1
|
Liu G, Gu Y, Sollini M, Lazar A, Besson FL, Li S, Wu Z, Nardo L, Al-Ibraheem A, Zheng J, Kulkarni HR, Rominger A, Fan W, Zhu X, Zhao X, Wu H, Liu J, Li B, Cheng Z, Wang R, Xu B, Agostini D, Tang H, Tan L, Yang Z, Huo L, Gu J, Shi H. Expert consensus on workflow of PET/CT with long axial field-of-view. Eur J Nucl Med Mol Imaging 2025; 52:1038-1049. [PMID: 39520515 DOI: 10.1007/s00259-024-06968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Positron emission tomography/computed tomography (PET/CT) imaging has been widely used in clinical practice. Long axial field-of-view (LAFOV) systems have enhanced clinical practice by leveraging their technological advantages and have emerged as the new state-of-the-art PET imaging modalities. A consensus was conducted to explore expert views in this emerging field to comprehensively elucidate the proposed workflow in LAFOV PET/CT examinations and highlight the potential challenges inherent in the workflow. METHODS A multidisciplinary task group formed by 28 experts from six countries over the world discussed and approved the consensus based on the published guidelines, peer-reviewed articles of LAFOV PET/CT, and the collective experience from clinical practice. This consensus focuses on the workflow that allows for a broader range of imaging protocols of LAFOV PET/CT, catering to diverse patient needs and in line with precision medicine principles. RESULTS This consensus describes the workflows and imaging protocols of LAFOV PET/CT for various imaging scenarios including routine static imaging, dynamic imaging, low-activity imaging, fast imaging, prolonged imaging, delayed imaging, and dual-tracer imaging. In addition, imaging reconstruction and reviewing specific to LAFOV PET/CT imaging, as well as the main challenges facing installation and application of LAFOV PET/CT scanner were also summarized. CONCLUSION This consensus summarized the various imaging workflow, imaging protocol, and challenges of LAFOV PET/CT imaging, aiming to enhance the clinical and research applications of these scanners.
Collapse
Affiliation(s)
- Guobing Liu
- Shanghai Institute of Medical Imaging, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, P.R. China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Yushen Gu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, P.R. China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, P.R. China
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Martina Sollini
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Department of Nuclear Medicine, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Alexandra Lazar
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Florent L Besson
- Department of Nuclear Medicine-Molecular Imaging, Hôpitaux Universitaires Paris-Saclay, AP-HP, DMU Smart Imaging, CHU Bicêtre, Paris, France and Université Paris-Saclay, Commissariat À L'énergie Atomique Et Aux Énergies Alternatives (CEA), Centre National de La Recherche Scientifique (CNRS), InsermBioMaps, Orsay, France
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France
| | - Sijin Li
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, P.R. China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Collaborative Innovation Center for Molecular Imaging Precision Medicine, Taiyuan, 030001, P.R. China
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, CA, 95819, USA
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine and PET/CT, King Hussein Cancer Center (KHCC), Al-Jubeiha, Amman, 11941, Jordan
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Amman, 11942, Jordan
| | - Jiefu Zheng
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Medical Imaging, University of Virginia School of Medicine, 1215 Lee Street, Charlottesville, VA, 22908-0170, USA
| | - Harshad R Kulkarni
- BAMF Health, Grand Rapids, MI, 49503, USA
- Department of Radiology, Michigan State University College of Human Medicine, East Lansing, MI, 48824, USA
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, CH-3010, Bern, Switzerland
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, No. 651 Dongfengdong Road, Guangzhou, 510060, P.R. China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, P.R. China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, P.R. China
| | - Hubing Wu
- Nanfang PET Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, P.R. China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 PuJian Road, Shanghai, 200127, P.R. China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, No. 197 Ruijin Er Road, Shanghai, 200025, P.R. China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, P.R. China
| | - Ruimin Wang
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Baixuan Xu
- Department of Nuclear Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, P.R. China
| | - Denis Agostini
- Department of Nuclear Medicine, University Hospital of Caen and Normandie Université, EA, 4650, Caen, France
| | - Han Tang
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Lijie Tan
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, P.R. China
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, 100730, P.R. China
- Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, P.R. China
| | - Jianying Gu
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Department of Plastic Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, P.R. China.
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, 361015, P.R. China.
| | - Hongcheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China.
- Shanghai Institute of Medical Imaging, Shanghai, 200032, P.R. China.
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, P.R. China.
- Cancer Prevention and Treatment Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, 361015, P.R. China.
- Department of Nuclear Medicine, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, P.R. China.
| |
Collapse
|
2
|
Cheng Z, Deng X, Song S, Wu Y, Tang H, Zou S, Zhu Y, Liu A, Zhu X. Leveraging small voxel with optimal acquisition time for [ 18F]mFBG total-body PET/CT imaging in pediatric patients with neuroblastoma: a preliminary study. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07098-1. [PMID: 39888420 DOI: 10.1007/s00259-025-07098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE The advent of total-body PET/CT presents an opportunity for significant advancements in imaging of neuroblastoma with [18F]meta-fluorobenzylguanidine ([18F]mFBG). Small voxel imaging has proven to have better lesion detectability but need enough radioactivity counts. This study aims to balance shortened acquisition times and small voxel reconstruction to keep sufficient image quality and diagnostic confidence on [18F]mFBG total-body PET for neuroblastoma. METHODS We retrospectively enrolled 33 pediatric patients with neuroblastoma who underwent 37 [18F]mFBG total-body uEXPLORER PET/CT scans of 10-min duration. PET images were reconstructed with varying acquisition times (0.5-10 min) and three matrix sizes (192 × 192, 512 × 512 and 1024 × 1024). The subjective (scored on a 5-point scale) and objective image quality (signal-to-noise ratio, SNR) of all the sets of reconstructed images were analyzed by nuclear medicine physicians. For indeterminate lesions identified in the group of 192 × 192 matrix with the 10-min scan (G192-10), diagnostic confidence was further evaluated in images reconstructed with the 512 × 512 and 1024 × 1024 matrices (G512 and G1024). RESULTS Of the 33 patients with 37 [18F]mFBG PET/CT scans, 17 patients with 20 scans had positive [18F]mFBG PET/CT findings. Sufficient subjective image quality was achieved with at least 2-min acquisition of 192 × 192 matrix and 4-min acquisition of 512 × 512 matrix (with all scores ≥ 3). SNR increased with longer acquisition times for the same voxel size, while decreased as voxel size shrunk. Although the Curie and SIOPEN scores remained consistent across G192, G512, and G1024-10 groups, the G512 groups with at least 2-min acquisition and G1024-10 showed significantly higher confidence scores for characterizing indeterminate lesions on the G192-10 images, with almost all indeterminate lesions being rated as very confident. CONCLUSIONS A matrix of 512 × 512 with a minimum of 4-min acquisition on [18F]mFBG total-body PET/CT is recommended for sufficient image quality and improved diagnostic confidence, particularly in detecting indeterminate lesions.
Collapse
Affiliation(s)
- Zhaoting Cheng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yang Wu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Hongmei Tang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Sijuan Zou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
3
|
Li J, Zhang K, Pang X, Huang L, Tian X, Liu J. The SwiftScan step-and-shoot continuous mode improves SPECT scanning efficiency: a preliminary phantom and clinical test. EJNMMI Phys 2025; 12:1. [PMID: 39745654 PMCID: PMC11695528 DOI: 10.1186/s40658-024-00709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
PURPOSE The aim of the study was to investigate the value of SwiftScan Step-and-Shoot Continuous (SSC) scanning mode in enhancing image quality and to explore appropriate scanning parameters for reducing scan time. METHODS This study was composed of a phantom study and two clinical tests. The differences in visual image quality scores, coefficient of variance (COV) of the background, image signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and recovery coefficient (RC) of the sphere were compared between SSC mode and traditional Step-and-Shoot (SS) mode in the phantom study. Various "shoot" acquisition times (5s, 10s, 15s) and "step" angles (3-degree, 6-degree, 9-degree) were evaluated and verified. In the clinical tests, bone tomography and parathyroid tomography were performed on 30 patients each. Differences in visual image quality scores, background COV, image SNR, CNR, and standardized uptake value (SUV) of lesions were compared between the two modes. RESULTS In the phantom study, SSC mode demonstrated higher visual scores and significantly reduced background COV (P < 0.05), and significantly increased SNR and CNR (P < 0.05) compared to SS mode. No significant alteration in RC was observed (P > 0.05). In the clinical tests, no significant differences were found between the optimal SSC scan combination (10s "shoot" and 6-degree "step")/ (10s "shoot" and 3-degree "step") and the traditional SS scan combination (15s "shoot" and 6-degree "step")/ (15s "shoot" and 3-degree "step") in visual image quality scores, background COV, image SNR, CNR, and SUV of bone and parathyroid high uptake lesions (P > 0.05). CONCLUSION The SwiftScan SSC mode can reduce acquisition time by 33% while maintaining similar image quality and quantification accuracy compared to SS mode. An SSC scanning protocol with a 10s "shoot" acquisition and 6-degree "step" or with a 10s "shoot" acquisition and 3-degree "step" over a 360-degree rotation, is recommended for clinical use.
Collapse
Affiliation(s)
- Jicheng Li
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
| | - Kai Zhang
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
| | - Xingru Pang
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
| | - Lele Huang
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
| | - Xiaoxue Tian
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, 730030, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China
| | - Jiangyan Liu
- Department of Nuclear Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China.
- Second Clinical School, Lanzhou University, Lanzhou, 730030, China.
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Nanni C, Farolfi A, Castellucci P, Fanti S. Total Body Positron Emission Tomography/Computed Tomography: Current Status in Oncology. Semin Nucl Med 2025; 55:31-40. [PMID: 39516095 DOI: 10.1053/j.semnuclmed.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Positron Emission Tomography (PET) is a crucial imaging modality in oncology, providing functional insights by detecting metabolic activity in tissues. Total-body (TB) PET and large field-of-view PET have emerged as advanced techniques, offering whole-body imaging in a single acquisition. TB PET enables simultaneous imaging from head to toe, providing comprehensive information on tumor distribution, metastasis, and treatment response. This is particularly valuable in oncology, where metastatic spread often requires evaluation of multiple body areas. By covering the entire body, TB PET improves diagnostic accuracy, reduces scan time, and increases patient comfort. Furthermore, these new tomographs offer a marked increase in sensitivity, thanks to their ability to capture a larger volume of data simultaneously. This heightened sensitivity enables the detection of smaller lesions and more subtle metabolic changes, improving diagnostic accuracy in the early stages of cancer or in the evaluation of minimal residual disease. Moreover, the increased sensitivity allows for lower radiotracer doses without compromising image quality, reducing patient exposure to radiation or very quick acquisitions. Another significant advantage is the possibility of dynamic acquisitions, which allow for continuous monitoring of tracer kinetics over time. This provides critical information about tissue perfusion, metabolism, and receptor binding in real time. Dynamic imaging is particularly useful for assessing treatment response in oncology, as it enables the evaluation of tumor behavior over a period rather than a single static snapshot, offering insights into tumor aggressiveness and potential therapeutic targets. This review is focused on the current applications of TB and large field-of-view PET scanners in oncology.
Collapse
Affiliation(s)
- Cristina Nanni
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Andrea Farolfi
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Castellucci
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Fanti
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Nuclear Medicine, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Zhou X, Xue S, Li L, Seifert R, Dong S, Chen R, Huang G, Rominger A, Liu J, Shi K. Sedation-free pediatric [ 18F]FDG imaging on totalbody PET/CT with the assistance of artificial intelligence. Eur J Nucl Med Mol Imaging 2024; 51:4062-4072. [PMID: 38958680 DOI: 10.1007/s00259-024-06818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE While sedation is routinely used in pediatric PET examinations to preserve diagnostic quality, it may result in side effects and may affect the radiotracer's biodistribution. This study aims to investigate the feasibility of sedation-free pediatric PET imaging using ultra-fast total-body (TB) PET scanners and deep learning (DL)-based attenuation and scatter correction (ASC). METHODS This retrospective study included TB PET (uExplorer) imaging of 35 sedated pediatric patients under four years old to determine the minimum effective scanning time. A DL-based ASC method was applied to enhance PET quantification. Both quantitative and qualitative assessments were conducted to evaluate the image quality of ultra-fast DL-ASC PET. Five non-sedated pediatric patients were subsequently used to validate the proposed approach. RESULTS Comparisons between standard 300-second and ultra-fast 15-second imaging, CT-ASC and DL-ASC ultra-fast 15-second images, as well as DL-ASC ultra-fast 15-second images in non-sedated and sedated patients, showed no significant differences in qualitative scoring, lesion detectability, and quantitative Standard Uptake Value (SUV) (P = ns). CONCLUSIONS This study demonstrates that pediatric PET imaging can be effectively performed without sedation by combining ultra-fast imaging techniques with a DL-based ASC. This advancement in sedation-free ultra-fast PET imaging holds potential for broader clinical adoption.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lianghua Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| | - Shunjie Dong
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| |
Collapse
|
6
|
van Sluis J, van Snick JH, Glaudemans AWJM, Slart RHJA, Noordzij W, Brouwers AH, Dierckx RAJO, Lammertsma AA, Tsoumpas C, Boellaard R. Ultrashort Oncologic Whole-Body [ 18F]FDG Patlak Imaging Using LAFOV PET. J Nucl Med 2024; 65:1652-1657. [PMID: 39353647 DOI: 10.2967/jnumed.124.267784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Methods to shorten [18F]FDG Patlak PET imaging procedures ranging from 65-90 to 20-30 min after injection, using a population-averaged input function (PIF) scaled to patient-specific image-derived input function (IDIF) values, were recently evaluated. The aim of the present study was to explore the feasibility of ultrashort 10-min [18F]FDG Patlak imaging at 55-65 min after injection using a PIF combined with direct Patlak reconstructions to provide reliable quantitative accuracy of lung tumor uptake, compared with a full-duration 65-min acquisition using an IDIF. Methods: Patients underwent a 65-min dynamic PET acquisition on a long-axial-field-of-view (LAFOV) Biograph Vision Quadra PET/CT scanner. Subsequently, direct Patlak reconstructions and image-based (with reconstructed dynamic images) Patlak analyses were performed using both the IDIF (time to relative kinetic equilibrium between blood and tissue concentration (t*) = 30 min) and a scaled PIF at 30-60 min after injection. Next, direct Patlak reconstructions were performed on the system console using only the last 10 min of the acquisition, that is, from 55 to 65 min after injection, and a scaled PIF using maximum crystal ring difference settings of both 85 and 322. Tumor lesion and healthy-tissue uptake was quantified and compared between the differently obtained parametric images to assess quantitative accuracy. Results: Good agreement was obtained between direct- and image-based Patlak analyses using the IDIF (t* = 30 min) and scaled PIF at 30-60 min after injection, performed using the different approaches, with no more than 8.8% deviation in tumor influx rate value (Ki ) (mean difference ranging from -0.0022 to 0.0018 mL/[min × g]). When direct Patlak reconstruction was performed on the system console, excellent agreement was found between the use of a scaled PIF at 30-60 min after injection versus 55-65 min after injection, with 2.4% deviation in tumor Ki (median difference, -0.0018 mL/[min × g]; range, -0.0047 to 0.0036 mL/[min × g]). For different maximum crystal ring difference settings using the scan time interval of 55-65 min after injection, only a 0.5% difference (median difference, 0.0000 mL/[min × g]; range, -0.0004 to 0.0013 mL/[min × g]) in tumor Ki was found. Conclusion: Ultrashort whole-body [18F]FDG Patlak imaging is feasible on an LAFOV Biograph Vision Quadra PET/CT system without loss of quantitative accuracy to assess lung tumor uptake compared with a full-duration 65-min acquisition. The ultrashort 10-min direct Patlak reconstruction with PIF allows for its implementation in clinical practice.
Collapse
Affiliation(s)
- Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Johannes H van Snick
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Andor W J M Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Riemer H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Adrienne H Brouwers
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Adriaan A Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Ronald Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, location VUMC, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Cui Y, Jia J, Yan Q, He X, Yuan K, Li Z, Zhang W, Wu R, Zhao Y, Tang S, Fan W, Hu Y. The impact of deep-inspiration breath-hold total-body PET/CT imaging on thoracic 18F-FDG avid lesions compared with free-breathing. Eur J Radiol 2024; 177:111549. [PMID: 38850723 DOI: 10.1016/j.ejrad.2024.111549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES To investigate PET/CT registration and quantification accuracy of thoracic lesions of a single 30-second deep-inspiration breath-hold (DIBH) technique with a total-body PET (TB-PET) scanner, and compared with free-breathing (FB) PET/CT. METHODS 137 of the 145 prospectively enrolled patients finished a routine FB-300 s PET/CT exam and a 30-second DIBH TB-PET with chest to pelvis low dose CT. The total-body FB-300 s, FB-30 s, and DIBH-30 s PET images were reconstructed. Quantitative assessment (SUVmax and SUVmean of lung and other organs), PET/CT registration assessment and lesion analysis (SUVmax, SUVpeak, SUVmean and tumor-background ratio) were compared with Wilcoxon signed-rank tests. RESULTS The SUVmax and SUVmean of the lung with DIBH-30 s were significantly lower than those with FB. The distances of the liver dome between PET and CT were significantly smaller with DIBH-30 s than with FB. 195 assessable lesions in 106 patients were included, and the detection sensitivity was 97.9 % and 99.0 % in FB-300 s, and DIBH-30 s, respectively. For both small co-identified lesions (n = 86) and larger co-identified lesions with a diameter ≥ 1 cm (n = 91), the lesion SUVs were significantly greater with DIBH-30 s than with FB-300 s. Regarding lesion location, the differences of the SUVs for the lesions in the lower thorax area (n = 97, p < 0.001) were significant between DIBH-30 s and FB-300 s, while these differences were not statistically significant in the upper thorax (n = 80, p > 0.05). The lesion tumor-to-surrounding-background ratio (TsBR) was significantly increased, both in the upper and lower thorax. CONCLUSION The TB DIBH PET/CT technique is feasible in clinical practice. It reduces the background lung uptake and achieves better registration and lesion quantification, especially in the lower thorax.
Collapse
Affiliation(s)
- Yingpu Cui
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Jin Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Qianqian Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Xiaoxiao He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Keqing Yuan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Weiguang Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing, China
| | - Yumo Zhao
- United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Si Tang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, China; Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, China.
| |
Collapse
|
8
|
Zhou X, Fu Y, Dong S, Li L, Xue S, Chen R, Huang G, Liu J, Shi K. Intelligent ultrafast total-body PET for sedation-free pediatric [ 18F]FDG imaging. Eur J Nucl Med Mol Imaging 2024; 51:2353-2366. [PMID: 38383744 DOI: 10.1007/s00259-024-06649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
PURPOSE This study aims to develop deep learning techniques on total-body PET to bolster the feasibility of sedation-free pediatric PET imaging. METHODS A deformable 3D U-Net was developed based on 245 adult subjects with standard total-body PET imaging for the quality enhancement of simulated rapid imaging. The developed method was first tested on 16 children receiving total-body [18F]FDG PET scans with standard 300-s acquisition time with sedation. Sixteen rapid scans (acquisition time about 3 s, 6 s, 15 s, 30 s, and 75 s) were retrospectively simulated by selecting the reconstruction time window. In the end, the developed methodology was prospectively tested on five children without sedation to prove the routine feasibility. RESULTS The approach significantly improved the subjective image quality and lesion conspicuity in abdominal and pelvic regions of the generated 6-s data. In the first test set, the proposed method enhanced the objective image quality metrics of 6-s data, such as PSNR (from 29.13 to 37.09, p < 0.01) and SSIM (from 0.906 to 0.921, p < 0.01). Furthermore, the errors of mean standardized uptake values (SUVmean) for lesions between 300-s data and 6-s data were reduced from 12.9 to 4.1% (p < 0.01), and the errors of max SUV (SUVmax) were reduced from 17.4 to 6.2% (p < 0.01). In the prospective test, radiologists reached a high degree of consistency on the clinical feasibility of the enhanced PET images. CONCLUSION The proposed method can effectively enhance the image quality of total-body PET scanning with ultrafast acquisition time, leading to meeting clinical diagnostic requirements of lesion detectability and quantification in abdominal and pelvic regions. It has much potential to solve the dilemma of the use of sedation and long acquisition time that influence the health of pediatric patients.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shunjie Dong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lianghua Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Song Xue
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| | - Ruohua Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Chen W, Li Y, Li Z, Jiang Y, Cui Y, Zeng J, Mo Y, Tang S, Li S, Liu L, Zhao Y, Hu Y, Fan W. Advantages and Challenges of Total-Body PET/CT at a Tertiary Cancer Center: Insights from Sun Yat-sen University Cancer Center. J Nucl Med 2024; 65:54S-63S. [PMID: 38719233 DOI: 10.2967/jnumed.123.266948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
In recent decades, researchers worldwide have directed their efforts toward enhancing the quality of PET imaging. The detection sensitivity and image resolution of conventional PET scanners with a short axial field of view have been constrained, leading to a suboptimal signal-to-noise ratio. The advent of long-axial-field-of-view PET scanners, exemplified by the uEXPLORER system, marked a significant advancement. Total-body PET imaging possesses an extensive scan range of 194 cm and an ultrahigh detection sensitivity, and it has emerged as a promising avenue for improving image quality while reducing the administered radioactivity dose and shortening acquisition times. In this review, we elucidate the application of the uEXPLORER system at the Sun Yat-sen University Cancer Center, including the disease distribution, patient selection workflow, scanning protocol, and several enhanced clinical applications, along with encountered challenges. We anticipate that this review will provide insights into routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yingpu Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Jiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yiwen Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Si Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yumo Zhao
- United Imaging Healthcare Co. Ltd., Shanghai, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| |
Collapse
|
10
|
Wu Y, Sun T, Ng YL, Liu J, Zhu X, Cheng Z, Xu B, Meng N, Zhou Y, Wang M. Clinical Implementation of Total-Body PET in China. J Nucl Med 2024; 65:64S-71S. [PMID: 38719242 DOI: 10.2967/jnumed.123.266977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Indexed: 07/16/2024] Open
Abstract
Total-body (TB) PET/CT is a groundbreaking tool that has brought about a revolution in both clinical application and scientific research. The transformative impact of TB PET/CT in the realms of clinical practice and scientific exploration has been steadily unfolding since its introduction in 2018, with implications for its implementation within the health care landscape of China. TB PET/CT's exceptional sensitivity enables the acquisition of high-quality images in significantly reduced time frames. Clinical applications have underscored its effectiveness across various scenarios, emphasizing the capacity to personalize dosage, scan duration, and image quality to optimize patient outcomes. TB PET/CT's ability to perform dynamic scans with high temporal and spatial resolution and to perform parametric imaging facilitates the exploration of radiotracer biodistribution and kinetic parameters throughout the body. The comprehensive TB coverage offers opportunities to study interconnections among organs, enhancing our understanding of human physiology and pathology. These insights have the potential to benefit applications requiring holistic TB assessments. The standard topics outlined in The Journal of Nuclear Medicine were used to categorized the reviewed articles into 3 sections: current clinical applications, scan protocol design, and advanced topics. This article delves into the bottleneck that impedes the full use of TB PET in China, accompanied by suggested solutions.
Collapse
Affiliation(s)
- Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; and
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China;
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
11
|
Sartoretti T, Skawran S, Gennari AG, Maurer A, Euler A, Treyer V, Sartoretti E, Waelti S, Schwyzer M, von Schulthess GK, Burger IA, Huellner MW, Messerli M. Fully automated computational measurement of noise in positron emission tomography. Eur Radiol 2024; 34:1716-1723. [PMID: 37644149 PMCID: PMC10873217 DOI: 10.1007/s00330-023-10056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES To introduce an automated computational algorithm that estimates the global noise level across the whole imaging volume of PET datasets. METHODS [18F]FDG PET images of 38 patients were reconstructed with simulated decreasing acquisition times (15-120 s) resulting in increasing noise levels, and with block sequential regularized expectation maximization with beta values of 450 and 600 (Q.Clear 450 and 600). One reader performed manual volume-of-interest (VOI) based noise measurements in liver and lung parenchyma and two readers graded subjective image quality as sufficient or insufficient. An automated computational noise measurement algorithm was developed and deployed on the whole imaging volume of each reconstruction, delivering a single value representing the global image noise (Global Noise Index, GNI). Manual noise measurement values and subjective image quality gradings were compared with the GNI. RESULTS Irrespective of the absolute noise values, there was no significant difference between the GNI and manual liver measurements in terms of the distribution of noise values (p = 0.84 for Q.Clear 450, and p = 0.51 for Q.Clear 600). The GNI showed a fair to moderately strong correlation with manual noise measurements in liver parenchyma (r = 0.6 in Q.Clear 450, r = 0.54 in Q.Clear 600, all p < 0.001), and a fair correlation with manual noise measurements in lung parenchyma (r = 0.52 in Q.Clear 450, r = 0.33 in Q.Clear 600, all p < 0.001). Classification performance of the GNI for subjective image quality was AUC 0.898 for Q.Clear 450 and 0.919 for Q.Clear 600. CONCLUSION An algorithm provides an accurate and meaningful estimation of the global noise level encountered in clinical PET imaging datasets. CLINICAL RELEVANCE STATEMENT An automated computational approach that measures the global noise level of PET imaging datasets may facilitate quality standardization and benchmarking of clinical PET imaging within and across institutions. KEY POINTS • Noise is an important quantitative marker that strongly impacts image quality of PET images. • An automated computational noise measurement algorithm provides an accurate and meaningful estimation of the global noise level encountered in clinical PET imaging datasets. • An automated computational approach that measures the global noise level of PET imaging datasets may facilitate quality standardization and benchmarking as well as protocol harmonization.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan Skawran
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Antonio G Gennari
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Alexander Maurer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - André Euler
- University of Zurich, Zurich, Switzerland
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elisabeth Sartoretti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Stephan Waelti
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Radiology and Nuclear Medicine, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Moritz Schwyzer
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Gustav K von Schulthess
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, Kantonsspital Baden, Baden, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Rämistrasse 100, CH-8091, Zurich, Switzerland.
- University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Roya M, Mostafapour S, Mohr P, Providência L, Li Z, van Snick JH, Brouwers AH, Noordzij W, Willemsen ATM, Dierckx RAJO, Lammertsma AA, Glaudemans AWJM, Tsoumpas C, Slart RHJA, van Sluis J. Current and Future Use of Long Axial Field-of-View Positron Emission Tomography/Computed Tomography Scanners in Clinical Oncology. Cancers (Basel) 2023; 15:5173. [PMID: 37958347 PMCID: PMC10648837 DOI: 10.3390/cancers15215173] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The latest technical development in the field of positron emission tomography/computed tomography (PET/CT) imaging has been the extension of the PET axial field-of-view. As a result of the increased number of detectors, the long axial field-of-view (LAFOV) PET systems are not only characterized by a larger anatomical coverage but also by a substantially improved sensitivity, compared with conventional short axial field-of-view PET systems. In clinical practice, this innovation has led to the following optimization: (1) improved overall image quality, (2) decreased duration of PET examinations, (3) decreased amount of radioactivity administered to the patient, or (4) a combination of any of the above. In this review, novel applications of LAFOV PET in oncology are highlighted and future directions are discussed.
Collapse
Affiliation(s)
- Mostafa Roya
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Samaneh Mostafapour
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Philipp Mohr
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Laura Providência
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Zekai Li
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Johannes H. van Snick
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adrienne H. Brouwers
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Walter Noordzij
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Antoon T. M. Willemsen
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Andor W. J. M. Glaudemans
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, 7522 NB Enchede, The Netherlands
| | - Joyce van Sluis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (S.M.); (P.M.); (L.P.); (Z.L.); (J.H.v.S.); (A.H.B.); (W.N.); (A.T.M.W.); (R.A.J.O.D.); (A.A.L.); (A.W.J.M.G.); (C.T.); (J.v.S.)
| |
Collapse
|
13
|
Affiliation(s)
- Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
| | - Charalampos Tsoumpas
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
14
|
Liu E, Lyu Z, Yang Y, Lv Y, Zhao Y, Zhang X, Sun T, Jiang L, Liu Z. Sub-minute acquisition with deep learning-based image filter in the diagnosis of colorectal cancers using total-body 18F-FDG PET/CT. EJNMMI Res 2023; 13:66. [PMID: 37428417 DOI: 10.1186/s13550-023-01015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND This study aimed to retrospectively evaluate the feasibility of total-body 18F-FDG PET/CT ultrafast acquisition combined with a deep learning (DL) image filter in the diagnosis of colorectal cancers (CRCs). METHODS The clinical and preoperative imaging data of patients with CRCs were collected. All patients underwent a 300-s list-mode total-body 18F-FDG PET/CT scan. The dataset was divided into groups with acquisition durations of 10, 20, 30, 60, and 120 s. PET images were reconstructed using ordered subset expectation maximisation, and post-processing filters, including a Gaussian smoothing filter with 3 mm full width at half maximum (3 mm FWHM) and a DL image filter. The effects of the Gaussian and DL image filters on image quality, detection rate, and uptake value of primary and liver metastases of CRCs at different acquisition durations were compared using a 5-point Likert scale and semi-quantitative analysis, with the 300-s image with a Gaussian filter as the standard. RESULTS All 34 recruited patients with CRCs had single colorectal lesions, and the diagnosis was verified pathologically. Of the total patients, 11 had liver metastases, and 113 liver metastases were detected. The 10-s dataset could not be evaluated due to high noise, regardless of whether it was filtered by Gaussian or DL image filters. The signal-to-noise ratio (SNR) of the liver and mediastinal blood pool in the images acquired for 10, 20, 30, and 60 s with a Gaussian filter was lower than that of the 300-s images (P < 0.01). The DL filter significantly improved the SNR and visual image quality score compared to the Gaussian filter (P < 0.01). There was no statistical difference in the SNR of the liver and mediastinal blood pool, SUVmax and TBR of CRCs and liver metastases, and the number of detectable liver metastases between the 20- and 30-s DL image filter and 300-s images with the Gaussian filter (P > 0.05). CONCLUSIONS The DL filter can significantly improve the image quality of total-body 18F-FDG PET/CT ultrafast acquisition. Deep learning-based image filtering methods can significantly reduce the noise of ultrafast acquisition, making them suitable for clinical diagnosis possible.
Collapse
Affiliation(s)
- Entao Liu
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Zejian Lyu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuelong Yang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Room 201, 2/F, WeiLun Building of Guangdong Provincial People's Hospital, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Yang Lv
- United Imaging Healthcare, Shanghai, China
| | - Yumo Zhao
- United Imaging Healthcare, Shanghai, China
| | - Xiaochun Zhang
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Taotao Sun
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Lei Jiang
- WeiLun PET Center, Department of Nuclear Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Zaiyi Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Room 201, 2/F, WeiLun Building of Guangdong Provincial People's Hospital, 106 Zhongshan Er Road, Guangzhou, 510080, Guangdong, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| |
Collapse
|
15
|
Korsholm K, Overbeck N, Dias AH, Loft A, Andersen FL, Fischer BM. Impact of Reduced Image Noise on Deauville Scores in Patients with Lymphoma Scanned on a Long-Axial Field-of-View PET/CT-Scanner. Diagnostics (Basel) 2023; 13:diagnostics13050947. [PMID: 36900090 PMCID: PMC10000539 DOI: 10.3390/diagnostics13050947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Total body and long-axial field-of-view (LAFOV) PET/CT represent visionary innovations in imaging enabling either improved image quality, reduction in injected activity-dose or decreased acquisition time. An improved image quality may affect visual scoring systems, including the Deauville score (DS), which is used for clinical assessment of patients with lymphoma. The DS compares SUVmax in residual lymphomas with liver parenchyma, and here we investigate the impact of reduced image noise on the DS in patients with lymphomas scanned on a LAFOV PET/CT. METHODS Sixty-eight patients with lymphoma underwent a whole-body scan on a Biograph Vision Quadra PET/CT-scanner, and images were evaluated visually with regard to DS for three different timeframes of 90, 300, and 600 s. SUVmax and SUVmean were calculated from liver and mediastinal blood pool, in addition to SUVmax from residual lymphomas and measures of noise. RESULTS SUVmax in liver and in mediastinal blood pool decreased significantly with increasing acquisition time, whereas SUVmean remained stable. In residual tumor, SUVmax was stable during different acquisition times. As a result, the DS was subject to change in three patients. CONCLUSIONS Attention should be drawn towards the eventual impact of improvements in image quality on visual scoring systems such as the DS.
Collapse
Affiliation(s)
- Kirsten Korsholm
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
- Correspondence:
| | - Nanna Overbeck
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - André H. Dias
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Annika Loft
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Clinical applications of long axial field-of-view PET/CT scanners in oncology. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
17
|
van Sluis J, Borra R, Tsoumpas C, van Snick JH, Roya M, ten Hove D, Brouwers AH, Lammertsma AA, Noordzij W, Dierckx RA, Slart RH, Glaudemans AW. Extending the clinical capabilities of short- and long-lived positron-emitting radionuclides through high sensitivity PET/CT. Cancer Imaging 2022; 22:69. [PMID: 36527149 PMCID: PMC9755796 DOI: 10.1186/s40644-022-00507-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
This review describes the main benefits of using long axial field of view (LAFOV) PET in clinical applications. As LAFOV PET is the latest development in PET instrumentation, many studies are ongoing that explore the potentials of these systems, which are characterized by ultra-high sensitivity. This review not only provides an overview of the published clinical applications using LAFOV PET so far, but also provides insight in clinical applications that are currently under investigation. Apart from the straightforward reduction in acquisition times or administered amount of radiotracer, LAFOV PET also allows for other clinical applications that to date were mostly limited to research, e.g., dual tracer imaging, whole body dynamic PET imaging, omission of CT in serial PET acquisition for repeat imaging, and studying molecular interactions between organ systems. It is expected that this generation of PET systems will significantly advance the field of nuclear medicine and molecular imaging.
Collapse
Affiliation(s)
- Joyce van Sluis
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Ronald Borra
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Charalampos Tsoumpas
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Johannes H. van Snick
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Mostafa Roya
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Dik ten Hove
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Adrienne H. Brouwers
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Adriaan A. Lammertsma
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Walter Noordzij
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Rudi A.J.O. Dierckx
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Riemer H.J.A. Slart
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - Andor W.J.M. Glaudemans
- grid.4494.d0000 0000 9558 4598Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| |
Collapse
|
18
|
Lan X, Huo L, Li S, Wang J, Cai W. State-of-the-art of nuclear medicine and molecular imaging in China: after the first 66 years (1956-2022). Eur J Nucl Med Mol Imaging 2022; 49:2455-2461. [PMID: 35665836 PMCID: PMC9167647 DOI: 10.1007/s00259-022-05856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Huo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Shuren Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|