1
|
Faure S, Paillet A, Comtat C, Besson FL. Fast 4D-PET parametric imaging computation at the whole field of view level: Reliability under simulated conditions of PET KinetiX, a dedicated software solution. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07285-0. [PMID: 40257613 DOI: 10.1007/s00259-025-07285-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/10/2025] [Indexed: 04/22/2025]
Abstract
PURPOSE The reliability of a new academic software, PET KinetiX, designed for fast parametric 4D-PET imaging computation, is assessed under simulated conditions. METHODS 4D-PET data were simulated using the XCAT digital phantom and realistic time-activity curves (ground truth). Four hundred analytical simulations were reconstructed using CASToR, an open-source software for tomographic reconstruction, replicating the clinical characteristics of two available PET systems with short and long axial fields of view (SAFOV and LAFOV). A total of 2,800 Patlak and 2TCM kinetic parametric maps of 18F-FDG were generated using PET KinetiX. The mean biases and standard deviations of the kinetic parametric maps were computed for each tissue label and compared to the biases of unprocessed SUV data. Additionally, the mean absolute ratio of kinetic-to-SUV contrast-to-noise ratio (CNR) was estimated for each tissue structure, along with the corresponding standard deviations. RESULTS The Ki and vb parametric maps produced by PET KinetiX faithfully reproduced the predefined multi-tissue structures of the XCAT digital phantom for both Patlak and 2TCM models. Image definition was influenced by the 4D-PET input data: a higher number of iterations resulted in sharper rendering and higher standard deviations in PET signal characteristics. Biases relative to the ground truth varied across tissue structures and hardware configurations, similarly to unprocessed SUV data. In most tissue structures, Patlak kinetic-to-SUV CNR ratios exceeded 1 for both SAFOV and LAFOV configurations. The highest kinetic-to-SUV CNR ratio was observed in 2TCM k₃ maps within tumor regions. CONCLUSION PET KinetiX currently generates Ki and vb parametric maps that are qualitatively comparable to unprocessed SUV data, with improved CNR in most cases. The 2TCM k₃ parametric maps for tumor structures exhibited the highest CNR enhancement, warranting further evaluation across different anatomical regions and radiotracer applications.
Collapse
Affiliation(s)
- Sylvain Faure
- Laboratoire de Mathématique d'Orsay, CNRS/INRIA ParMA Université Paris-Saclay, Orsay, France
| | - Adrien Paillet
- CEA/Inserm/CNRS/Université Paris-Saclay, BioMaps, Orsay, France
| | - Claude Comtat
- CEA/Inserm/CNRS/Université Paris-Saclay, BioMaps, Orsay, France
| | - Florent L Besson
- CEA/Inserm/CNRS/Université Paris-Saclay, BioMaps, Orsay, France.
- Department of Nuclear Medicine - Molecular Imaging, Hôpitaux Universitaires Paris-Saclay AP-HP, DMU SMART IMAGING, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
- School of Medicine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.
| |
Collapse
|
2
|
Cook GJR, Alberts IL, Wagner T, Fischer BM, Nazir MS, Lilburn D. The impact of long axial field of view (LAFOV) PET on oncologic imaging. Eur J Radiol 2025; 183:111873. [PMID: 39647272 PMCID: PMC11904125 DOI: 10.1016/j.ejrad.2024.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
The development of long axial field of view (LAFOV) positron emission tomography coupled with computed tomography (PET/CT) scanners might be considered the biggest step forward in PET imaging since it became a mainstream clinical modality. Despite increased capital and maintenance costs and data storage requirements, the improvement in image quality, significantly faster acquisition times and lower radiopharmaceutical administered activities, allow a high quality and more efficient clinical service. This step change in technology overcomes some of the limitations of standard short axial field of view scanners. It allows simultaneous imaging of all body systems, and with the ability to obtain high temporal resolution data, it increases potential research applications, particularly in multisystem disease or for dosimetry measurements of novel radiopharmaceuticals. The improvements in sensitivity and signal-to-noise facilitates the use of tracers with long half-lives and low administered activity (e.g. [89Zr]-labelled monoclonal antibodies) or very short half-lives (e.g. [82Rb]), opening up applications that hitherto have been challenging. It is early in the evolution of LAFOV PET/CT and the advantages these systems offer have still to be fully realised in providing additional impact in clinical practice. In this article we describe the potential advantages of LAFOV PET technology and some of the clinical and research applications where it has been applied as well as some of the future developments that may enhance the modality further.
Collapse
Affiliation(s)
- Gary J R Cook
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London SE1 7EH, UK.
| | - Ian L Alberts
- Molecular Imaging and Therapy, BC Cancer Agency, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| | - Thomas Wagner
- Department of Nuclear Medicine, Royal Free London NHS Trust, London NW3 1TX, UK.
| | - B Malene Fischer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark.
| | - Muhummad Sohaib Nazir
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Cardio-Oncology Centre of Excellence, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - David Lilburn
- King's College London & Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College, London SE1 7EH, UK.
| |
Collapse
|
3
|
Cheng Z, Deng X, Song S, Wu Y, Tang H, Zou S, Zhu Y, Liu A, Zhu X. Leveraging small voxel with optimal acquisition time for [ 18F]mFBG total-body PET/CT imaging in pediatric patients with neuroblastoma: a preliminary study. Eur J Nucl Med Mol Imaging 2025:10.1007/s00259-025-07098-1. [PMID: 39888420 DOI: 10.1007/s00259-025-07098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025]
Abstract
PURPOSE The advent of total-body PET/CT presents an opportunity for significant advancements in imaging of neuroblastoma with [18F]meta-fluorobenzylguanidine ([18F]mFBG). Small voxel imaging has proven to have better lesion detectability but need enough radioactivity counts. This study aims to balance shortened acquisition times and small voxel reconstruction to keep sufficient image quality and diagnostic confidence on [18F]mFBG total-body PET for neuroblastoma. METHODS We retrospectively enrolled 33 pediatric patients with neuroblastoma who underwent 37 [18F]mFBG total-body uEXPLORER PET/CT scans of 10-min duration. PET images were reconstructed with varying acquisition times (0.5-10 min) and three matrix sizes (192 × 192, 512 × 512 and 1024 × 1024). The subjective (scored on a 5-point scale) and objective image quality (signal-to-noise ratio, SNR) of all the sets of reconstructed images were analyzed by nuclear medicine physicians. For indeterminate lesions identified in the group of 192 × 192 matrix with the 10-min scan (G192-10), diagnostic confidence was further evaluated in images reconstructed with the 512 × 512 and 1024 × 1024 matrices (G512 and G1024). RESULTS Of the 33 patients with 37 [18F]mFBG PET/CT scans, 17 patients with 20 scans had positive [18F]mFBG PET/CT findings. Sufficient subjective image quality was achieved with at least 2-min acquisition of 192 × 192 matrix and 4-min acquisition of 512 × 512 matrix (with all scores ≥ 3). SNR increased with longer acquisition times for the same voxel size, while decreased as voxel size shrunk. Although the Curie and SIOPEN scores remained consistent across G192, G512, and G1024-10 groups, the G512 groups with at least 2-min acquisition and G1024-10 showed significantly higher confidence scores for characterizing indeterminate lesions on the G192-10 images, with almost all indeterminate lesions being rated as very confident. CONCLUSIONS A matrix of 512 × 512 with a minimum of 4-min acquisition on [18F]mFBG total-body PET/CT is recommended for sufficient image quality and improved diagnostic confidence, particularly in detecting indeterminate lesions.
Collapse
Affiliation(s)
- Zhaoting Cheng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yang Wu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Hongmei Tang
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Sijuan Zou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China.
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
- National Center for Major Public Health Events, 1095 Jiefang Ave, Wuhan, 430030, China.
| |
Collapse
|
4
|
Dias AH, Andersen KF, Fosbøl MØ, Gormsen LC, Andersen FL, Munk OL. Long Axial Field-of-View PET/CT: New Opportunities for Pediatric Imaging. Semin Nucl Med 2025; 55:76-85. [PMID: 39542815 DOI: 10.1053/j.semnuclmed.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
The combined use of Positron Emission Tomography (PET) and Computed Tomography (CT) has become increasingly vital for diagnosing and managing oncological and infectious diseases in pediatric patients. The introduction of long axial field-of-view (LAFOV) PET/CT scanners, also known as "Total Body PET/CT," marks a significant advancement in nuclear medicine. This new technology enables faster pediatric imaging with substantially reduced radiation exposure and essentially eliminates the need for sedation, addressing previous critical concerns in pediatric imaging. This review will explore the applications and challenges of LAFOV PET/CT in pediatric imaging, highlight the benefits observed at two Danish hospitals, and evaluate its potential to transform the management of pediatric patients.
Collapse
Affiliation(s)
- André Henrique Dias
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark.
| | - Kim Francis Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Marie Øbro Fosbøl
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Flemming Littrup Andersen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Zhou X, Xue S, Li L, Seifert R, Dong S, Chen R, Huang G, Rominger A, Liu J, Shi K. Sedation-free pediatric [ 18F]FDG imaging on totalbody PET/CT with the assistance of artificial intelligence. Eur J Nucl Med Mol Imaging 2024; 51:4062-4072. [PMID: 38958680 DOI: 10.1007/s00259-024-06818-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE While sedation is routinely used in pediatric PET examinations to preserve diagnostic quality, it may result in side effects and may affect the radiotracer's biodistribution. This study aims to investigate the feasibility of sedation-free pediatric PET imaging using ultra-fast total-body (TB) PET scanners and deep learning (DL)-based attenuation and scatter correction (ASC). METHODS This retrospective study included TB PET (uExplorer) imaging of 35 sedated pediatric patients under four years old to determine the minimum effective scanning time. A DL-based ASC method was applied to enhance PET quantification. Both quantitative and qualitative assessments were conducted to evaluate the image quality of ultra-fast DL-ASC PET. Five non-sedated pediatric patients were subsequently used to validate the proposed approach. RESULTS Comparisons between standard 300-second and ultra-fast 15-second imaging, CT-ASC and DL-ASC ultra-fast 15-second images, as well as DL-ASC ultra-fast 15-second images in non-sedated and sedated patients, showed no significant differences in qualitative scoring, lesion detectability, and quantitative Standard Uptake Value (SUV) (P = ns). CONCLUSIONS This study demonstrates that pediatric PET imaging can be effectively performed without sedation by combining ultra-fast imaging techniques with a DL-based ASC. This advancement in sedation-free ultra-fast PET imaging holds potential for broader clinical adoption.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Lianghua Li
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| | - Shunjie Dong
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruohua Chen
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Street Freiburgstr. 18, Bern, 3010, Switzerland
| |
Collapse
|
6
|
Meier JG, Trout AT, Abu Ata N, Sharp SE, Anton CG, Somasundaram E, Brady SL. Impact of upgrading from a 25-cm to a 30-cm z-axis field of view digital PET/CT in a pediatric hospital. Pediatr Radiol 2024; 54:1896-1905. [PMID: 39259301 PMCID: PMC11473537 DOI: 10.1007/s00247-024-06049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Increased positron emission tomography (PET) scanner z-axis coverage provides an opportunity in pediatrics to reduce dose, anesthesia, or repeat scans due to motion. OBJECTIVE Recently, our digital PET scanner was upgraded from a 25-cm to a 30-cm z-axis coverage. We compare the two systems through National Electrical Manufacturing Association (NEMA) testing and evaluation of paired images from patients scanned on both systems. MATERIALS AND METHODS NEMA testing and a retrospective review of pediatric patients who underwent clinically indicated 18F-fluorodeoxyglucose (FDG) PET computed tomography (PET/CT) on both systems with unchanged acquisition parameters were performed. Image quality was assessed with liver signal to noise ratio (SNR-liver) and contrast to noise ratio (CNR) in the thigh muscle and liver with results compared with an unpaired t-test. Three readers independently reviewed paired (25 cm and 30 cm) images from the same patient, blinded to scanner configuration. RESULTS Expansion to 30 cm increased system sensitivity to 29.8% (23.4 cps/kBq to 30.4 cps/kBq). Seventeen patients (6 male/11 female, median age 12.5 (IQR 8.3-15.0) years, median weight 53.7 (IQR 34.2-68.7) kg) were included. SNR-liver and CNR increased by 35.1% (IQR 19.0-48.4%) and 43.1% (IQR 6.2-50.2%) (P-value <0.001), respectively. All readers preferred images from the 30-cm configuration. A median of 1 (IQR 1-1) for fewer bed positions was required with the 30-cm configuration allowing a median of 91 (IQR 47-136) s for shorter scans. CONCLUSION Increasing z-axis coverage from 25 to 30 cm on a current-generation digital PET scanner significantly improved PET system performance and patient image quality, and reduced scan duration.
Collapse
Affiliation(s)
- Joseph G Meier
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH, 45229, USA.
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA.
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Nadeen Abu Ata
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
- Department of Radiology, AdventHealth Central Florida, Orlando, FL, USA
| | - Susan E Sharp
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Christopher G Anton
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Elanchezhian Somasundaram
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| | - Samuel L Brady
- Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 5031, Cincinnati, OH, 45229, USA
- Department of Radiology, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH, 45267, USA
| |
Collapse
|
7
|
Mingels C, Spencer BA, Nalbant H, Omidvari N, Rokni M, Rominger A, Sen F, Cherry SR, Badawi RD, Abdelhafez YG, Nardo L. Dose Reduction in Pediatric Oncology Patients with Delayed Total-Body [ 18F]FDG PET/CT. J Nucl Med 2024; 65:1101-1106. [PMID: 38664017 PMCID: PMC11218730 DOI: 10.2967/jnumed.124.267521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 07/03/2024] Open
Abstract
Our aim was to define a lower limit of reduced injected activity in delayed [18F]FDG total-body (TB) PET/CT in pediatric oncology patients. Methods: In this single-center prospective study, children were scanned for 20 min with TB PET/CT, 120 min after intravenous administration of a 4.07 ± 0.49 MBq/kg dose of [18F]FDG. Five randomly subsampled low-count reconstructions were generated using ¼, ⅛, [Formula: see text], and [Formula: see text] of the counts in the full-dose list-mode reference standard acquisition (20 min), to simulate dose reduction. For the 2 lowest-count reconstructions, smoothing was applied. Background uptake was measured with volumes of interest placed on the ascending aorta, right liver lobe, and third lumbar vertebra body (L3). Tumor lesions were segmented using a 40% isocontour volume-of-interest approach. Signal-to-noise ratio, tumor-to-background ratio, and contrast-to-noise ratio were calculated. Three physicians identified malignant lesions independently and assessed the image quality using a 5-point Likert scale. Results: In total, 113 malignant lesions were identified in 18 patients, who met the inclusion criteria. Of these lesions, 87.6% were quantifiable. Liver SUVmean did not change significantly, whereas a lower signal-to-noise ratio was observed in all low-count reconstructions compared with the reference standard (P < 0.0001) because of higher noise rates. Tumor uptake (SUVmax), tumor-to-background ratio, and total lesion count were significantly lower in the reconstructions with [Formula: see text] and [Formula: see text] of the counts of the reference standard (P < 0.001). Contrast-to-noise ratio and clinical image quality were significantly lower in all low-count reconstructions than with the reference standard. Conclusion: Dose reduction for delayed [18F]FDG TB PET/CT imaging in children is possible without loss of image quality or lesion conspicuity. However, our results indicate that to maintain comparable tumor uptake and lesion conspicuity, PET centers should not reduce the injected [18F]FDG activity below 0.5 MBq/kg when using TB PET/CT in pediatric imaging at 120 min after injection.
Collapse
Affiliation(s)
- Clemens Mingels
- Department of Radiology, University of California Davis, Sacramento, California;
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Benjamin A Spencer
- Department of Radiology, University of California Davis, Sacramento, California
| | - Hande Nalbant
- Department of Radiology, University of California Davis, Sacramento, California
| | - Negar Omidvari
- Department of Biomedical Engineering, University of California Davis, Davis, California; and
| | - Mehrad Rokni
- Department of Radiology, University of California Davis, Sacramento, California
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fatma Sen
- Department of Radiology, University of California Davis, Sacramento, California
| | - Simon R Cherry
- Department of Radiology, University of California Davis, Sacramento, California
- Department of Biomedical Engineering, University of California Davis, Davis, California; and
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, California
- Department of Biomedical Engineering, University of California Davis, Davis, California; and
| | - Yasser G Abdelhafez
- Department of Radiology, University of California Davis, Sacramento, California
- Nuclear Medicine Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Sacramento, California
| |
Collapse
|
8
|
Chen W, Li Y, Li Z, Jiang Y, Cui Y, Zeng J, Mo Y, Tang S, Li S, Liu L, Zhao Y, Hu Y, Fan W. Advantages and Challenges of Total-Body PET/CT at a Tertiary Cancer Center: Insights from Sun Yat-sen University Cancer Center. J Nucl Med 2024; 65:54S-63S. [PMID: 38719233 DOI: 10.2967/jnumed.123.266948] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
In recent decades, researchers worldwide have directed their efforts toward enhancing the quality of PET imaging. The detection sensitivity and image resolution of conventional PET scanners with a short axial field of view have been constrained, leading to a suboptimal signal-to-noise ratio. The advent of long-axial-field-of-view PET scanners, exemplified by the uEXPLORER system, marked a significant advancement. Total-body PET imaging possesses an extensive scan range of 194 cm and an ultrahigh detection sensitivity, and it has emerged as a promising avenue for improving image quality while reducing the administered radioactivity dose and shortening acquisition times. In this review, we elucidate the application of the uEXPLORER system at the Sun Yat-sen University Cancer Center, including the disease distribution, patient selection workflow, scanning protocol, and several enhanced clinical applications, along with encountered challenges. We anticipate that this review will provide insights into routine clinical practice and ultimately improve patient care.
Collapse
Affiliation(s)
- Wanqi Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yinghe Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Zhijian Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yongluo Jiang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yingpu Cui
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Jiling Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yiwen Mo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Si Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Shatong Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Lei Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Yumo Zhao
- United Imaging Healthcare Co. Ltd., Shanghai, China
| | - Yingying Hu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| | - Wei Fan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China;
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China; and
| |
Collapse
|
9
|
Wu Y, Sun T, Ng YL, Liu J, Zhu X, Cheng Z, Xu B, Meng N, Zhou Y, Wang M. Clinical Implementation of Total-Body PET in China. J Nucl Med 2024; 65:64S-71S. [PMID: 38719242 DOI: 10.2967/jnumed.123.266977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/13/2024] [Indexed: 07/16/2024] Open
Abstract
Total-body (TB) PET/CT is a groundbreaking tool that has brought about a revolution in both clinical application and scientific research. The transformative impact of TB PET/CT in the realms of clinical practice and scientific exploration has been steadily unfolding since its introduction in 2018, with implications for its implementation within the health care landscape of China. TB PET/CT's exceptional sensitivity enables the acquisition of high-quality images in significantly reduced time frames. Clinical applications have underscored its effectiveness across various scenarios, emphasizing the capacity to personalize dosage, scan duration, and image quality to optimize patient outcomes. TB PET/CT's ability to perform dynamic scans with high temporal and spatial resolution and to perform parametric imaging facilitates the exploration of radiotracer biodistribution and kinetic parameters throughout the body. The comprehensive TB coverage offers opportunities to study interconnections among organs, enhancing our understanding of human physiology and pathology. These insights have the potential to benefit applications requiring holistic TB assessments. The standard topics outlined in The Journal of Nuclear Medicine were used to categorized the reviewed articles into 3 sections: current clinical applications, scan protocol design, and advanced topics. This article delves into the bottleneck that impedes the full use of TB PET in China, accompanied by suggested solutions.
Collapse
Affiliation(s)
- Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Tao Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yee Ling Ng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoping Cheng
- Department of Nuclear Medicine, First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China; and
| | - Baixuan Xu
- Department of Nuclear Medicine, Chinese PLA General Hospital, Beijing, China
| | - Nan Meng
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd., Shanghai, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China;
- People's Hospital of Zhengzhou University, Zhengzhou, China
- Institute for Integrated Medical Science and Engineering, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
10
|
Zhang Q, Hu Y, Zhou C, Zhao Y, Zhang N, Zhou Y, Yang Y, Zheng H, Fan W, Liang D, Hu Z. Reducing pediatric total-body PET/CT imaging scan time with multimodal artificial intelligence technology. EJNMMI Phys 2024; 11:1. [PMID: 38165551 PMCID: PMC10761657 DOI: 10.1186/s40658-023-00605-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024] Open
Abstract
OBJECTIVES This study aims to decrease the scan time and enhance image quality in pediatric total-body PET imaging by utilizing multimodal artificial intelligence techniques. METHODS A total of 270 pediatric patients who underwent total-body PET/CT scans with a uEXPLORER at the Sun Yat-sen University Cancer Center were retrospectively enrolled. 18F-fluorodeoxyglucose (18F-FDG) was administered at a dose of 3.7 MBq/kg with an acquisition time of 600 s. Short-term scan PET images (acquired within 6, 15, 30, 60 and 150 s) were obtained by truncating the list-mode data. A three-dimensional (3D) neural network was developed with a residual network as the basic structure, fusing low-dose CT images as prior information, which were fed to the network at different scales. The short-term PET images and low-dose CT images were processed by the multimodal 3D network to generate full-length, high-dose PET images. The nonlocal means method and the same 3D network without the fused CT information were used as reference methods. The performance of the network model was evaluated by quantitative and qualitative analyses. RESULTS Multimodal artificial intelligence techniques can significantly improve PET image quality. When fused with prior CT information, the anatomical information of the images was enhanced, and 60 s of scan data produced images of quality comparable to that of the full-time data. CONCLUSION Multimodal artificial intelligence techniques can effectively improve the quality of pediatric total-body PET/CT images acquired using ultrashort scan times. This has the potential to decrease the use of sedation, enhance guardian confidence, and reduce the probability of motion artifacts.
Collapse
Affiliation(s)
- Qiyang Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yingying Hu
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chao Zhou
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yumo Zhao
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Zhou
- United Imaging Healthcare Group, Central Research Institute, Shanghai, 201807, China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wei Fan
- Department of Nuclear Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|