Witold Cholewinski
- Department of Nuclear Medicine, Greater Poland Cancer Centre, Poznan, Poland
- Electroradiology Department, University of Medical Sciences, Poznan, Poland
| | - Jörg Kotzerke
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Frank Hofheinz
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Jörg van den Hoff
- Helmholtz-Zentrum Dresden-Rossendorf, PET Center, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Franzese C, Dei D, Lambri N, Teriaca MA, Badalamenti M, Crespi L, Tomatis S, Loiacono D, Mancosu P, Scorsetti M. Enhancing Radiotherapy Workflow for Head and Neck Cancer with Artificial Intelligence: A Systematic Review. J Pers Med 2023; 13:946. [PMID: 37373935 DOI: 10.3390/jpm13060946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Head and neck cancer (HNC) is characterized by complex-shaped tumors and numerous organs at risk (OARs), inducing challenging radiotherapy (RT) planning, optimization, and delivery. In this review, we provided a thorough description of the applications of artificial intelligence (AI) tools in the HNC RT process. METHODS The PubMed database was queried, and a total of 168 articles (2016-2022) were screened by a group of experts in radiation oncology. The group selected 62 articles, which were subdivided into three categories, representing the whole RT workflow: (i) target and OAR contouring, (ii) planning, and (iii) delivery. RESULTS The majority of the selected studies focused on the OARs segmentation process. Overall, the performance of AI models was evaluated using standard metrics, while limited research was found on how the introduction of AI could impact clinical outcomes. Additionally, papers usually lacked information about the confidence level associated with the predictions made by the AI models. CONCLUSIONS AI represents a promising tool to automate the RT workflow for the complex field of HNC treatment. To ensure that the development of AI technologies in RT is effectively aligned with clinical needs, we suggest conducting future studies within interdisciplinary groups, including clinicians and computer scientists.
Collapse
Affiliation(s)
- Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Damiano Dei
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Nicola Lambri
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Maria Ausilia Teriaca
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marco Badalamenti
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Leonardo Crespi
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
- Centre for Health Data Science, Human Technopole, 20157 Milan, Italy
| | - Stefano Tomatis
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Daniele Loiacono
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milan, Italy
| | - Pietro Mancosu
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20072 Milan, Italy
- IRCCS Humanitas Research Hospital, Radiotherapy and Radiosurgery Department, via Manzoni 56, Rozzano, 20089 Milan, Italy
| |
Collapse
|
15
|
Avery EW, Joshi K, Mehra S, Mahajan A. Role of PET/CT in Oropharyngeal Cancers. Cancers (Basel) 2023; 15:2651. [PMID: 37174116 PMCID: PMC10177278 DOI: 10.3390/cancers15092651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Oropharyngeal squamous cell carcinoma (OPSCC) comprises cancers of the tonsils, tongue base, soft palate, and uvula. The staging of oropharyngeal cancers varies depending upon the presence or absence of human papillomavirus (HPV)-directed pathogenesis. The incidence of HPV-associated oropharyngeal cancer (HPV + OPSCC) is expected to continue to rise over the coming decades. PET/CT is a useful modality for the diagnosis, staging, and follow up of patients with oropharyngeal cancers undergoing treatment and surveillance.
Collapse
Affiliation(s)
- Emily W. Avery
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kavita Joshi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Saral Mehra
- Department of Otolaryngology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Amit Mahajan
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
16
|
Bollen H, Willems S, Wegge M, Maes F, Nuyts S. Benefits of automated gross tumor volume segmentation in head and neck cancer using multi-modality information. Radiother Oncol 2023; 182:109574. [PMID: 36822358 DOI: 10.1016/j.radonc.2023.109574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE Gross tumor volume (GTV) delineation for head and neck cancer (HNC) radiation therapy planning is time consuming and prone to interobserver variability (IOV). The aim of this study was (1) to develop an automated GTV delineation approach of primary tumor (GTVp) and pathologic lymph nodes (GTVn) based on a 3D convolutional neural network (CNN) exploiting multi-modality imaging input as required in clinical practice, and (2) to validate its accuracy, efficiency and IOV compared to manual delineation in a clinical setting. METHODS Two datasets were retrospectively collected from 150 clinical cases. CNNs were trained for GTV delineation with consensus delineation as ground truth, with either single (CT) or co-registered multi-modal (CT + PET or CT + MRI) imaging data as input. For validation, GTVs were delineated on 20 new cases by two observers, once manually, once by correcting the delineations generated by the CNN. RESULTS Both multi-modality CNNs performed better than the single-modality CNN and were selected for clinical validation. Mean Dice Similarity Coefficient (DSC) for (GTVp, GTVn) respectively between automated and manual delineations was (69%, 79%) for CT + PET and (59%,71%) for CT + MRI. Mean DSC between automated and corrected delineations was (81%,89%) for CT + PET and (69%,77%) for CT + MRI. Mean DSC between observers was (76%,86%) for manual delineations and (95%,96%) for corrected delineations, indicating a significant decrease in IOV (p < 10-5), while efficiency increased significantly (48%, p < 10-5). CONCLUSION Multi-modality automated delineation of GTV of HNC was shown to be more efficient and consistent compared to manual delineation in a clinical setting and beneficial over a single-modality approach.
Collapse
Affiliation(s)
- Heleen Bollen
- KU Leuven, Dept. Oncology, Laboratory of Experimental Radiotherapy, & UZ Leuven, Radiation Oncology, B-3000 Leuven, Belgium.
| | - Siri Willems
- KU Leuven, Dept. ESAT, Processing Speech and Images (PSI), & UZ Leuven, Medical Imaging Research Center, B-3000 Leuven, Belgium
| | - Marilyn Wegge
- KU Leuven, Dept. Oncology, Laboratory of Experimental Radiotherapy, & UZ Leuven, Radiation Oncology, B-3000 Leuven, Belgium
| | - Frederik Maes
- KU Leuven, Dept. ESAT, Processing Speech and Images (PSI), & UZ Leuven, Medical Imaging Research Center, B-3000 Leuven, Belgium
| | - Sandra Nuyts
- KU Leuven, Dept. Oncology, Laboratory of Experimental Radiotherapy, & UZ Leuven, Radiation Oncology, B-3000 Leuven, Belgium
| |
Collapse
|
17
|
Mackay K, Bernstein D, Glocker B, Kamnitsas K, Taylor A. A Review of the Metrics Used to Assess Auto-Contouring Systems in Radiotherapy. Clin Oncol (R Coll Radiol) 2023; 35:354-369. [PMID: 36803407 DOI: 10.1016/j.clon.2023.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
Auto-contouring could revolutionise future planning of radiotherapy treatment. The lack of consensus on how to assess and validate auto-contouring systems currently limits clinical use. This review formally quantifies the assessment metrics used in studies published during one calendar year and assesses the need for standardised practice. A PubMed literature search was undertaken for papers evaluating radiotherapy auto-contouring published during 2021. Papers were assessed for types of metric and the methodology used to generate ground-truth comparators. Our PubMed search identified 212 studies, of which 117 met the criteria for clinical review. Geometric assessment metrics were used in 116 of 117 studies (99.1%). This includes the Dice Similarity Coefficient used in 113 (96.6%) studies. Clinically relevant metrics, such as qualitative, dosimetric and time-saving metrics, were less frequently used in 22 (18.8%), 27 (23.1%) and 18 (15.4%) of 117 studies, respectively. There was heterogeneity within each category of metric. Over 90 different names for geometric measures were used. Methods for qualitative assessment were different in all but two papers. Variation existed in the methods used to generate radiotherapy plans for dosimetric assessment. Consideration of editing time was only given in 11 (9.4%) papers. A single manual contour as a ground-truth comparator was used in 65 (55.6%) studies. Only 31 (26.5%) studies compared auto-contours to usual inter- and/or intra-observer variation. In conclusion, significant variation exists in how research papers currently assess the accuracy of automatically generated contours. Geometric measures are the most popular, however their clinical utility is unknown. There is heterogeneity in the methods used to perform clinical assessment. Considering the different stages of system implementation may provide a framework to decide the most appropriate metrics. This analysis supports the need for a consensus on the clinical implementation of auto-contouring.
Collapse
Affiliation(s)
- K Mackay
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK.
| | - D Bernstein
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | - B Glocker
- Department of Computing, Imperial College London, South Kensington Campus, London, UK
| | - K Kamnitsas
- Department of Computing, Imperial College London, South Kensington Campus, London, UK; Department of Engineering Science, University of Oxford, Oxford, UK
| | - A Taylor
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| |
Collapse
|
18
|
Groendahl AR, Huynh BN, Tomic O, Søvik Å, Dale E, Malinen E, Skogmo HK, Futsaether CM. Automatic gross tumor segmentation of canine head and neck cancer using deep learning and cross-species transfer learning. Front Vet Sci 2023; 10:1143986. [PMID: 37026102 PMCID: PMC10070749 DOI: 10.3389/fvets.2023.1143986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Background Radiotherapy (RT) is increasingly being used on dogs with spontaneous head and neck cancer (HNC), which account for a large percentage of veterinary patients treated with RT. Accurate definition of the gross tumor volume (GTV) is a vital part of RT planning, ensuring adequate dose coverage of the tumor while limiting the radiation dose to surrounding tissues. Currently the GTV is contoured manually in medical images, which is a time-consuming and challenging task. Purpose The purpose of this study was to evaluate the applicability of deep learning-based automatic segmentation of the GTV in canine patients with HNC. Materials and methods Contrast-enhanced computed tomography (CT) images and corresponding manual GTV contours of 36 canine HNC patients and 197 human HNC patients were included. A 3D U-Net convolutional neural network (CNN) was trained to automatically segment the GTV in canine patients using two main approaches: (i) training models from scratch based solely on canine CT images, and (ii) using cross-species transfer learning where models were pretrained on CT images of human patients and then fine-tuned on CT images of canine patients. For the canine patients, automatic segmentations were assessed using the Dice similarity coefficient (Dice), the positive predictive value, the true positive rate, and surface distance metrics, calculated from a four-fold cross-validation strategy where each fold was used as a validation set and test set once in independent model runs. Results CNN models trained from scratch on canine data or by using transfer learning obtained mean test set Dice scores of 0.55 and 0.52, respectively, indicating acceptable auto-segmentations, similar to the mean Dice performances reported for CT-based automatic segmentation in human HNC studies. Automatic segmentation of nasal cavity tumors appeared particularly promising, resulting in mean test set Dice scores of 0.69 for both approaches. Conclusion In conclusion, deep learning-based automatic segmentation of the GTV using CNN models based on canine data only or a cross-species transfer learning approach shows promise for future application in RT of canine HNC patients.
Collapse
Affiliation(s)
- Aurora Rosvoll Groendahl
- Faculty of Science and Technology, Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Bao Ngoc Huynh
- Faculty of Science and Technology, Department of Physics, Norwegian University of Life Sciences, Ås, Norway
| | - Oliver Tomic
- Faculty of Science and Technology, Department of Data Science, Norwegian University of Life Sciences, Ås, Norway
| | - Åste Søvik
- Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Einar Dale
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Medical Physics, Oslo University Hospital, Oslo, Norway
| | - Hege Kippenes Skogmo
- Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Cecilia Marie Futsaether
- Faculty of Science and Technology, Department of Physics, Norwegian University of Life Sciences, Ås, Norway
- *Correspondence: Cecilia Marie Futsaether
| |
Collapse
|
19
|
Xu J, Zeng B, Egger J, Wang C, Smedby Ö, Jiang X, Chen X. A review on AI-based medical image computing in head and neck surgery. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac840f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Head and neck surgery is a fine surgical procedure with a complex anatomical space, difficult operation and high risk. Medical image computing (MIC) that enables accurate and reliable preoperative planning is often needed to reduce the operational difficulty of surgery and to improve patient survival. At present, artificial intelligence, especially deep learning, has become an intense focus of research in MIC. In this study, the application of deep learning-based MIC in head and neck surgery is reviewed. Relevant literature was retrieved on the Web of Science database from January 2015 to May 2022, and some papers were selected for review from mainstream journals and conferences, such as IEEE Transactions on Medical Imaging, Medical Image Analysis, Physics in Medicine and Biology, Medical Physics, MICCAI, etc. Among them, 65 references are on automatic segmentation, 15 references on automatic landmark detection, and eight references on automatic registration. In the elaboration of the review, first, an overview of deep learning in MIC is presented. Then, the application of deep learning methods is systematically summarized according to the clinical needs, and generalized into segmentation, landmark detection and registration of head and neck medical images. In segmentation, it is mainly focused on the automatic segmentation of high-risk organs, head and neck tumors, skull structure and teeth, including the analysis of their advantages, differences and shortcomings. In landmark detection, the focus is mainly on the introduction of landmark detection in cephalometric and craniomaxillofacial images, and the analysis of their advantages and disadvantages. In registration, deep learning networks for multimodal image registration of the head and neck are presented. Finally, their shortcomings and future development directions are systematically discussed. The study aims to serve as a reference and guidance for researchers, engineers or doctors engaged in medical image analysis of head and neck surgery.
Collapse
|
20
|
Barragán-Montero A, Bibal A, Dastarac MH, Draguet C, Valdés G, Nguyen D, Willems S, Vandewinckele L, Holmström M, Löfman F, Souris K, Sterpin E, Lee JA. Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency. Phys Med Biol 2022; 67:10.1088/1361-6560/ac678a. [PMID: 35421855 PMCID: PMC9870296 DOI: 10.1088/1361-6560/ac678a] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/14/2022] [Indexed: 01/26/2023]
Abstract
The interest in machine learning (ML) has grown tremendously in recent years, partly due to the performance leap that occurred with new techniques of deep learning, convolutional neural networks for images, increased computational power, and wider availability of large datasets. Most fields of medicine follow that popular trend and, notably, radiation oncology is one of those that are at the forefront, with already a long tradition in using digital images and fully computerized workflows. ML models are driven by data, and in contrast with many statistical or physical models, they can be very large and complex, with countless generic parameters. This inevitably raises two questions, namely, the tight dependence between the models and the datasets that feed them, and the interpretability of the models, which scales with its complexity. Any problems in the data used to train the model will be later reflected in their performance. This, together with the low interpretability of ML models, makes their implementation into the clinical workflow particularly difficult. Building tools for risk assessment and quality assurance of ML models must involve then two main points: interpretability and data-model dependency. After a joint introduction of both radiation oncology and ML, this paper reviews the main risks and current solutions when applying the latter to workflows in the former. Risks associated with data and models, as well as their interaction, are detailed. Next, the core concepts of interpretability, explainability, and data-model dependency are formally defined and illustrated with examples. Afterwards, a broad discussion goes through key applications of ML in workflows of radiation oncology as well as vendors' perspectives for the clinical implementation of ML.
Collapse
Affiliation(s)
- Ana Barragán-Montero
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Adrien Bibal
- PReCISE, NaDI Institute, Faculty of Computer Science, UNamur and CENTAL, ILC, UCLouvain, Belgium
| | - Margerie Huet Dastarac
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Camille Draguet
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - Gilmer Valdés
- Department of Radiation Oncology, Department of Epidemiology and Biostatistics, University of California, San Francisco, United States of America
| | - Dan Nguyen
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, United States of America
| | - Siri Willems
- ESAT/PSI, KU Leuven Belgium & MIRC, UZ Leuven, Belgium
| | | | | | | | - Kevin Souris
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Edmond Sterpin
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium
| | - John A Lee
- Molecular Imaging, Radiation and Oncology (MIRO) Laboratory, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| |
Collapse
|
21
|
Decentralized Distributed Multi-institutional PET Image Segmentation Using a Federated Deep Learning Framework. Clin Nucl Med 2022; 47:606-617. [PMID: 35442222 DOI: 10.1097/rlu.0000000000004194] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The generalizability and trustworthiness of deep learning (DL)-based algorithms depend on the size and heterogeneity of training datasets. However, because of patient privacy concerns and ethical and legal issues, sharing medical images between different centers is restricted. Our objective is to build a federated DL-based framework for PET image segmentation utilizing a multicentric dataset and to compare its performance with the centralized DL approach. METHODS PET images from 405 head and neck cancer patients from 9 different centers formed the basis of this study. All tumors were segmented manually. PET images converted to SUV maps were resampled to isotropic voxels (3 × 3 × 3 mm3) and then normalized. PET image subvolumes (12 × 12 × 12 cm3) consisting of whole tumors and background were analyzed. Data from each center were divided into train/validation (80% of patients) and test sets (20% of patients). The modified R2U-Net was used as core DL model. A parallel federated DL model was developed and compared with the centralized approach where the data sets are pooled to one server. Segmentation metrics, including Dice similarity and Jaccard coefficients, percent relative errors (RE%) of SUVpeak, SUVmean, SUVmedian, SUVmax, metabolic tumor volume, and total lesion glycolysis were computed and compared with manual delineations. RESULTS The performance of the centralized versus federated DL methods was nearly identical for segmentation metrics: Dice (0.84 ± 0.06 vs 0.84 ± 0.05) and Jaccard (0.73 ± 0.08 vs 0.73 ± 0.07). For quantitative PET parameters, we obtained comparable RE% for SUVmean (6.43% ± 4.72% vs 6.61% ± 5.42%), metabolic tumor volume (12.2% ± 16.2% vs 12.1% ± 15.89%), and total lesion glycolysis (6.93% ± 9.6% vs 7.07% ± 9.85%) and negligible RE% for SUVmax and SUVpeak. No significant differences in performance (P > 0.05) between the 2 frameworks (centralized vs federated) were observed. CONCLUSION The developed federated DL model achieved comparable quantitative performance with respect to the centralized DL model. Federated DL models could provide robust and generalizable segmentation, while addressing patient privacy and legal and ethical issues in clinical data sharing.
Collapse
|
22
|
Fully Automatic Quantitative Measurement of 18F-FDG PET/CT in Thymic Epithelial Tumors Using a Convolutional Neural Network. Clin Nucl Med 2022; 47:590-598. [DOI: 10.1097/rlu.0000000000004146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Cegla P, Currie G, Wróblewska JP, Cholewiński W, Kaźmierska J, Marszałek A, Kubiak A, Golusinski P, Golusiński W, Majchrzak E. Influence of Semiquantitative [18F]FDG PET and Hematological Parameters on Survival in HNSCC Patients Using Neural Network Analysis. Pharmaceuticals (Basel) 2022; 15:ph15020224. [PMID: 35215335 PMCID: PMC8875232 DOI: 10.3390/ph15020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
The aim of this study is to assess the influence of semiquantitative PET-derived parameters as well as hematological parameters in overall survival in HNSCC patients using neural network analysis. Retrospective analysis was performed on 106 previously untreated HNSCC patients. Several PET-derived parameters (SUVmax, SUVmean, TotalSUV, MTV, TLG, TLRmax, TLRmean, TLRTLG, and HI) for primary tumor and lymph node with highest activity were assessed. Additionally, hematological parameters (LEU, LEU%, NEU, NEU%, MON, MON%, PLT, PLT%, NRL, and LMR) were also assessed. Patients were divided according to the diagnosis into the good and bad group. The data were evaluated using an artificial neural network (Neural Analyzer version 2.9.5) and conventional statistic. Statistically significant differences in PET-derived parameters in 5-year survival rate between group of patients with worse prognosis and good prognosis were shown in primary tumor SUVmax (10.0 vs. 7.7; p = 0.040), SUVmean (5.4 vs. 4.4; p = 0.047), MTV (23.2 vs. 14.5; p = 0.010), and TLG (155.0 vs. 87.5; p = 0.05), and mean liver TLG (27.8 vs. 30.4; p = 0.031), TLRmax (3.8 vs. 2.6; p = 0.019), TLRmean (2.8 vs. 1.9; p = 0.018), and in TLRTLG (5.6 vs. 2.3; p = 0.042). From hematological parameters, only LMR showed significant differences (2.5 vs. 3.2; p = 0.009). Final neural network showed that for ages above 60, primary tumors SUVmax, TotalSUV, MTV, TLG, TLRmax, and TLRmean over (9.7, 2255, 20.6, 145, 3.6, 2.6, respectively) are associated with worse survival. Our study shows that the neural network could serve as a supplement to PET-derived parameters and is helpful in finding prognostic parameters for overall survival in HNSCC.
Collapse
Affiliation(s)
- Paulina Cegla
- Department of Nuclear Medicine, Greater Poland Cancer Center, 61-866 Poznan, Poland;
- Correspondence:
| | - Geoffrey Currie
- School of Dentistry and Health Science, Charles Sturt University, Wagga Wagga 2678, Australia;
| | - Joanna P. Wróblewska
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (J.P.W.); (A.M.)
- Department of Tumor Pathology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Witold Cholewiński
- Department of Nuclear Medicine, Greater Poland Cancer Center, 61-866 Poznan, Poland;
- Department of Electroradiology, Poznan University of Medical Science, 61-701 Poznan, Poland;
| | - Joanna Kaźmierska
- Department of Electroradiology, Poznan University of Medical Science, 61-701 Poznan, Poland;
- 2nd Radiotherapy Department, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Andrzej Marszałek
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (J.P.W.); (A.M.)
- Department of Tumor Pathology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Anna Kubiak
- Greater Poland Cancer Registry, Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Pawel Golusinski
- Department of Otolaryngology and Maxillofacial Surgery, University of Zielona Gora, 65-046 Zielona Góra, Poland;
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Greater Poland Cancer Center, 61-866 Poznan, Poland; (W.G.); (E.M.)
| | - Ewa Majchrzak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Greater Poland Cancer Center, 61-866 Poznan, Poland; (W.G.); (E.M.)
| |
Collapse
|
24
|
Ren J, Eriksen JG, Nijkamp J, Korreman SS. Comparing different CT, PET and MRI multi-modality image combinations for deep learning-based head and neck tumor segmentation. Acta Oncol 2021; 60:1399-1406. [PMID: 34264157 DOI: 10.1080/0284186x.2021.1949034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Manual delineation of gross tumor volume (GTV) is essential for radiotherapy treatment planning, but it is time-consuming and suffers inter-observer variability (IOV). In clinics, CT, PET, and MRI are used to inform delineation accuracy due to their different complementary characteristics. This study aimed to investigate deep learning to assist GTV delineation in head and neck squamous cell carcinoma (HNSCC) by comparing various modality combinations. MATERIALS AND METHODS This retrospective study had 153 patients with multiple sites of HNSCC including their planning CT, PET, and MRI (T1-weighted and T2-weighted). Clinical delineations of gross tumor volume (GTV-T) and involved lymph nodes (GTV-N) were collected as the ground truth. The dataset was randomly divided into 92 patients for training, 31 for validation, and 30 for testing. We applied a residual 3 D UNet as the deep learning architecture. We independently trained the UNet with four different modality combinations (CT-PET-MRI, CT-MRI, CT-PET, and PET-MRI). Additionally, analogical to post-processing, an average fusion of three bi-modality combinations (CT-PET, CT-MRI, and PET-MRI) was produced as an ensemble. Segmentation accuracy was evaluated on the test set, using Dice similarity coefficient (Dice), Hausdorff Distance 95 percentile (HD95), and Mean Surface Distance (MSD). RESULTS All imaging combinations including PET provided similar average scores in range of Dice: 0.72-0.74, HD95: 8.8-9.5 mm, MSD: 2.6-2.8 mm. Only CT-MRI had a lower score with Dice: 0.58, HD95: 12.9 mm, MSD: 3.7 mm. The average of three bi-modality combinations reached Dice: 0.74, HD95: 7.9 mm, MSD: 2.4 mm. CONCLUSION Multimodal deep learning-based auto segmentation of HNSCC GTV was demonstrated and inclusion of the PET image was shown to be crucial. Training on combined MRI, PET, and CT data provided limited improvements over CT-PET and PET-MRI. However, when combining three bimodal trained networks into an ensemble, promising improvements were shown.
Collapse
Affiliation(s)
- Jintao Ren
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Grau Eriksen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jasper Nijkamp
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Stine Sofia Korreman
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|