1
|
Thijssen LCP, Twilt JJ, Barrett T, Giganti F, Schoots IG, Engels RRM, Broeders MJM, Barentsz JO, de Rooij M. Quality of prostate MRI in early diagnosis-a national survey and reading evaluation. Insights Imaging 2025; 16:82. [PMID: 40188300 PMCID: PMC11972232 DOI: 10.1186/s13244-025-01960-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVES The reliability of image-based recommendations in the prostate cancer pathway is partially dependent on prostate MRI image quality. We evaluated the current compliance with PI-RADSv2.1 technical recommendations and the prostate MRI image quality in the Netherlands. To aid image quality improvement, we identified factors that possibly influence image quality. MATERIALS AND METHODS A survey was sent to 68 Dutch medical centres to acquire information on prostate MRI acquisition. The responding medical centres were requested to provide anonymised prostate MRI examinations of biopsy-naive men suspected of prostate cancer. The images were evaluated for quality by three expert prostate radiologists. The compliance with PI-RADSv2.1 technical recommendations and the PI-QUALv2 score was calculated. Relationships between hardware, education of personnel, technical parameters, and/or patient preparation and both compliance and image quality were analysed using Pearson correlation, Mann-Whitney U-test, or Student's t-test where appropriate. RESULTS Forty-four medical centres submitted their compliance with PI-RADSv2.1 technical recommendations, and 26 medical centres completed the full survey. Thirteen hospitals provided 252 usable images. The mean compliance with technical recommendations was 79%. Inadequate PI-QUALv2 scores were given in 30.9% and 50.6% of the mp-MRI and bp-MRI examinations, respectively. Multiple factors with a possible relationship with image quality were identified. CONCLUSION In the Netherlands, the average compliance with PI-RADSv2.1 technical recommendations is high. Prostate MRI image quality was inadequate in 30-50% of the provided examinations. Many factors not covered in the PI-RADSv2.1 technical recommendations can influence image quality. Improvement of prostate MRI image quality is needed. CRITICAL RELEVANCE STATEMENT It is essential to improve the image quality of prostate MRIs, which can be achieved by addressing factors not covered in the PI-RADSv2.1 technical recommendations. KEY POINTS Prostate MRI image quality influences the diagnostic accuracy of image-based decisions. Thirty to fifty percent of Dutch prostate MRI examinations were of inadequate image quality. We identified multiple factors with possible influence on image quality.
Collapse
Affiliation(s)
- Linda C P Thijssen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Jasper J Twilt
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Ivo G Schoots
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rianne R M Engels
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mireille J M Broeders
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Maarten de Rooij
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Gibbons M, Simko JP, Carroll PR, Noworolski SM. Prostate cancer lesion detection, volume quantification and high-grade cancer differentiation using cancer risk maps derived from multiparametric MRI with histopathology as the reference standard. Magn Reson Imaging 2023; 99:48-57. [PMID: 36641104 PMCID: PMC11229728 DOI: 10.1016/j.mri.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Multi-parametric MRI (mpMRI) has proven itself a clinically useful tool to assess prostate cancer (PCa). Our objective was to generate PCa risk maps to quantify the volume and location of both all PCa and high grade (Gleason grade group ≥ 3) PCa. Such capabilities would aid physicians and patients in treatment decisions, targeting biopsy, and planning focal therapy. A cohort of men with biopsy proven prostate cancer and pre-prostatectomy mpMRI were studied. PCa and benign ROIs (1524) were identified on mpMRI and histopathology with histopathology serving as the reference standard. Logistic regression models were created to differentiate PCa from benign tissues. The MRI images were registered to ensure correct overlay. The cancer models were applied to each image voxel within prostates to create probability maps of cancer and of high-grade cancer. Use of an optimum probability threshold quantified PCa volume for all lesions >0.1 cc. Accuracies were calculated using area under the curve (AUC) for the receiver operating characteristic (ROC). The PCa models utilized apparent diffusion coefficient (ADC), T2 weighted (T2W), dynamic contrast-enhanced MRI (DCE MRI) enhancement slope, and DCE MRI washout as the statistically significant MRI scans. Application of the PCa maps method provided total PCa volume and individual lesion volumes. The AUCs derived from lesion analysis were 0.91 for all PCa and 0.73 for high-grade PCa. At the optimum threshold, the PCa maps detected 135 / 150 (90%) histopathological lesions >0.1 cc. This study showed the feasibility of cancer risk maps, created from pre-prostatectomy, mpMR images validated with histopathology, to detect PCa lesions >0.1 cc. The method quantified the volume of cancer within the prostate. Method improvements were identified by determining root causes for over and underestimation of cancer volumes. The maps have the potential for improved non-invasive capability in quantitative detection, localization, volume estimation, and MRI characterization of PCa.
Collapse
Affiliation(s)
- Matthew Gibbons
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| | - Jeffry P Simko
- Department of Urology, University of California, San Francisco, CA, United States; Department of Pathology, University of California, San Francisco, CA, United States.
| | - Peter R Carroll
- Department of Urology, University of California, San Francisco, CA, United States.
| | - Susan M Noworolski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States.
| |
Collapse
|
3
|
Gibbons M, Starobinets O, Simko JP, Kurhanewicz J, Carroll PR, Noworolski SM. Identification of prostate cancer using multiparametric MR imaging characteristics of prostate tissues referenced to whole mount histopathology. Magn Reson Imaging 2022; 85:251-261. [PMID: 34666162 PMCID: PMC9931199 DOI: 10.1016/j.mri.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022]
Abstract
In this study, the objective was to characterize the MR signatures of the various benign prostate tissues and to differentiate them from cancer. Data was from seventy prostate cancer patients who underwent multiparametric MRI (mpMRI) and subsequent prostatectomy. The scans included T2-weighted imaging (T2W), diffusion weighted imaging, dynamic contrast-enhanced MRI (DCE MRI), and MR spectroscopic imaging. Histopathology tissue information was translated to MRI images. The mpMRI parameters were characterized separately per zone and by tissue type. The tissues were ordered according to trends in tissue parameter means. The peripheral zone tissue order was cystic atrophy, high grade prostatic intraepithelial neoplasia (HGPIN), normal, atrophy, inflammation, and cancer. Decreasing values for tissue order were exhibited by ADC (1.8 10-3 mm2/s to 1.2 10-3 mm2/s) and T2W intensity (3447 to 2576). Increasing values occurred for DCE MRI peak (143% to 157%), DCE MRI slope (101%/min to 169%/min), fractional anisotropy (FA) (0.16 to 0.19), choline (7.2 to 12.2), and choline / citrate (0.3 to 0.9). The transition zone tissue order was cystic atrophy, mixed benign prostatic hyperplasia (BPH), normal, atrophy, inflammation, stroma, anterior fibromuscular stroma, and cancer. Decreasing values occurred for ADC (1.6 10-3 mm2/s to 1.1 10-3 mm2/s) and T2W intensity (2863 to 2001). Increasing values occurred for DCE MRI peak (143% to 150%), DCE MRI slope (101%/min to 137%/min), FA (0.18 to 0.25), choline (7.9 to 11.7), and choline / citrate (0.3 to 0.7). Logistic regression was used to create parameter model fits to differentiate cancer from benign prostate tissues. The fits achieved AUCs ≥0.91. This study quantified the mpMRI characteristics of benign prostate tissues and demonstrated the capability of mpMRI to discriminate among benign as well as cancer tissues, potentially aiding future discrimination of cancer from benign confounders.
Collapse
Affiliation(s)
- Matthew Gibbons
- Deparment of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA, USA.
| | - Olga Starobinets
- Deparment of Radiology and Biomedical Imaging, University of California, San Francisco, 185 Berry Street, San Francisco, CA, USA
| | - Jeffry P. Simko
- Department of Urology, University of California, San Francisco, 550 16th Street, San Francisco, CA, USA,Department of Pathology, University of California, San Francisco, 1825 4th Street, San Francisco, CA, USA
| | - John Kurhanewicz
- Deparment of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA, USA; Department of Urology, University of California, 550 16th Street, San Francisco, CA, USA.
| | - Peter R Carroll
- Department of Urology, University of California, 550 16th Street, San Francisco, CA, USA.
| | - Susan M Noworolski
- Deparment of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA, USA.
| |
Collapse
|
4
|
MR safety considerations for patients undergoing prostate MRI. Abdom Radiol (NY) 2020; 45:4097-4108. [PMID: 32902658 DOI: 10.1007/s00261-020-02730-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/15/2020] [Accepted: 08/30/2020] [Indexed: 10/23/2022]
Abstract
Over the past decade, there has been a dramatic increase in the number of patients undergoing prostate MRI scans. Patients presenting for prostate MRI are an ageing population and may present with a variety of passive or active implants and devices. These implants and devices can be MR safe or MR conditional or MR unsafe. Patients with certain MR-conditional active implants and devices can safely obtain prostate MRI in a specified MR environment within specific MR imaging parameters. Prostate MRI and PET-MRI in patients with passive implants such as hip prostheses, fiducial markers for SBRT, brachytherapy seeds and prostatectomy bed clips have unique concerns for image optimization that can cause geometric distortion of the diffusion-weighted imaging (DWI) sequence. We discuss strategies to overcome these susceptibility artifacts. Prostate MRI in patients with MR conditional active implants such as cardiac implantable electronic devices (CIED) also require modification of imaging parameters and magnet strength. In this setting, a diagnostic quality prostate MRI can be performed at a lower magnet strength (1.5 T) along with modification of imaging parameters to ensure patient safety. Imaging strategies to minimize susceptibility artifact and decrease the specific absorption rate (SAR) in both settings are described. Knowledge of MR safety considerations and imaging strategies specific to prostate MRI and PET-MRI in patients with implants and devices is essential to ensure diagnostic-quality MR images and patient safety.
Collapse
|
5
|
Mussi TC, Baroni RH, Zagoria RJ, Westphalen AC. Prostate magnetic resonance imaging technique. Abdom Radiol (NY) 2020; 45:2109-2119. [PMID: 31701190 DOI: 10.1007/s00261-019-02308-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiparametric magnetic resonance (MR) imaging of the prostate is an excellent tool to detect clinically significant prostate cancer, and it has widely been incorporated into clinical practice due to its excellent tissue contrast and image resolution. The aims of this article are to describe the prostate MR imaging technique for detection of clinically significant prostate cancer according to PI-RADS v2.1, as well as alternative sequences and basic aspects of patient preparation and MR imaging artifact avoidance.
Collapse
|
6
|
Behr SC, Aggarwal R, VanBrocklin HF, Flavell RR, Gao K, Small EJ, Blecha J, Jivan S, Hope TA, Simko JP, Kurhanewicz J, Noworolski SM, Korn NJ, De Los Santos R, Cooperberg MR, Carroll PR, Nguyen HG, Greene KL, Langton-Webster B, Berkman CE, Seo Y. Phase I Study of CTT1057, an 18F-Labeled Imaging Agent with Phosphoramidate Core Targeting Prostate-Specific Membrane Antigen in Prostate Cancer. J Nucl Med 2019; 60:910-916. [PMID: 30464040 PMCID: PMC6604687 DOI: 10.2967/jnumed.118.220715] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/13/2018] [Indexed: 11/16/2022] Open
Abstract
Agents targeting prostate-specific membrane antigen (PSMA) comprise a rapidly emerging class of radiopharmaceuticals for diagnostic imaging of prostate cancer. Unlike most other PSMA agents with a urea backbone, CTT1057 is based on a phosphoramidate scaffold that irreversibly binds to PSMA. We conducted a first-in-humans phase I study of CTT1057 in patients with localized and metastatic prostate cancer. Methods: Two patient cohorts were recruited. Cohort A patients had biopsy-proven localized prostate cancer preceding radical prostatectomy, and cohort B patients had metastatic castration-resistant prostate cancer. Cohort A patients were imaged at multiple time points after intravenous injection with 362 ± 8 MBq of CTT1057 to evaluate the kinetics of CTT1057 and estimate radiation dose profiles. Mean organ-absorbed doses and effective doses were calculated. CTT1057 uptake in the prostate gland and regional lymph nodes was correlated with pathology, PSMA staining, and the results of conventional imaging. In cohort B, patients were imaged 60-120 min after injection of CTT1057. PET images were assessed for overall image quality, and areas of abnormal uptake were contrasted with conventional imaging. Results: In cohort A (n = 5), the average total effective dose was 0.023 mSv/MBq. The kidneys exhibited the highest absorbed dose, 0.067 mGy/MBq. The absorbed dose of the salivary glands was 0.015 mGy/MBq. For cohort B (n = 15), CTT1057 PET detected 97 metastatic lesions, and 44 of 56 bone metastases detected on CTT1057 PET (78.5%) were also detectable on bone scanning. Eight of 32 lymph nodes positive on CTT1057 PET (25%) were enlarged by size criteria on CT. Conclusion: CTT1057 is a promising novel phosphoramidate PSMA-targeting 18F-labeled PET radiopharmaceutical that demonstrates similar biodistribution to urea-based PSMA-targeted agents, with lower exposure to the kidneys and salivary glands. Metastatic lesions are detected with higher sensitivity on CTT1057 imaging than on conventional imaging. Further prospective studies with CTT1057 are warranted to elucidate its role in cancer imaging.
Collapse
Affiliation(s)
- Spencer C Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Rahul Aggarwal
- Department of Medicine, University of California, San Francisco, San Francisco, California
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Robert R Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Kenneth Gao
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Eric J Small
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Salma Jivan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jeffry P Simko
- Department of Pathology, University of California, San Francisco, San Francisco, California; and
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Susan M Noworolski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Natalie J Korn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Romelyn De Los Santos
- Department of Pathology, University of California, San Francisco, San Francisco, California; and
| | - Matthew R Cooperberg
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Peter R Carroll
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Hao G Nguyen
- Department of Urology, University of California, San Francisco, San Francisco, California
| | - Kirsten L Greene
- Department of Urology, University of California, San Francisco, San Francisco, California
| | | | | | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
7
|
Shukla-Dave A, Obuchowski NA, Chenevert TL, Jambawalikar S, Schwartz LH, Malyarenko D, Huang W, Noworolski SM, Young RJ, Shiroishi MS, Kim H, Coolens C, Laue H, Chung C, Rosen M, Boss M, Jackson EF. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2019; 49:e101-e121. [PMID: 30451345 PMCID: PMC6526078 DOI: 10.1002/jmri.26518] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/14/2022] Open
Abstract
Physiological properties of tumors can be measured both in vivo and noninvasively by diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging. Although these techniques have been used for more than two decades to study tumor diffusion, perfusion, and/or permeability, the methods and studies on how to reduce measurement error and bias in the derived imaging metrics is still lacking in the literature. This is of paramount importance because the objective is to translate these quantitative imaging biomarkers (QIBs) into clinical trials, and ultimately in clinical practice. Standardization of the image acquisition using appropriate phantoms is the first step from a technical performance standpoint. The next step is to assess whether the imaging metrics have clinical value and meet the requirements for being a QIB as defined by the Radiological Society of North America's Quantitative Imaging Biomarkers Alliance (QIBA). The goal and mission of QIBA and the National Cancer Institute Quantitative Imaging Network (QIN) initiatives are to provide technical performance standards (QIBA profiles) and QIN tools for producing reliable QIBs for use in the clinical imaging community. Some of QIBA's development of quantitative diffusion-weighted imaging and dynamic contrast-enhanced QIB profiles has been hampered by the lack of literature for repeatability and reproducibility of the derived QIBs. The available research on this topic is scant and is not in sync with improvements or upgrades in MRI technology over the years. This review focuses on the need for QIBs in oncology applications and emphasizes the importance of the assessment of their reproducibility and repeatability. Level of Evidence: 5 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2019;49:e101-e121.
Collapse
Affiliation(s)
- Amita Shukla-Dave
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy A. Obuchowski
- Department of Quantitative Health Sciences, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lawrence H. Schwartz
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Wei Huang
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Susan M. Noworolski
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Robert J. Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark S. Shiroishi
- Division of Neuroradiology, Department of Radiology, University of Southern California, Los Angeles, CA, USA
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | | | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Mark Rosen
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Michael Boss
- Applied Physics Division, National Institute of Standards and Technology, Boulder, CO, USA
| | - Edward F. Jackson
- Departments of Medical Physics, Radiology, and Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| |
Collapse
|
8
|
Barth BK, Rupp NJ, Cornelius A, Nanz D, Grobholz R, Schmidtpeter M, Wild PJ, Eberli D, Donati OF. Diagnostic Accuracy of a MR Protocol Acquired with and without Endorectal Coil for Detection of Prostate Cancer: A Multicenter Study. Curr Urol 2019; 12:88-96. [PMID: 31114466 DOI: 10.1159/000489425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022] Open
Abstract
Introduction The purpose of this study was to compare diagnostic accuracy of a prostate multiparametric magnetic resonance imaging (mpMRI) protocol for detection of prostate cancer between images acquired with and without en-dorectal coil (ERC). Materials This study was approved by the regional ethics committee. Between 2014 and 2015, 33 patients (median age 51.3 years; range 42.1-77.3 years) who underwent prostate-MRI at 3T scanners at 2 different institutions, acquired with (mpMRIERC) and without (mpMRIPPA) ERC and who received radical prostatectomy, were included in this retrospective study. Two expert readers (R1, R2) attributed a PI-RADS version 2 score for the most suspect (i. e. index) lesion for mpMRIPPA and mpMRIERC. Sensitivity and positive predictive value for detection of index lesions were assessed using 2 × 2 contingency tables. Differences between groups were tested using the McNemar test. Whole-mount histopathology served as reference standard. Results On a quadrant-basis cumulative sensitivity ranged between 0.61-0.67 and 0.76-0.88 for mpMRIPPA and mpMRIERC protocols, respectively (p > 0.05). Cumulative positive predictive value ranged between 0.80-0.81 and 0.89-0.91 for mpMRIPPA and mpMRIERC protocols, respectively. The differences were not statistically significant for R1 (p = 0.267) or R2 (p = 0.508). Conclusion Our results suggest that there may be no significant differences for detection of prostate cancer between images acquired with and without an ERC.
Collapse
Affiliation(s)
- Borna K Barth
- Institute of Diagnostic and Interventional Radiology, Zurich
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, Zurich
| | - Alexander Cornelius
- Department of Urology, University Hospital Zurich and University of Zurich, Zurich
| | - Daniel Nanz
- Institute of Diagnostic and Interventional Radiology, Zurich.,Department of Radiology, Zurich
| | | | - Martin Schmidtpeter
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich.,Department of Urology, Cantonal Hospital Aarau, Aarau
| | - Peter J Wild
- Department of Pathology and Molecular Pathology, Zurich.,Urologiepraxis Lenzburg, Lenzburg, Switzerland
| | - Daniel Eberli
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Olivio F Donati
- Institute of Diagnostic and Interventional Radiology, Zurich
| |
Collapse
|
9
|
|
10
|
Furlan A, Borhani AA, Westphalen AC. Multiparametric MR imaging of the Prostate. Radiol Clin North Am 2018; 56:223-238. [DOI: 10.1016/j.rcl.2017.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Cabarrus MC, Westphalen AC. Multiparametric magnetic resonance imaging of the prostate-a basic tutorial. Transl Androl Urol 2017; 6:376-386. [PMID: 28725579 PMCID: PMC5503950 DOI: 10.21037/tau.2017.01.06] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the second most common cause of cancer related death in the United States and the most commonly diagnosed malignancy in men. In general, prostate cancer is slow growing, though there is a broad spectrum of disease that may be indolent, or aggressive and rapidly progressive. Screening for prostate is controversial and complicated by lack of specificity and over diagnosis of clinically insignificant cancer. Imaging has played a role in diagnosis of prostate cancer, primarily through systemic transrectal ultrasound (TRUS) guided biopsy. While TRUS guided biopsy radically changed prostate cancer diagnosis, it still remains limited by low resolution, poor tissue characterization, relatively low sensitivity and positive predictive value. Advances in multiparametric magnetic resonance imaging (mpMRI) have allowed more accurate detection, localization, and staging as well as aiding in the role of active surveillance (AS). The use of mpMRI for the evaluation of prostate cancer has increased dramatically and this trend is likely to continue as the technique is rapidly improving and its applications expand. The purpose of this article is to review the basic principles of mpMRI of the prostate and its clinical applications, which will be reviewed in greater detail in subsequent chapters of this issue.
Collapse
Affiliation(s)
- Miguel C Cabarrus
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Antonio C Westphalen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|