1
|
Chen X, Rao W, Shi Y, Liu J. Minimally Invasive Injectable Thermochemical Ablation Therapy of Malignant Tumor via Alkali Metal Fluid. BIOMEDICAL MATERIALS & DEVICES 2023; 1:269-285. [DOI: 10.1007/s44174-022-00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/08/2022] [Indexed: 01/03/2025]
|
2
|
Gong Z, Dai Z. Design and Challenges of Sonodynamic Therapy System for Cancer Theranostics: From Equipment to Sensitizers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002178. [PMID: 34026428 PMCID: PMC8132157 DOI: 10.1002/advs.202002178] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/24/2020] [Indexed: 05/04/2023]
Abstract
As a novel noninvasive therapeutic modality combining low-intensity ultrasound and sonosensitizers, sonodynamic therapy (SDT) is promising for clinical translation due to its high tissue-penetrating capability to treat deeper lesions intractable by photodynamic therapy (PDT), which suffers from the major limitation of low tissue penetration depth of light. The effectiveness and feasibility of SDT are regarded to rely on not only the development of stable and flexible SDT apparatus, but also the screening of sonosensitizers with good specificity and safety. To give an outlook of the development of SDT equipment, the key technologies are discussed according to five aspects including ultrasonic dose settings, sonosensitizer screening, tumor positioning, temperature monitoring, and reactive oxygen species (ROS) detection. In addition, some state-of-the-art SDT multifunctional equipment integrating diagnosis and treatment for accurate SDT are introduced. Further, an overview of the development of sonosensitizers is provided from small molecular sensitizers to nano/microenhanced sensitizers. Several types of nanomaterial-augmented SDT are in discussion, including porphyrin-based nanomaterials, porphyrin-like nanomaterials, inorganic nanomaterials, and organic-inorganic hybrid nanomaterials with different strategies to improve SDT therapeutic efficacy. There is no doubt that the rapid development and clinical translation of sonodynamic therapy will be promoted by advanced equipment, smart nanomaterial-based sonosensitizer, and multidisciplinary collaboration.
Collapse
Affiliation(s)
- Zhuoran Gong
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Zhifei Dai
- Department of Biomedical EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
3
|
Sehmbi AS, Froghi S, Oliveira de Andrade M, Saffari N, Fuller B, Quaglia A, Davidson B. Systematic review of the role of high intensity focused ultrasound (HIFU) in treating malignant lesions of the hepatobiliary system. HPB (Oxford) 2021; 23:187-196. [PMID: 32830069 DOI: 10.1016/j.hpb.2020.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND High Intensity Focused Ultrasound (HIFU) is an emerging non-invasive, targeted treatment of malignancy. The aim of this review was to assess the efficacy, safety and optimal technical parameters of HIFU to treat malignant lesions of the hepatobiliary system. METHODS A systematic search of the English literature was performed until March 2020, interrogating Pubmed, Embase and Cochrane Library databases. The following key-words were input in various combinations: 'HIFU', 'High intensity focussed ultrasound', 'Hepatobiliary', 'Liver', 'Cancer' and 'Carcinoma'. Extracted content included: Application type, Exposure parameters, Patient demographics, and Treatment outcomes. RESULTS Twenty-four articles reported on the clinical use of HIFU in 940 individuals to treat malignant liver lesions. Twenty-one studies detailed the use of HIFU to treat hepatocellular carcinoma only. Mean tumour size was 5.1 cm. Across all studies, HIFU resulted in complete tumour ablation in 55% of patients. Data on technical parameters and the procedural structure was very heterogeneous. Ten studies (n = 537 (57%) patients) described the use of HIFU alongside other modalities including TACE, RFA and PEI; 66% of which resulted in complete tumour ablation. Most common complications were skin burns (15%), local pain (5%) and fever (2%). CONCLUSION HIFU has demonstrated benefit as a treatment modality for malignant lesions of the hepatobiliary system. Combining HIFU with other ablative therapies, particularly TACE, increases the efficacy without increasing complications. Future human clinical studies are required to determine the optimal treatment parameters, better define outcomes and explore the risks and benefits of combination therapies.
Collapse
Affiliation(s)
- Arjan S Sehmbi
- Bart's and the London School of Medicine and Dentistry, Queen Mary University of London, Garrod Building, Whitechapel, London, UK
| | - Saied Froghi
- Department of HPB & Liver Transplantation, Royal Free Hospital Hampstead, London, UK; Division of Surgery & Interventional Sciences, University College London, Royal Free Campus, Hampstead, London, UK.
| | | | - Nader Saffari
- Faculty of Engineering Sciences, University College London, Gower Street, London, UK
| | - Barry Fuller
- Division of Surgery & Interventional Sciences, University College London, Royal Free Campus, Hampstead, London, UK
| | - Alberto Quaglia
- Department of Pathology, Royal Free Hospital, Hampstead, London, UK
| | - Brian Davidson
- Department of HPB & Liver Transplantation, Royal Free Hospital Hampstead, London, UK; Division of Surgery & Interventional Sciences, University College London, Royal Free Campus, Hampstead, London, UK
| |
Collapse
|
4
|
Liang Q, Kong L, Zhu X, Du Y, Tian J. Noninvasive Imaging for Assessment of the Efficacy of Therapeutic Agents for Hepatocellular Carcinoma. Mol Imaging Biol 2020; 22:1455-1468. [PMID: 31834570 DOI: 10.1007/s11307-019-01431-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Morphological imaging techniques are typically used in the anti-cancer drug efficacy evaluation process. However, these techniques can evaluate the therapeutic efficacy only when the tumor shows anatomic changes-usually at later stages, when the therapeutic effects are poor. In contrast, molecular imaging allows noninvasive monitoring of tumor growth, assessment of drug metabolism, and evaluation of therapeutic efficacy at the molecular and cellular levels. Multimodality molecular imaging, which combines the advantages of various imaging modalities, provides even more comprehensive therapeutic efficacy assessment in preclinical and clinical studies. This review provides an overview of molecular imaging evaluation of therapeutic efficacy of the anti-tumor drugs in hepatocellular carcinoma (HCC) both in preclinical and clinical research, which holds great promise in guiding HCC treatment into the era of precision medicine.
Collapse
Affiliation(s)
- Qian Liang
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Lingxin Kong
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China
| | - Xu Zhu
- Department of Interventional Therapy Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University School of Oncology, No. 52 Fucheng Road, Haidian District, 100142, Beijing, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100080, China.
- Beijing Key Laboratory of Molecular Imaging, Beijing, 100190, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China.
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| |
Collapse
|
5
|
Guan L, Xu G. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities. Oncotarget 2017; 8:19577-19591. [PMID: 28121624 PMCID: PMC5386707 DOI: 10.18632/oncotarget.14751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. MATERIALS AND METHODS Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion.SPSS 19.0 software was used for statistical analyses. RESULTS Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. CONCLUSION High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer.
Collapse
Affiliation(s)
- Liming Guan
- Department of Obstetrics and Gynaecology, Zhabei District Central Hospital, Zhabei District, Shanghai 200000, China
| | - Gang Xu
- Department of Radiotherapy, Tumor Hospital, Peking University, Fengtai District, Beijing 100000, China
| |
Collapse
|
6
|
Xiao J, Shi Z, Zhou J, Ye J, Zhu J, Zhou X, Wang F, Zhang S. Cesarean Scar Pregnancy: Comparing the Efficacy and Tolerability of Treatment with High-Intensity Focused Ultrasound and Uterine Artery Embolization. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:640-647. [PMID: 27979666 DOI: 10.1016/j.ultrasmedbio.2016.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the clinical efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a cesarean scar pregnancy compared with uterine artery embolization (UAE) and intra-arterial methotrexate infusion combined with uterine curettage. In this retrospective cohort study, 31 patients were treated with HIFU (HIFU group), and 45 patients were treated with UAE (UAE group). We compared the treatment and recovery of the patients, including follow-up. After UAE treatment, serum levels of the β subunit of human chorionic gonadotropin declined significantly on the first day, and the residual lesions disappeared in 3-17 wk. One patient underwent hysterectomy; intrauterine adhesions were found by hysteroscopic examination after 6 mo in 2 patients, whose menstrual function did not return to normal. The remainder of the 42 patients recovered normal menstrual functioning during the 3- to 18-wk follow-up. In the patients who underwent HIFU treatment, serum β-HCG levels did not decline rapidly; serum β-HCG levels increased in many patients and then declined to normal steadily within 2-12 wk. Lesions detached in 3-14 wk in all patients, and menstrual functioning was recovered in 3-9 wk without uterine curettage. Compared with the UAE group, the HIFU group had less pain and fewer complications; the patients in the HIFU group were not hospitalized or anesthetized and had lower costs. HIFU is an efficient, tolerable and non-invasive treatment.
Collapse
Affiliation(s)
- Juhua Xiao
- Department of HIFU Treatment Room, First Affiliated Hospital of Nanchang University, Nanchang, China; Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Zhen Shi
- Department of Gynaecology and Obstetrics, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinshui Zhou
- Department of HIFU Treatment Room, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Ye
- Department of Ultrasound, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianfang Zhu
- Department of HIFU Treatment Room, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Zhou
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Fang Wang
- Department of HIFU Treatment Room, First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Shouhua Zhang
- Department of General Surgery, Jiangxi Children's Hospital, Nanchang, China
| |
Collapse
|
7
|
Diana M, Schiraldi L, Liu YY, Memeo R, Mutter D, Pessaux P, Marescaux J. High intensity focused ultrasound (HIFU) applied to hepato-bilio-pancreatic and the digestive system-current state of the art and future perspectives. Hepatobiliary Surg Nutr 2016; 5:329-44. [PMID: 27500145 DOI: 10.21037/hbsn.2015.11.03] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND High intensity focused ultrasound (HIFU) is emerging as a valid minimally-invasive image-guided treatment of malignancies. We aimed to review to current state of the art of HIFU therapy applied to the digestive system and discuss some promising avenues of the technology. METHODS Pertinent studies were identified through PubMed and Embase search engines using the following keywords, combined in different ways: HIFU, esophagus, stomach, liver, pancreas, gallbladder, colon, rectum, and cancer. Experimental proof of the concept of endoluminal HIFU mucosa/submucosa ablation using a custom-made transducer has been obtained in vivo in the porcine model. RESULTS Forty-four studies reported on the clinical use of HIFU to treat liver lesions, while 19 series were found on HIFU treatment of pancreatic cancers and four studies included patients suffering from both liver and pancreatic cancers, reporting on a total of 1,682 and 823 cases for liver and pancreas, respectively. Only very limited comparative prospective studies have been reported. CONCLUSIONS Digestive system clinical applications of HIFU are limited to pancreatic and liver cancer. It is safe and well tolerated. The exact place in the hepatocellular carcinoma (HCC) management algorithm remains to be defined. HIFU seems to add clear survival advantages over trans arterial chemo embolization (TACE) alone and similar results when compared to radio frequency (RF). For pancreatic cancer, HIFU achieves consistent cancer-related pain relief. Further research is warranted to improve targeting accuracy and efficacy monitoring. Furthermore, additional work is required to transfer this technology on appealing treatments such as endoscopic HIFU-based therapies.
Collapse
Affiliation(s)
- Michele Diana
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France
| | - Luigi Schiraldi
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France
| | - Yu-Yin Liu
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Chang Gung University, Taoyuan, Taiwan
| | - Riccardo Memeo
- IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France;; Department of Digestive Surgery, University Hospital of Strasbourg, France
| | - Didier Mutter
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; Department of Digestive Surgery, University Hospital of Strasbourg, France
| | - Patrick Pessaux
- IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France;; Department of Digestive Surgery, University Hospital of Strasbourg, France
| | - Jacques Marescaux
- IRCAD, Research Institute Against Cancer of the Digestive System, Strasbourg, France;; IHU-Strasbourg, Institute for Image-Guided Surgery, Strasbourg, France
| |
Collapse
|