1
|
Xu X, Liu Y, Liu Y, Yu Y, Yang M, Lu L, Chan L, Liu B. Functional hydrogels for hepatocellular carcinoma: therapy, imaging, and in vitro model. J Nanobiotechnology 2024; 22:381. [PMID: 38951911 PMCID: PMC11218144 DOI: 10.1186/s12951-024-02547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most common malignancies worldwide and is characterized by high rates of morbidity and mortality, posing a serious threat to human health. Interventional embolization therapy is the main treatment against middle- and late-stage liver cancer, but its efficacy is limited by the performance of embolism, hence the new embolic materials have provided hope to the inoperable patients. Especially, hydrogel materials with high embolization strength, appropriate viscosity, reliable security and multifunctionality are widely used as embolic materials, and can improve the efficacy of interventional therapy. In this review, we have described the status of research on hydrogels and challenges in the field of HCC therapy. First, various preparation methods of hydrogels through different cross-linking methods are introduced, then the functions of hydrogels related to HCC are summarized, including different HCC therapies, various imaging techniques, in vitro 3D models, and the shortcomings and prospects of the proposed applications are discussed in relation to HCC. We hope that this review is informative for readers interested in multifunctional hydrogels and will help researchers develop more novel embolic materials for interventional therapy of HCC.
Collapse
Affiliation(s)
- Xiaoying Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yu Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yanyan Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Yahan Yu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Mingqi Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Leung Chan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital), Zhuhai, 519000, Guangdong, China.
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, 510006, Guangzhou, China.
| |
Collapse
|
2
|
Chen C, Huang B, Zhang R, Sun C, Chen L, Ge J, Zhou D, Li Y, Wu S, Qian Z, Zeng J, Gao M. Surface ligand-regulated renal clearance of MRI/SPECT dual-modality nanoprobes for tumor imaging. J Nanobiotechnology 2024; 22:245. [PMID: 38735921 PMCID: PMC11089712 DOI: 10.1186/s12951-024-02516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The general sluggish clearance kinetics of functional inorganic nanoparticles tend to raise potential biosafety concerns for in vivo applications. Renal clearance is a possible elimination pathway for functional inorganic nanoparticles delivered through intravenous injection, but largely depending on the surface physical chemical properties of a given particle apart from its size and shape. RESULTS In this study, three small-molecule ligands that bear a diphosphonate (DP) group, but different terminal groups on the other side, i.e., anionic, cationic, and zwitterionic groups, were synthesized and used to modify ultrasmall Fe3O4 nanoparticles for evaluating the surface structure-dependent renal clearance behaviors. Systematic studies suggested that the variation of the surface ligands did not significantly increase the hydrodynamic diameter of ultrasmall Fe3O4 nanoparticles, nor influence their magnetic resonance imaging (MRI) contrast enhancement effects. Among the three particle samples, Fe3O4 nanoparticle coated with zwitterionic ligands, i.e., Fe3O4@DMSA, exhibited optimal renal clearance efficiency and reduced reticuloendothelial uptake. Therefore, this sample was further labeled with 99mTc through the DP moieties to achieve a renal-clearable MRI/single-photon emission computed tomography (SPECT) dual-modality imaging nanoprobe. The resulting nanoprobe showed satisfactory imaging capacities in a 4T1 xenograft tumor mouse model. Furthermore, the biocompatibility of Fe3O4@DMSA was evaluated both in vitro and in vivo through safety assessment experiments. CONCLUSIONS We believe that the current investigations offer a simple and effective strategy for constructing renal-clearable nanoparticles for precise disease diagnosis.
Collapse
Affiliation(s)
- Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Chaoping Sun
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yueping Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuwang Wu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhiyuan Qian
- Clinical Translation Center of State Key Lab, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
- Clinical Translation Center of State Key Lab, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
García-Figueiras R, Baleato-González S, Luna A, Padhani AR, Vilanova JC, Carballo-Castro AM, Oleaga-Zufiria L, Vallejo-Casas JA, Marhuenda A, Gómez-Caamaño A. How Imaging Advances Are Defining the Future of Precision Radiation Therapy. Radiographics 2024; 44:e230152. [PMID: 38206833 DOI: 10.1148/rg.230152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Radiation therapy is fundamental in the treatment of cancer. Imaging has always played a central role in radiation oncology. Integrating imaging technology into irradiation devices has increased the precision and accuracy of dose delivery and decreased the toxic effects of the treatment. Although CT has become the standard imaging modality in radiation therapy, the development of recently introduced next-generation imaging techniques has improved diagnostic and therapeutic decision making in radiation oncology. Functional and molecular imaging techniques, as well as other advanced imaging modalities such as SPECT, yield information about the anatomic and biologic characteristics of tumors for the radiation therapy workflow. In clinical practice, they can be useful for characterizing tumor phenotypes, delineating volumes, planning treatment, determining patients' prognoses, predicting toxic effects, assessing responses to therapy, and detecting tumor relapse. Next-generation imaging can enable personalization of radiation therapy based on a greater understanding of tumor biologic factors. It can be used to map tumor characteristics, such as metabolic pathways, vascularity, cellular proliferation, and hypoxia, that are known to define tumor phenotype. It can also be used to consider tumor heterogeneity by highlighting areas at risk for radiation resistance for focused biologic dose escalation, which can impact the radiation planning process and patient outcomes. The authors review the possible contributions of next-generation imaging to the treatment of patients undergoing radiation therapy. In addition, the possible roles of radio(geno)mics in radiation therapy, the limitations of these techniques, and hurdles in introducing them into clinical practice are discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Sandra Baleato-González
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Luna
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Anwar R Padhani
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Joan C Vilanova
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana M Carballo-Castro
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Laura Oleaga-Zufiria
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Juan Antonio Vallejo-Casas
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana Marhuenda
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Gómez-Caamaño
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| |
Collapse
|