1
|
Xialu S, Faqiang M. Mechanisms of action of intestinal microorganisms and advances in head and neck tumors. Discov Oncol 2025; 16:303. [PMID: 40072772 PMCID: PMC11903988 DOI: 10.1007/s12672-025-02035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
In the last decade, it has been discovered that intestinal flora can affect various organ-specific cancers by altering the body's energy balance, synthesizing genetic toxins and small signaling molecules, and initiating and modulating immune responses. In this review, we will focus on elucidating the role of intestinal flora based on its molecular mechanisms and its possible impact on head and neck cancers in the near future, and explore how it may be a novel approach to treating head and neck cancers in the future.
Collapse
Affiliation(s)
- Su Xialu
- Graduate School of Guizhou Medical University, Guiyang, 550000, China
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China
| | - Ma Faqiang
- Graduate School of Guizhou Medical University, Guiyang, 550000, China.
- Department of Head and Neck Oncology, The Second Affiliated Hospital of Guizhou Medical University, Kaili, Guizhou, 556000, China.
| |
Collapse
|
2
|
Xie M, Yang T, Liu Q, Ning Z, Feng L, Min X. The influence of Lactobacillus johnsonii on tumor growth and lymph node metastasis in papillary thyroid carcinoma. Commun Biol 2025; 8:419. [PMID: 40074848 PMCID: PMC11903660 DOI: 10.1038/s42003-025-07856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Lymph node metastasis (LNM) is a key factor in the prognosis of papillary thyroid carcinoma (PTC). This study explores the effect of intratumoral bacteria on LNM in PTC. The intrathyroidal microbiome is analyzed in 55 PTC patients by 16S rRNA gene sequencing. The CCK8 and Transwell assays determine the impact of bacteria on the proliferation and migration abilities of PTC cells. Xenograft tumor and bacterial colonization experiments are carried out using nude mice. We show that Lactobacillus is significantly decreased in PTC lesions from patients with LNM. Lactobacillus johnsonii (L. johnsonii) suppresses the proliferation and migration capability of PTC cells in vitro and in vivo. Bacterial gut colonization of L. johnsonii increases its abundance in tumors and inhibits PTC growth and LNM. These findings suggest that L. johnsonii can be harnessed for the development of innovative therapeutic strategies for PTC.
Collapse
Affiliation(s)
- Minghao Xie
- Department of General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Tingting Yang
- Department of Otolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Qiang Liu
- Department of General Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zhikun Ning
- Department of Day Ward, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Lili Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510000, PR China.
- Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510000, PR China.
| | - Xiang Min
- Department of Otolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
3
|
Huang W, Jiang T, He J, Ruan J, Wu B, Tao R, Xu P, Wang Y, Chen R, Wang H, Yang Q, Zhang K, Jin L, Sun D, You J. Modulation of Intestinal Flora: a Novel Immunotherapeutic Approach for Enhancing Thyroid Cancer Treatment. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10471-z. [PMID: 39890752 DOI: 10.1007/s12602-025-10471-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Over the past 3 years, there has been a growing interest in clinical research regarding the potential involvement of intestinal flora in thyroid cancer (TC). This review delves into the intricate connection between intestinal flora and TC, focusing on the particular intestinal flora that is directly linked to the disease and identifying which may be able to predict potential microbial markers of TC. In order to shed light on the inflammatory pathways connected to the onset of TC, we investigated the impact of intestinal flora on immune modulation and the connection between chronic inflammation when investigating the role of intestinal flora in the pathogenesis of TC. Furthermore, the potential role of intestinal flora metabolites in the regulation of thyroid function was clarified by exploring the effects of short-chain fatty acids and lipopolysaccharide on thyroid hormone synthesis and metabolism. Based on these findings, we further explore the effects of probiotics, prebiotics, postbiotics, vitamins, and trace elements.
Collapse
Affiliation(s)
- Weiqiang Huang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Tao Jiang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Jing Ruan
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Baihui Wu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Runchao Tao
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yongpan Wang
- Department of General Surgery, The First People's Hospital of Jiashan, Jiashan Hospital Afliated of Jiaxing University, Jiaxing, 314100, China
| | - Rongbing Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hanbing Wang
- The University of Hong Kong School of Biomedical Sciences, Hong Kong, 999077, SAR, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Kun Zhang
- Chongqing Municipality Clinical Research Center for Endocrinology and Metabolic Diseases, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China.
| | - Jinfeng You
- Department of Obstetrics, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
4
|
Fang L, Ning J. Recent advances in gut microbiota and thyroid disease: pathogenesis and therapeutics in autoimmune, neoplastic, and nodular conditions. Front Cell Infect Microbiol 2024; 14:1465928. [PMID: 39776440 PMCID: PMC11703873 DOI: 10.3389/fcimb.2024.1465928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
This review synthesizes key findings from the past five years of experimental literature, elucidating the gut microbiome's significant influence on the pathogenesis of thyroid diseases. A pronounced shift in the gut microbiota composition has been consistently observed, with a significant reduction in bacteria such as Bifidobacterium, Bacillaceae, Megamonas, and Clostridium, and a notable increase in bacteria, including Bacteroides, Proteobacteria, Actinobacteria, Desulfobacterota, and Klebsiella. These alterations are implicated in the development and progression of thyroid diseases by impacting metabolic pathways including bile acid and cytokine production, including a decrease in short-chain fatty acids (SCFAs) that are crucial for immune regulation and thyroid hormone homeostasis. The review also highlights the therapeutic implications of probiotics in managing thyroid conditions. Evidence suggests that probiotic adjunct therapy can modulate the gut microbiota, leading to improvements in thyroid function and patient outcomes. The use of specific probiotic strains, such as Lactiplantibacillus plantarum 299v and Bifidobacterium longum, has demonstrated potential in enhancing the effects of traditional treatments and possibly restoring a balanced gut microbiota. Notably, fecal microbiota transplantation (FMT) has emerged as a promising intervention in Graves' Disease (GD), demonstrating the potential to recalibrate the gut microbiota, thereby influencing neurotransmitters and trace elements via the gut-brain and gut-thyroid axes. The integration of microbiome-based therapies with traditional treatments is anticipated to usher in a new era of personalized thyroid disease management, offering a more nuanced approach to patient care. By integrating this body of work, the review offers an innovative perspective on the gut microbiome's broad impact on thyroid diseases and the therapeutic applications of probiotics.
Collapse
Affiliation(s)
| | - Jie Ning
- Department of Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Wang Y, Chang J, Hu B, Yang S. Systemic Immune-Inflammation Index and Systemic Inflammation Response Index Predict the Response to Radioiodine Therapy for Differentiated Thyroid Cancer. J Inflamm Res 2024; 17:8531-8541. [PMID: 39539726 PMCID: PMC11559188 DOI: 10.2147/jir.s493397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose This research sought to evaluate the clinical value of systemic immune-inflammation index and systemic inflammation response index in predicting the response to radioactive iodine (RAI) therapy in individuals diagnosed with differentiated thyroid cancer. Patients and Methods This retrospective study included 406 patients with differentiated thyroid cancer who received initial RAI therapy and follow-up from December 2019 to December 2023. Patients were divided into two groups based on imaging and serum indicators to evaluate the response to radioactive iodine treatment: the ER group (excellent response) and the non-ER group (suboptimal response). Systemic immune-inflammation index and systemic inflammation response index were calculated based on peripheral blood cell counts before treatment. Multivariable logistic regression analysis was used to assess the independent associations of these indices with the therapeutic response to radioiodine treatment. Receiver operating characteristic (ROC) curves were graphed and the area under the curve (AUC) was calculated to evaluate their predictive ability. Results Compared to the ER group, patients in the non-ER group had significantly elevated systemic immune-inflammation index and systemic inflammation response index levels (p < 0.001). After adjusting for confounding factors, there was a significant association between these indices and the response to radioactive iodine treatment in patients with differentiated thyroid cancer. The optimal cutoff values for predicting the response to RAI treatment were 668.91 for systemic immune-inflammation index (AUC=0.692, sensitivity 58.2%, specificity 73.1%, 95% CI: 0.639-0.745, p < 0.001) and 0.47 for systemic inflammation response index (AUC=0.664, sensitivity 85.6%, specificity 42.7%, 95% CI: 0.612-0.717, p < 0.001). Conclusion Systemic immune-inflammation index and systemic inflammation response index could be valuable for predicting the response to RAI treatment in individuals diagnosed with differentiated thyroid cancer. Further research is needed to explore their practical utility, and these novel inflammation markers could serve as adjunct tools in clinical practice.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Junshun Chang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Ben Hu
- The Fifth Clinical Medical School of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Suyun Yang
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| |
Collapse
|
6
|
Yan K, Sun X, Fan C, Wang X, Yu H. Unveiling the Role of Gut Microbiota and Metabolites in Autoimmune Thyroid Diseases: Emerging Perspectives. Int J Mol Sci 2024; 25:10918. [PMID: 39456701 PMCID: PMC11507114 DOI: 10.3390/ijms252010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Autoimmune thyroid diseases (AITDs) are among the most prevalent organ-specific autoimmune disorders, with thyroid hormones playing a pivotal role in the gastrointestinal system's structure and function. Emerging evidence suggests a link between AITDs and the gut microbiome, which is a diverse community of organisms that are essential for digestion, absorption, intestinal homeostasis, and immune defense. Recent studies using 16S rRNA and metagenomic sequencing of fecal samples from AITD patients have revealed a significant correlation between a gut microbiota imbalance and the severity of AITDs. Progress in animal models of autoimmune diseases has shown that intervention in the gut microbiota can significantly alter the disease severity. The gut microbiota influences T cell subgroup differentiation and modulates the pathological immune response to AITDs through mechanisms involving short-chain fatty acids (SCFAs), lipopolysaccharides (LPSs), and mucosal immunity. Conversely, thyroid hormones also influence gut function and microbiota composition. Thus, there is a bidirectional relationship between the thyroid and the gut ecosystem. This review explores the pathogenic mechanisms of the gut microbiota and its metabolites in AITDs, characterizes the gut microbiota in Graves' disease (GD) and Hashimoto's thyroiditis (HT), and examines the interactions between the gut microbiota, thyroid hormones, T cell differentiation, and trace elements. The review aims to enhance understanding of the gut microbiota-thyroid axis and proposes novel approaches to mitigate AITD severity through gut microbiota modulation.
Collapse
Affiliation(s)
- Kai Yan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Chenxi Fan
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (K.Y.); (C.F.)
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; (X.S.); (X.W.)
| |
Collapse
|
7
|
Lu G, Gao D, Liu Y, Yu X, Jiang W, Lv Z. Early and long-term responses of intestinal microbiota and metabolites to 131I treatment in differentiated thyroid cancer patients. BMC Med 2024; 22:300. [PMID: 39020393 PMCID: PMC11256643 DOI: 10.1186/s12916-024-03528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Multiple high doses of 131I therapy in patients with differentiated thyroid cancer (DTC) might disrupt the balance of gut microbiota and metabolites. This study aimed to investigate the alterations of intestinal bacteria and metabolism over two courses of 131I therapy, explore the interactions, and construct diagnostic models reflecting enteric microecology based on 131I therapy. METHODS A total of 81 patients were recruited for the first 131I therapy (131I-1st), among whom 16 received a second course (131I-2nd) after half a year. Fecal samples were collected 1 day before (Pre-131I-1st/2nd) and 3 days after (Post-131I-1st/2nd) 131I therapy for microbiome (16S rRNA gene sequencing) and metabolomic (LC-MS/MS) analyses. RESULTS A total of six microbial genera and 11 fecal metabolites enriched in three pathways were identified to show significant differences between Pre-131I-1st and other groups throughout the two courses of 131I treatment. In the Post-131I-1st group, the beneficial bacteria Bifidobacterium, Lachnoclostridium, uncultured_bacterium_f_Lachnospiraceae, and Lachnospiraceae_UCG004 were abundant and the radiation-sensitive pathways of linoleic acid (LA), arachidonic acid, and tryptophan metabolism were inhibited compared with the Pre-131I-1st group. Compared with the Pre-131I-1st group, the Pre-131I-2nd group exhibited a reduced diversity of flora and differentially expressed metabolites, with a low abundance of beneficial bacteria and dysregulated radiation-sensitive pathways. However, less significant differences in microbiota and metabolites were found between the Pre/Post-131I-2nd groups compared with those between the Pre/Post-131I-1st groups. A complex co-occurrence was observed between 6 genera and 11 metabolites, with Lachnoclostridium, Lachnospiraceae_UCG004, Escherichia-Shigella, and LA-related metabolites contributing the most. Furthermore, combined diagnostic models of charactered bacteria and metabolites answered well in the early, long-term, and dose-dependent responses for 131I therapy. CONCLUSIONS Different stages of 131I therapy exert various effects on gut microecology, which play an essential role in regulating radiotoxicity and predicting the therapeutic response.
Collapse
Affiliation(s)
- Ganghua Lu
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Institute of Clinical Mass Spectrometry Applied Research Center, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Dingwei Gao
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Institute of Clinical Mass Spectrometry Applied Research Center, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixian Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiaqing Yu
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Institute of Clinical Mass Spectrometry Applied Research Center, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wen Jiang
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Institute of Clinical Mass Spectrometry Applied Research Center, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Zhongwei Lv
- Clinical Nuclear Medicine Center, Imaging Clinical Medical Center, Institute of Nuclear Medicine, Institute of Clinical Mass Spectrometry Applied Research Center, Department of Nuclear Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 200003, China.
| |
Collapse
|
8
|
Ludgate ME, Masetti G, Soares P. The relationship between the gut microbiota and thyroid disorders. Nat Rev Endocrinol 2024:10.1038/s41574-024-01003-w. [PMID: 38906998 DOI: 10.1038/s41574-024-01003-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/23/2024]
Abstract
Disorders of the thyroid gland are common, more prevalent in women than in men, and range from inflammatory to neoplastic lesions. Autoimmune thyroid diseases (AITD) affect 2-5% of the population, while thyroid cancer is the most frequent endocrine malignancy. Treatment for AITD is still restricted to management rather than prevention or cure. Progress has been made in identifying genetic variants that predispose to AITD and thyroid cancer, but the increasing prevalence of all thyroid disorders indicates that factors other than genes are involved. The gut microbiota, which begins to develop before birth, is highly sensitive to diet and the environment, providing a potential mechanism for non-communicable diseases to become communicable. Its functions extend beyond maintenance of gut integrity: the gut microbiota regulates the immune system, contributes to thyroid hormone metabolism and can generate or catabolize carcinogens, all of which are relevant to AITD and thyroid cancer. Observational and interventional studies in animal models support a role for the gut microbiota in AITD, which has been confirmed in some reports from human cohorts, although considerable geographic variation is apparent. Reports of a role for the microbiota in thyroid cancer are more limited, but evidence supports a relationship between gut dysbiosis and thyroid cancer.
Collapse
Affiliation(s)
| | | | - Paula Soares
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
- Instituto de Investigação e Inovação em Saúde da Universidade do Porto (I3S), Porto, Portugal
| |
Collapse
|
9
|
Sekihara K, Himuro H, Toda S, Saito N, Hirayama R, Suganuma N, Sasada T, Hoshino D. Recent Trends and Potential of Radiotherapy in the Treatment of Anaplastic Thyroid Cancer. Biomedicines 2024; 12:1286. [PMID: 38927493 PMCID: PMC11201408 DOI: 10.3390/biomedicines12061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly aggressive malignancy characterized by advanced disease at diagnosis and a poor prognosis. Despite multimodal therapeutic approaches that include surgery, radiotherapy, and chemotherapy, an optimal treatment strategy remains elusive. Current developments in targeted therapies and immunotherapy offer promising avenues for improved outcomes, particularly for BRAF-mutant patients. However, challenges remain regarding overcoming drug resistance and developing effective treatments for BRAF-wild-type tumors. This comprehensive review examines the clinical and biological features of ATC, outlines the current standards of care, and discusses recent developments with a focus on the evolving role of radiotherapy. Moreover, it emphasizes the necessity of a multidisciplinary approach and highlights the urgent need for further research to better understand ATC pathogenesis and identify new therapeutic targets. Collaborative efforts, including large-scale clinical trials, are essential for translating these findings into improved patient outcomes.
Collapse
Affiliation(s)
- Kazumasa Sekihara
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Hidetomo Himuro
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Soji Toda
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama 2320024, Japan
| | - Nao Saito
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| | - Ryoichi Hirayama
- Department of Charged Particle Therapy Research, QST Hospital, National Institutes for Quantum Science and Technology, Chiba 2638555, Japan;
| | - Nobuyasu Suganuma
- Department of Surgery, Yokohama City University, Yokohama 2360004, Japan;
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (H.H.); (T.S.)
| | - Daisuke Hoshino
- Cancer Biology Division, Kanagawa Cancer Center Research Institute, Yokohama 2418515, Japan; (K.S.); (S.T.); (N.S.)
- Biospecimen Center, Kanagawa Cancer Center, Yokohama 2418515, Japan
| |
Collapse
|
10
|
Hu S, Tang C, Wang L, Feng F, Li X, Sun M, Yao L. Causal relationship between gut microbiota and differentiated thyroid cancer: a two-sample Mendelian randomization study. Front Oncol 2024; 14:1375525. [PMID: 38737897 PMCID: PMC11082393 DOI: 10.3389/fonc.2024.1375525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Background The gut microbiota has been significantly associated with differentiated thyroid cancer (DTC). However, the causal relationship between the gut microbiota and DTC remains unexplored. Methods Genome-wide association study (GWAS) summary databases were utilized to select exposures and outcomes. The Mendelian randomization (MR) method was employed to investigate the causal relationship between the gut microbiota and DTC. A sensitivity analysis was performed to assess the reliability of the findings. Results Four bacterial traits were associated with the risk of DTC: Class Mollicutes [odds ratio (OR) = 10.953, 95% confidence interval (95% CI): 2.333-51.428, p = 0.002], Phylum Tenericutes (OR = 10.953, 95% CI: 2.333-51.428, p = 0.002), Genus Eggerthella (OR = 3.219, 95% CI: 1.033-10.024, p = 0.044), and Order Rhodospirillales (OR = 2.829, 95% CI: 1.096-7.299, p = 0.032). The large 95% CI range for the Class Mollicutes and the Phylum Tenericutes may be attributed to the small sample size. Additionally, four other bacterial traits were negatively associated with DTC: Genus Eubacterium fissicatena group (OR = 0.381, 95% CI: 0.148-0.979, p = 0.045), Genus Lachnospiraceae UCG008 (OR = 0.317, 95% CI: 0.125-0.801, p = 0.015), Genus Christensenellaceae R-7 group (OR = 0.134, 95% CI: 0.020-0.886, p = 0.037), and Genus Escherichia Shigella (OR = 0.170, 95% CI: 0.037-0.769, p = 0.021). Conclusion These findings contribute to our understanding of the pathological mechanisms underlying DTC and provide novel insights for the clinical treatment of DTC.
Collapse
Affiliation(s)
- Shaojun Hu
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Chuangang Tang
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, China
| | - Ling Wang
- Department of Critical Care Medicine, The People’s Hospital of Huaiyin, Jinan, China
| | - Fang Feng
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiaoxin Li
- Department of Pathology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, China
| | - Mingyu Sun
- Department of Breast Surgery, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, China
| | - Lijun Yao
- Department of Oncology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
11
|
Zhou J, Zhang X, Xie Z, Li Z. Exploring reciprocal causation: bidirectional mendelian randomization study of gut microbiota composition and thyroid cancer. J Cancer Res Clin Oncol 2024; 150:75. [PMID: 38308705 PMCID: PMC10838232 DOI: 10.1007/s00432-023-05535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
BACKGROUND While an association between gut microbiota composition and thyroid cancer (TC) has been observed, the directionality and causality of this relationship remain unclear. METHODS We conducted a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal effect between gut microbiota composition and TC. Gut microbiota data were derived from a diverse population encompassing various ethnicities (n = 18,340 samples), while TC data were sourced from an European population (n = 218,792 samples). Instrumental variables, represented by single nucleotide polymorphisms (SNPs), were employed to assess the causal relationship using multiple MR methods, including inverse-variance weighting (IVW), weighted median, weighted mode, MR-Egger, and simple mode. F-statistics and sensitivity analyses were performed to evaluate the robustness of the findings. RESULTS Our investigation identified a comprehensive set of 2934 instrumental variables significantly linked to gut microbiota composition (p < 1 × 10-5). The analysis illuminated notable candidates within the phylum Euryarchaeota, including families Christensenellaceae and Victivallaceae, and genera Methanobrevibacter, Ruminococcus2, and Subdoligranulum, which emerged as potential risk factors for TC. On the other hand, a protective influence against TC was attributed to class Betaproteobacteria, family FamilyXI, and genera Anaerofilum, Odoribacter, and Sutterella, alongside order Burkholderiales. Further enhancing our insights, the integration of 7 instrumental variables from TC data (p < 1 × 10-5) disclosed the regulatory potential of one family and five genera. Notably, the genus Coprobacter innocuum group (p = 0.012, OR = 0.944) exhibited the highest probability of regulation. Our meticulous analyses remained free from significant bias, heterogeneity, or horizontal pleiotropy concerns. CONCLUSION Through a bidirectional two-sample Mendelian randomization approach, we elucidated a potential bidirectional causal relationship between gut microbiota composition and TC. Specific microbial taxa were associated with an increased risk or conferred protection against TC. These findings advance our understanding of the complex interplay between the gut microbiota and TC pathogenesis, offering new insights into the therapeutic potential of modulating the gut microbiota for managing TC.
Collapse
Affiliation(s)
- Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xuan Zhang
- The Second People's Hospital of Hunan, The General Surgery Department, No.427, Section 3, Furong Middle Road, Changsha, 410078, People's Republic of China
| | - Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
- Institute of Clinical Pharmacology, Central South University and Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
12
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
13
|
Zhang T, Lei H, Chen X, Dou Z, Yu B, Su W, Wang W, Jin X, Katsube T, Wang B, Zhang H, Li Q, Di C. Carrier systems of radiopharmaceuticals and the application in cancer therapy. Cell Death Discov 2024; 10:16. [PMID: 38195680 PMCID: PMC10776600 DOI: 10.1038/s41420-023-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Radiopharmaceuticals play a vital role in cancer therapy. The carrier of radiopharmaceuticals can precisely locate and guide radionuclides to the target, where radionuclides kill surrounding tumor cells. Effective application of radiopharmaceuticals depends on the selection of an appropriate carrier. Herein, different types of carriers of radiopharmaceuticals and the characteristics are briefly described. Subsequently, we review radiolabeled monoclonal antibodies (mAbs) and their derivatives, and novel strategies of radiolabeled mAbs and their derivatives in the treatment of lymphoma and colorectal cancer. Furthermore, this review outlines radiolabeled peptides, and novel strategies of radiolabeled peptides in the treatment of neuroendocrine neoplasms, prostate cancer, and gliomas. The emphasis is given to heterodimers, bicyclic peptides, and peptide-modified nanoparticles. Last, the latest developments and applications of radiolabeled nucleic acids and small molecules in cancer therapy are discussed. Thus, this review will contribute to a better understanding of the carrier of radiopharmaceuticals and the application in cancer therapy.
Collapse
Affiliation(s)
- Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Boyi Yu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730000, China
| | - Xiaodong Jin
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|
14
|
Zhu F, Zhang P, Liu Y, Bao C, Qian D, Ma C, Li H, Yu T. Mendelian randomization suggests a causal relationship between gut dysbiosis and thyroid cancer. Front Cell Infect Microbiol 2023; 13:1298443. [PMID: 38106470 PMCID: PMC10722196 DOI: 10.3389/fcimb.2023.1298443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Alterations in gut microbiota composition and function have been linked to the development and progression of thyroid cancer (TC). However, the exact nature of the causal relationship between them remains uncertain. Methods A bidirectional two-sample Mendelian randomization (TSMR) analysis was conducted to assess the causal connection between gut microbiota (18,340 individuals) and TC (6,699 cases combined with 1,613,655 controls) using data from a genome-wide association study (GWAS). The primary analysis used the inverse-variance weighted (IVW) method to estimate the causal effect, with supplementary approaches including the weighted median, weighted mode, simple mode, and MR-Egger. Heterogeneity and pleiotropy were assessed using the Cochrane Q test, MR-Egger intercept test, and MR-PRESSO global test. A reverse TSMR analysis was performed to explore reverse causality. Results This study identified seven microbial taxa with significant associations with TC. Specifically, the genus Butyrivibrio (OR: 1.127, 95% CI: 1.008-1.260, p = 0.036), Fusicatenibacter (OR: 1.313, 95% CI: 1.066-1.618, p = 0.011), Oscillospira (OR: 1.240, 95% CI: 1.001-1.536, p = 0.049), Ruminococcus2 (OR: 1.408, 95% CI: 1.158-1.711, p < 0.001), Terrisporobacter (OR: 1.241, 95% CI: 1.018-1.513, p = 0.032) were identified as risk factors for TC, while The genus Olsenella (OR: 0.882, 95% CI: 0.787-0.989, p = 0.031) and Ruminococcaceae UCG004 (OR: 0.719, 95% CI: 0.566-0.914, p = 0.007) were associated with reduced TC risk. The reverse MR analysis found no evidence of reverse causality and suggested that TC may lead to increased levels of the genus Holdemanella (β: 0.053, 95% CI: 0.012~0.094, p = 0.011) and decreased levels of the order Bacillales (β: -0.075, 95% CI: -0.143~-0.006, p = 0.033). No significant bias, heterogeneity, or pleiotropy was detected in this study. Conclusion This study suggests a potential causal relationship between gut microbiota and TC, providing new insights into the role of gut microbiota in TC. Further research is needed to explore the underlying biological mechanisms.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Department of Gastroenterology, The First People’s Hospital of Kunshan, Suzhou, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Ying Liu
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chongchan Bao
- Department of Breast and Thyroid Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dong Qian
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Chaoqun Ma
- Department of General Surgery, Affiliated Hospital of Nanjing University of TCM, Jiangsu Province Hospital of TCM, Nanjing, China
| | - Hua Li
- Department of General Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|