1
|
Gulizia M, Viry A, Jreige M, Fahrni G, Marro Y, Manasseh G, Chevallier C, Dromain C, Vietti-Violi N. Contrast Volume Reduction in Oncologic Body Imaging Using Dual-Energy CT: A Comparison with Single-Energy CT. Diagnostics (Basel) 2025; 15:707. [PMID: 40150050 PMCID: PMC11941575 DOI: 10.3390/diagnostics15060707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/03/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: To evaluate the feasibility of reducing contrast volume in oncologic body imaging using dual-energy CT (DECT) by (1) identifying the optimal virtual monochromatic imaging (VMI) reconstruction using DECT and (2) comparing DECT performed with reduced iodinated contrast media (ICM) volume to single-energy CT (SECT) performed with standard ICM volume. Methods: In this retrospective study, we quantitatively and qualitatively compared the image quality of 35 thoracoabdominopelvic DECT across 9 different virtual monoenergetic image (VMI) levels (from 40 to 80 keV) using a reduced volume of ICM (0.3 gI/kg of body weight) to determine the optimal keV reconstruction level. Out of these 35 patients, 20 had previously performed SECT with standard ICM volume (0.3 gI/kg of body weight + 9 gI), enabling protocol comparison. The qualitative analysis included overall image quality, noise, and contrast enhancement by two radiologists. Quantitative analysis included contrast enhancement measurements, contrast-to-noise ratio, and signal-to-noise ratio of the liver parenchyma and the portal vein. ANOVA was used to identify the optimal VMI level reconstruction, while t-tests and paired t-tests were used to compare both protocols. Results: VMI60 keV provided the highest overall image quality score. DECT with reduced ICM volume demonstrated higher contrast enhancement and lower noise than SECT with standard ICM volume (p < 0.001). No statistical difference was found in the overall image quality between the two protocols (p = 0.290). Conclusions: VMI60 keV with reduced contrast volume provides higher contrast and lower noise than SECT at a standard contrast volume. DECT using a reduced ICM volume is the technique of choice for oncologic body CT.
Collapse
Affiliation(s)
- Marianna Gulizia
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015 Lausanne, Switzerland
| | - Anais Viry
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Mario Jreige
- Department of Nuclear Medicine, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland;
| | - Guillaume Fahrni
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Yannick Marro
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Gibran Manasseh
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Christine Chevallier
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Clarisse Dromain
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| | - Naik Vietti-Violi
- Department of Radiology and Interventional Radiology, Lausanne University Hospital, University of Lausanne (UNIL), 1011 Lausanne, Switzerland; (M.G.); (A.V.); (Y.M.)
| |
Collapse
|
2
|
Asmundo L, Rizzetto F, Srinivas Rao S, Sgrazzutti C, Vicentin I, Kambadakone A, Catalano OA, Vanzulli A. Dual-energy CT applications on liver imaging: what radiologists and radiographers should know? A systematic review. Abdom Radiol (NY) 2024; 49:3811-3823. [PMID: 38811447 DOI: 10.1007/s00261-024-04380-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE This review aims to provide a comprehensive summary of DECT techniques, acquisition workflows, and post-processing methods. By doing so, we aim to elucidate the advantages and disadvantages of DECT compared to conventional single-energy CT imaging. METHODS A systematic search was conducted on MEDLINE/EMBASE for DECT studies in liver imaging published between 1980 and 2024. Information regarding study design and endpoints, patient characteristics, DECT technical parameters, radiation dose, iodinated contrast agent (ICA) administration and postprocessing methods were extracted. Technical parameters, including DECT phase, field of view, pitch, collimation, rotation time, arterial phase timing (from injection), and venous timing (from injection) from the included studies were reported, along with formal narrative synthesis of main DECT applications for liver imaging. RESULTS Out of the initially identified 234 articles, 153 met the inclusion criteria. Extensive variability in acquisition parameters was observed, except for tube voltage (80/140 kVp combination reported in 50% of articles) and ICA administration (1.5 mL/kg at 3-4 mL/s, reported in 91% of articles). Radiation dose information was provided in only 40% of articles (range: 6-80 mGy), and virtual non-contrast imaging (VNC) emerged as a common strategy to reduce the radiation dose. The primary application of DECT post-processed images was in detecting focal liver lesions (47% of articles), with predominance of study focusing on hepatocellular carcinoma (HCC) (27%). Furthermore, a significant proportion of the articles (16%) focused on enhancing DECT protocols, while 15% explored metastasis detection. CONCLUSION Our review recommends using 80/140 kVp tube voltage with 1.5 mL/kg ICA at 3-4 mL/s flow rate. Post-processing should include low keV-VMI for enhanced lesion detection, IMs for tumor iodine content evaluation, and VNC for dose reduction. However, heterogeneous literature hinders protocol standardization.
Collapse
Affiliation(s)
- Luigi Asmundo
- Postgraduate School of Diagnostic and Interventional Radiology, Università degli Studi di Milano, via Festa del Perdono 7, 20122, Milan, Italy
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesco Rizzetto
- Postgraduate School of Diagnostic and Interventional Radiology, Università degli Studi di Milano, via Festa del Perdono 7, 20122, Milan, Italy.
- Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy.
| | - Shravya Srinivas Rao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristiano Sgrazzutti
- Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Ilaria Vicentin
- Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angelo Vanzulli
- Department of Radiology, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, 20162, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20122, Milan, Italy
| |
Collapse
|
3
|
Gao Y, Qiu RLJ, Xie H, Chang CW, Wang T, Ghavidel B, Roper J, Zhou J, Yang X. CT-based synthetic contrast-enhanced dual-energy CT generation using conditional denoising diffusion probabilistic model. Phys Med Biol 2024; 69:165015. [PMID: 39053511 PMCID: PMC11294926 DOI: 10.1088/1361-6560/ad67a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Objective.The study aimed to generate synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans, addressing the limitations posed by the scarcity of DECT scanners and the health risks associated with iodinated contrast agents, particularly for high-risk patients.Approach.A conditional denoising diffusion probabilistic model (C-DDPM) was utilized to create synthetic images. Imaging data were collected from 130 head-and-neck (HN) cancer patients who had undergone both non-contrast SECT and CE-DECT scans.Main Results.The performance of the C-DDPM was evaluated using Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The results showed MAE values of 27.37±3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57±3.35HU for low-energy CT (L-CT), SSIM values of 0.74±0.22 for H-CT and 0.78±0.22 for L-CT, and PSNR values of 18.51±4.55 decibels (dB) for H-CT and 18.91±4.55 dB for L-CT.Significance.The study demonstrates the efficacy of the deep learning model in producing high-quality synthetic CE-DECT images, which significantly benefits radiation therapy planning. This approach provides a valuable alternative imaging solution for facilities lacking DECT scanners and for patients who are unsuitable for iodine contrast imaging, thereby enhancing the reach and effectiveness of advanced imaging in cancer treatment planning.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Richard L J Qiu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Huiqiao Xie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Tonghe Wang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Beth Ghavidel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
4
|
Albano D, Di Luca F, D'Angelo T, Booz C, Midiri F, Gitto S, Fusco S, Serpi F, Messina C, Sconfienza LM. Dual-energy CT in musculoskeletal imaging: technical considerations and clinical applications. LA RADIOLOGIA MEDICA 2024; 129:1038-1047. [PMID: 38743319 PMCID: PMC11252181 DOI: 10.1007/s11547-024-01827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Dual-energy CT stands out as a robust and innovative imaging modality, which has shown impressive advancements and increasing applications in musculoskeletal imaging. It allows to obtain detailed images with novel insights that were once the exclusive prerogative of magnetic resonance imaging. Attenuation data obtained by using different energy spectra enable to provide unique information about tissue characterization in addition to the well-established strengths of CT in the evaluation of bony structures. To understand clearly the potential of this imaging modality, radiologists must be aware of the technical complexity of this imaging tool, the different ways to acquire images and the several algorithms that can be applied in daily clinical practice and for research. Concerning musculoskeletal imaging, dual-energy CT has gained more and more space for evaluating crystal arthropathy, bone marrow edema, and soft tissue structures, including tendons and ligaments. This article aims to analyze and discuss the role of dual-energy CT in musculoskeletal imaging, exploring technical aspects, applications and clinical implications and possible perspectives of this technique.
Collapse
Affiliation(s)
- Domenico Albano
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Milan, Italy.
| | - Filippo Di Luca
- Scuola di Specializzazione in Radiodiagnostica, Università degli Studi di Milano, Milan, Italy
| | - Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | - Salvatore Gitto
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Stefano Fusco
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Serpi
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Carmelo Messina
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Luca Maria Sconfienza
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Matana Kaštelan Z, Brumini I, Poropat G, Tkalčić L, Grubešić T, Miletić D. Pancreatic Iodine Density and Fat Fraction on Dual-Energy Computed Tomography in Acute Pancreatitis. Diagnostics (Basel) 2024; 14:955. [PMID: 38732369 PMCID: PMC11083507 DOI: 10.3390/diagnostics14090955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of our study was to investigate iodine density (ID) and fat fraction (FF) on dual-energy computed tomography (DECT) in patients with acute pancreatitis (AP). This retrospective study included 72 patients with clinically confirmed AP and 62 control subjects with DECT of the abdomen. Two radiologists assessed necrosis and measured attenuation values, ID, and FF in three pancreatic segments. We used receiver operating characteristic (ROC) analysis to determine the optimal threshold for ID for the differentiation between AP groups. The ID was significantly higher in interstitial edematous AP compared to necrotizing AP and the control group (both p < 0.05). The ROC curve analysis revealed the thresholds of ID for detecting pancreatic necrosis ≤ 2.2, ≤2.3, and ≤2.4 mg/mL (AUC between 0.880 and 0.893, p > 0.05) for the head, body, and tail, respectively. The FF was significantly higher for pancreatitis groups when compared with the control group in the head and body segments (both p < 0.001). In the tail, the difference was significant in necrotizing AP (p = 0.028). The ID values were independent of attenuation values correlated with the FF values in pancreatic tissue. Iodine density values allow for differentiation between morphologic types of AP.
Collapse
Affiliation(s)
- Zrinka Matana Kaštelan
- Department of Diagnostic and Interventional Radiology, Clinical Hospital Center Rijeka, Kresimirova 42, 51000 Rijeka, Croatia (D.M.)
| | - Ivan Brumini
- Department of Diagnostic and Interventional Radiology, Clinical Hospital Center Rijeka, Kresimirova 42, 51000 Rijeka, Croatia (D.M.)
- Department of Anatomy, Faculty of Medicine of the University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
- Department of Radiological Technology, Faculty of Health Studies of the University of Rijeka, Ul. Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Goran Poropat
- Department of Gastroenterology, Clinical Hospital Center Rijeka, Kresimirova 42, 51000 Rijeka, Croatia
- Department of Internal Medicine, Faculty of Medicine of the University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Lovro Tkalčić
- Department of Diagnostic and Interventional Radiology, Clinical Hospital Center Rijeka, Kresimirova 42, 51000 Rijeka, Croatia (D.M.)
- Department of Radiological Technology, Faculty of Health Studies of the University of Rijeka, Ul. Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Tiana Grubešić
- Department of Diagnostic and Interventional Radiology, Clinical Hospital Center Rijeka, Kresimirova 42, 51000 Rijeka, Croatia (D.M.)
- Department of Radiology, Faculty of Medicine of the University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| | - Damir Miletić
- Department of Diagnostic and Interventional Radiology, Clinical Hospital Center Rijeka, Kresimirova 42, 51000 Rijeka, Croatia (D.M.)
- Department of Radiology, Faculty of Medicine of the University of Rijeka, Brace Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
6
|
Wang N, Bing X, Li Y, Yao J, Dai Z, Yu D, Ouyang A. Study of radiomics based on dual-energy CT for nuclear grading and T-staging in renal clear cell carcinoma. Medicine (Baltimore) 2024; 103:e37288. [PMID: 38457546 PMCID: PMC10919525 DOI: 10.1097/md.0000000000037288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/23/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024] Open
Abstract
INTRODUCTION Clear cell renal cell carcinoma (ccRCC) is the most lethal subtype of renal cell carcinoma with a high invasive potential. Radiomics has attracted much attention in predicting the preoperative T-staging and nuclear grade of ccRCC. OBJECTIVE The objective was to evaluate the efficacy of dual-energy computed tomography (DECT) radiomics in predicting ccRCC grade and T-stage while optimizing the models. METHODS 200 ccRCC patients underwent preoperative DECT scanning and were randomized into training and validation cohorts. Radiomics models based on 70 KeV, 100 KeV, 150 KeV, iodine-based material decomposition images (IMDI), virtual noncontrasted images (VNC), mixed energy images (MEI) and MEI + IMDI were established for grading and T-staging. Receiver operating characteristic analysis and decision curve analysis (DCA) were performed. The area under the curve (AUC) values were compared using Delong test. RESULTS For grading, the AUC values of these models ranged from 0.64 to 0.97 during training and from 0.54 to 0.72 during validation. In the validation cohort, the performance of MEI + IMDI model was optimal, with an AUC of 0.72, sensitivity of 0.71, and specificity of 0.70. The AUC value for the 70 KeV model was higher than those for the 100 KeV, 150 KeV, and MEI models. For T-staging, these models achieved AUC values of 0.83 to 1.00 in training and 0.59 to 0.82 in validation. The validation cohort demonstrated AUCs of 0.82 and 0.70, sensitivities of 0.71 and 0.71, and specificities of 0.80 and 0.60 for the MEI + IMDI and IMDI models, respectively. In terms of grading and T-staging, the MEI + IMDI model had the highest AUC in validation, with IMDI coming in second. There were statistically significant differences between the MEI + IMDI model and the 70 KeV, 100 KeV, 150 KeV, MEI, and VNC models in terms of grading (P < .05) and staging (P ≤ .001). DCA showed that both MEI + IDMI and IDMI models outperformed other models in predicting grade and stage of ccRCC. CONCLUSIONS DECT radiomics models were helpful in grading and T-staging of ccRCC. The combined model of MEI + IMDI achieved favorable results.
Collapse
Affiliation(s)
- Ning Wang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Xue Bing
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Yuhan Li
- Department of Radiology, Longkou Traditional Chinese Medicine Hospital, Yantai 265700, Shandong Province, P. R. China
| | - Jian Yao
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| | - Zhengjun Dai
- Scientific Research Department, Huiying Medical Technology Co., Ltd, Beijing 100192, P. R. China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P. R. China
| | - Aimei Ouyang
- Department of Radiology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong Province, P. R. China
| |
Collapse
|
7
|
Ahmad MI, Liu L, Sheikh A, Nicolaou S. Dual-energy CT: Impact of detecting bone marrow oedema in occult trauma in the Emergency. BJR Open 2024; 6:tzae025. [PMID: 39345237 PMCID: PMC11427222 DOI: 10.1093/bjro/tzae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Dual-energy computed tomography (DECT) is an advanced imaging technique that acquires data using two distinct X-ray energy spectra, typically at 80 and 140 kVp, to differentiate materials based on their atomic number and electron density. This capability allows for the enhanced visualisation of various pathologies, including bone marrow oedema (BMO), by providing high-resolution images with notable energy spectral separation while maintaining radiation doses comparable to conventional CT. DECT's ability to create colour-coded virtual non-calcium (VNCa) images has proven particularly valuable in detecting traumatic bone marrow lesions (BMLs) and subtle fractures, offering a reliable alternative or complement to MRI. DECT has emerged as a significant tool in the detection and characterisation of bone marrow pathologies, especially in traumatic injuries. Its ability to generate high-resolution images and distinguish between different tissue types makes it a valuable asset in clinical diagnostics. With its comparable diagnostic accuracy to MRI and the added advantage of reduced examination time and increased availability, DECT represents a promising advancement in the imaging of BMO and related conditions.
Collapse
Affiliation(s)
| | - Lulu Liu
- Department of Radiology, Univeristy of British Columbia, Vancouver, Canada
| | - Adnan Sheikh
- Department of Radiology, Univeristy of British Columbia, Vancouver, Canada
| | - Savvas Nicolaou
- Department of Radiology, Univeristy of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Pisuchpen N, Parakh A, Cao J, Yuenyongsinchai K, Joseph E, Lennartz S, Kongboonvijit S, Sahani D, Kambadakone A. Diagnostic performance and feasibility of dual-layer detector dual-energy CT for characterization of urinary stones in patients of different sizes. Abdom Radiol (NY) 2024; 49:209-219. [PMID: 38041709 DOI: 10.1007/s00261-023-04116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Urinary stones are frequently encountered in urology and are typically identified using non-contrast CT scans. Dual-energy CT (DECT) is a valuable imaging technique that produces material-specific images and allows for precise assessment of stone composition by estimating the effective atomic number (Zeff), a capability not achievable with the conventional single-energy CT's attenuation measurement method. PURPOSE To investigate the diagnostic performance and image quality of dual-layer detector DECT (dlDECT) in characterizing urinary stones in patients of different sizes. METHODS All consecutive dlDECT examinations with stone protocol and presence of urinary stones between July 2018 and November 2019 were retrospectively evaluated. Two radiologists independently reviewed 120 kVp and color-overlay Zeff images to determine stone composition (reference standard = crystallography) and image quality. The objective analysis included image noise and Zeff values measurement. RESULTS A total of 739 urinary stones (median size 3.7 mm, range 1-35 mm) were identified on 177 CT examinations from 155 adults (mean age, 57 ± 15 years, 80 men, median weight 82.6 kg, range 42.6-186.9 kg). Using color-overlay Zeff images, the radiologists could subjectively interpret the composition in all stones ≥ 3 mm (n = 491). For stones with available reference standards (n = 74), dlDECT yielded a sensitivity of 80% (95%CI 44-98%) and a specificity of 98% (95%CI 92-100%) in visually discriminating uric acid from non-uric acid stones. Patients weighing > 90 kg and ≤ 90 kg had similar stone characterizability (p = 0.20), with 86% of stones characterized in the > 90 kg group and 87% in the ≤ 90 kg group. All examinations throughout various patients' weights revealed acceptable image quality. A Zeff cutoff of 7.66 accurately distinguished uric acid from non-uric acid stones (AUC = 1.00). Zeff analysis revealed AUCs of 0.78 and 0.91 for differentiating calcium-based stones from other non-uric stones and all stone types, respectively. CONCLUSION dlDECT allowed accurate differentiation of uric acid and non-uric acid stones among patients with different body sizes with acceptable image quality. CLINICAL IMPACT The ability to accurately differentiate uric acid stones from non-uric acid stones using color-overlay Zeff images allows for better tailored treatment strategies, helping to choose appropriate interventions and prevent potential complications related to urinary stones in patient care.
Collapse
Affiliation(s)
- Nisanard Pisuchpen
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Anushri Parakh
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Jinjin Cao
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Kampon Yuenyongsinchai
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Evita Joseph
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| | - Simon Lennartz
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Institute for Diagnostic and Interventional Radiology, University Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Sasiprang Kongboonvijit
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA
- Department of Radiology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok, 10330, Thailand
| | - Dushyant Sahani
- Department of Radiology, University of Washington, UWMC Radiology RR218, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Avinash Kambadakone
- Abdominal Radiology Division, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Ananthakrishnan L, Kulkarni N, Toshav A. Dual-Energy Computed Tomography: Integration Into Clinical Practice and Cost Considerations. Radiol Clin North Am 2023; 61:963-971. [PMID: 37758363 DOI: 10.1016/j.rcl.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Optimization of dual-energy CT (DECT) workflow is critical for successful integration of DECT into practice. Patient selection strategies differ by scanner type and may be based on patient size, exam indication, or both. All stakeholders involved in patient scheduling and scan acquisition should be involved in patient triage to DECT. Automation of DECT postprocessing frees up technologist and radiologist time, but care must be taken to avoid sending unnecessary reconstructions to PACS. DECT use in the Emergency Department aids in incidentaloma characterization and improves reader diagnostic confidence, and results in quantifiable cost savings by eliminating the need for follow-up exams.
Collapse
Affiliation(s)
- Lakshmi Ananthakrishnan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | - Naveen Kulkarni
- Department of Radiology, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA
| | - Aran Toshav
- Department of Radiology, Southeast Louisiana Veterans Healthcare System, LSUHSC, New Orleans, LA 70119, USA
| |
Collapse
|
10
|
Jeong J, Wentland A, Mastrodicasa D, Fananapazir G, Wang A, Banerjee I, Patel BN. Synthetic dual-energy CT reconstruction from single-energy CT Using artificial intelligence. Abdom Radiol (NY) 2023; 48:3537-3549. [PMID: 37665385 DOI: 10.1007/s00261-023-04004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023]
Abstract
PURPOSE To develop and assess the utility of synthetic dual-energy CT (sDECT) images generated from single-energy CT (SECT) using two state-of-the-art generative adversarial network (GAN) architectures for artificial intelligence-based image translation. METHODS In this retrospective study, 734 patients (389F; 62.8 years ± 14.9) who underwent enhanced DECT of the chest, abdomen, and pelvis between January 2018 and June 2019 were included. Using 70-keV as the input images (n = 141,009) and 50-keV, iodine, and virtual unenhanced (VUE) images as outputs, separate models were trained using Pix2PixHD and CycleGAN. Model performance on the test set (n = 17,839) was evaluated using mean squared error, structural similarity index, and peak signal-to-noise ratio. To objectively test the utility of these models, synthetic iodine material density and 50-keV images were generated from SECT images of 16 patients with gastrointestinal bleeding performed at another institution. The conspicuity of gastrointestinal bleeding using sDECT was compared to portal venous phase SECT. Synthetic VUE images were generated from 37 patients who underwent a CT urogram at another institution and model performance was compared to true unenhanced images. RESULTS sDECT from both Pix2PixHD and CycleGAN were qualitatively indistinguishable from true DECT by a board-certified radiologist (avg accuracy 64.5%). Pix2PixHD had better quantitative performance compared to CycleGAN (e.g., structural similarity index for iodine: 87% vs. 46%, p-value < 0.001). sDECT using Pix2PixHD showed increased bleeding conspicuity for gastrointestinal bleeding and better removal of iodine on synthetic VUE compared to CycleGAN. CONCLUSIONS sDECT from SECT using Pix2PixHD may afford some of the advantages of DECT.
Collapse
Affiliation(s)
- Jiwoong Jeong
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA.
- School of Computing and Augmented Intelligence, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA.
| | - Andrew Wentland
- Department of Radiology, University of Wisconsin, 600 Highland Ave, Madison, WI, 53792, USA
| | - Domenico Mastrodicasa
- Department of Radiology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Ghaneh Fananapazir
- Department of Radiology, University of California Davis, 4860 Y Street, Suite 3100, Sacramento, CA, 95817, USA
| | - Adam Wang
- Department of Radiology, Stanford University, 300 Pasteur Dr., Stanford, CA, 94305, USA
| | - Imon Banerjee
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Bhavik N Patel
- Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd, Scottsdale, AZ, 85259, USA
| |
Collapse
|
11
|
Chung R, Dane B, Yeh BM, Morgan DE, Sahani DV, Kambadakone A. Dual-Energy Computed Tomography: Technological Considerations. Radiol Clin North Am 2023; 61:945-961. [PMID: 37758362 DOI: 10.1016/j.rcl.2023.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Compared to conventional single-energy CT (SECT), dual-energy CT (DECT) provides additional information to better characterize imaged tissues. Approaches to DECT acquisition vary by vendor and include source-based and detector-based systems, each with its own advantages and disadvantages. Despite the different approaches to DECT acquisition, the most utilized DECT images include routine SECT equivalent, virtual monoenergetic, material density (eg, iodine map), and virtual non-contrast images. These images are generated either through reconstructions in the projection or image domains. Designing and implementing an optimal DECT workflow into routine clinical practice depends on radiologist and technologist input with special considerations including appropriate patient and protocol selection and workflow automation. In addition to better tissue characterization, DECT provides numerous advantages over SECT such as the characterization of incidental findings and dose reduction in radiation and iodinated contrast.
Collapse
Affiliation(s)
- Ryan Chung
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA.
| | - Bari Dane
- Department of Radiology, NYU Langone Health, 660 1st Avenue, New York, NY 10016, USA
| | - Benjamin M Yeh
- Department of Radiology and Biomedical Imaging, University of California - San Francisco, 505 Parnassus Avenue, M391, Box 0628, San Francisco, CA 94143-0628, USA
| | - Desiree E Morgan
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street, South JTN 456, Birmingham, AL 35249-6830, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, 1959 Northeast Pacific Street, RR220, Seattle, WA 98112, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA
| |
Collapse
|
12
|
Rajiah PS, Kambadakone A, Ananthakrishnan L, Sutphin P, Kalva SP. Vascular Applications of Dual-Energy Computed Tomography. Radiol Clin North Am 2023; 61:1011-1029. [PMID: 37758354 DOI: 10.1016/j.rcl.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual- or multi-energy CT imaging provides several advantages over conventional CT in the context of vascular imaging. Specific advantages include the use of low-energy virtual monoenergetic images (VMIs) to boost iodine attenuation to salvage suboptimal enhanced studies, perform low-contrast material dose studies, and increase conspicuity of small vessels and lesions. Alternatively, high-energy VMIs reduce artifacts caused by some metals, endoprosthesis, calcium blooming, and beam hardening. Virtual non-contrast (VNC) images reduce radiation dose by eliminating the need for a true non-contrast acquisition in multiphasic CT studies. Iodine maps can be used to evaluate perfusion of tissues and lesions.
Collapse
Affiliation(s)
- Prabhakar S Rajiah
- Department of Radiology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| | | | | | - Patrick Sutphin
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Sanjeeva P Kalva
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
13
|
Borges AP, Antunes C, Caseiro-Alves F. Spectral CT: Current Liver Applications. Diagnostics (Basel) 2023; 13:diagnostics13101673. [PMID: 37238163 DOI: 10.3390/diagnostics13101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Using two different energy levels, dual-energy computed tomography (DECT) allows for material differentiation, improves image quality and iodine conspicuity, and allows researchers the opportunity to determine iodine contrast and radiation dose reduction. Several commercialized platforms with different acquisition techniques are constantly being improved. Furthermore, DECT clinical applications and advantages are continually being reported in a wide range of diseases. We aimed to review the current applications of and challenges in using DECT in the treatment of liver diseases. The greater contrast provided by low-energy reconstructed images and the capability of iodine quantification have been mostly valuable for lesion detection and characterization, accurate staging, treatment response assessment, and thrombi characterization. Material decomposition techniques allow for the non-invasive quantification of fat/iron deposition and fibrosis. Reduced image quality with larger body sizes, cross-vendor and scanner variability, and long reconstruction time are among the limitations of DECT. Promising techniques for improving image quality with lower radiation dose include the deep learning imaging reconstruction method and novel spectral photon-counting computed tomography.
Collapse
Affiliation(s)
- Ana P Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Filipe Caseiro-Alves
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
14
|
Borges AP, Antunes C, Curvo-Semedo L. Pros and Cons of Dual-Energy CT Systems: "One Does Not Fit All". Tomography 2023; 9:195-216. [PMID: 36828369 PMCID: PMC9964233 DOI: 10.3390/tomography9010017] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Dual-energy computed tomography (DECT) uses different energy spectrum x-ray beams for differentiating materials with similar attenuation at a certain energy. Compared with single-energy CT, it provides images with better diagnostic performance and a potential reduction of contrast agent and radiation doses. There are different commercially available DECT technologies, with machines that may display two x-ray sources and two detectors, a single source capable of fast switching between two energy levels, a specialized detector capable of acquiring high- and low-energy data sets, and a filter splitting the beam into high- and low-energy beams at the output. Sequential acquisition at different tube voltages is an alternative approach. This narrative review describes the DECT technique using a Q&A format and visual representations. Physical concepts, parameters influencing image quality, postprocessing methods, applicability in daily routine workflow, and radiation considerations are discussed. Differences between scanners are described, regarding design, image quality variabilities, and their advantages and limitations. Additionally, current clinical applications are listed, and future perspectives for spectral CT imaging are addressed. Acknowledging the strengths and weaknesses of different DECT scanners is important, as these could be adapted to each patient, clinical scenario, and financial capability. This technology is undoubtedly valuable and will certainly keep improving.
Collapse
Affiliation(s)
- Ana P. Borges
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
- Correspondence:
| | - Célia Antunes
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| | - Luís Curvo-Semedo
- Medical Imaging Department, Coimbra University Hospitals, 3004-561 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
- Academic and Clinical Centre of Coimbra, 3000-370 Coimbra, Portugal
| |
Collapse
|
15
|
Chen Z, Liu X, Shou C, Yang W, Yu J. Advances in the diagnosis of non-occlusive mesenteric ischemia and challenges in intra-abdominal sepsis patients: a narrative review. PeerJ 2023; 11:e15307. [PMID: 37128207 PMCID: PMC10148637 DOI: 10.7717/peerj.15307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/06/2023] [Indexed: 05/03/2023] Open
Abstract
Non-occlusive mesenteric ischemia (NOMI) is a type of acute mesenteric ischemia (AMI) with a high mortality rate mainly because of a delayed or misdiagnosis. Intra-abdominal sepsis is one of the risk factors for developing NOMI, and its presence makes early diagnosis much more difficult. An increase in routine abdominal surgeries carries a corresponding risk of abdominal infection, which is a complication that should not be overlooked. It is critical that physicians are aware of the possibility for intestinal necrosis in abdominal sepsis patients due to the poor survival rate of NOMI. This review aims to summarize advances in the diagnosis of NOMI, and focuses on the diagnostic challenges of mesenteric ischemia in patients with intra-abdominal sepsis.
Collapse
|
16
|
What Can We Learn About Pancreatic Adenocarcinoma from Imaging? Hematol Oncol Clin North Am 2022; 36:911-928. [DOI: 10.1016/j.hoc.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Lubner MG, Ziemlewicz TJ, Wells SA, Li K, Wu PH, Hinshaw JL, Lee FT, Brace CL. Advanced CT techniques for hepatic microwave ablation zone monitoring and follow-up. Abdom Radiol (NY) 2022; 47:2658-2668. [PMID: 34731282 DOI: 10.1007/s00261-021-03333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate utility of advanced CT techniques including HighlY constrained back-projection and dual-energy CT for intra- and post-procedure hepatic microwave ablation zone monitoring. METHODS 8 hepatic microwave ablations were performed in 4 adult swine (5 min/65 W). Low-dose routine CECT and dual-energy CT images were obtained every 1 min during ablation. Images were reconstructed ± HYPR. Image quality and dose metrics were collected. 21 MWA were performed in 4 adult swine. Immediate post-procedure CECT was performed in the arterial, portal venous, and delayed phases using both routine and DECT imaging with full-dose weight-based IV contrast dosing. An additional 16 MWA were subsequently performed in 2 adult swine. Immediate post-procedure CT was performed with half-dose IV contrast using routine and DECT. 12 patients (10 M/2F, mean age 62.4 yrs) with 14 hepatic tumors (4 HCC, 10 metastatic lesions) treated with MWA were prospectively imaged with DECT 1 month post-procedure. 120 kV equivalent images were compared to DECT [51 keV, iodine material density]. Image quality and dose metrics were collected. RESULTS Gas created during MWA led to high CNR in all intraprocedural CT datasets. Optimal CNRs were noted at 4 min with CNR 6.7, 15.5,15.9, and 21.5 on LD-CECT, LD-CECT + HYPR, DECT, and DECT + HYPR, respectively (p < 0.001). Image quality scores at 4 min were 1.8, 2.8, 2.4, and 3, respectively (p < 0.001). Mean radiation dose (CTDIvol) was eightfold higher for the DECT series. For swine, post-procedural DECT images (IMD/51 keV) showed improved CNR compared to routine CT at all time points with full and with reduced dose contrast (CNR 4.6, 3.2, and 1.5, respectively, at half-contrast dose, p < 0.001). For human subjects, the 51 keV and IMD images showed higher CNRs (5.8, 4.8 vs 4.0, p < 0.001) and SNRs (3.7, 5.9 vs 2.8). Ablation zone sharpness was improved with DECT (routine 3.0 ± 0.7, DECT 3.5 ± 0.5). Diagnostic confidence was higher with DECT (routine 2.3 ± 0.9, DECT 2.6 ± 0.8). Mean DLP for DECT was 905.7 ± 606 mGy-cm, CTDIvol 37.5 ± 21.2 mGy, and effective dose 13.6 ± 9.1 mSv, slightly higher than conventional CT series. CONCLUSION Advanced CT techniques can improve CT image quality in peri-procedural hepatic microwave ablation zone evaluation.
Collapse
Affiliation(s)
- Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA.
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Shane A Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Ke Li
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Po-Hung Wu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Biomedical and Electrical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Electrical and Computer Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Louis Hinshaw
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
| | - Chris L Brace
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, E3/311 Clinical Sciences Center, 600 Highland Ave, Madison, WI, 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Biomedical and Electrical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
18
|
Cheraya G, Sharma S, Chhabra A. Dual energy CT in musculoskeletal applications beyond crystal imaging: bone marrow maps and metal artifact reduction. Skeletal Radiol 2022; 51:1521-1534. [PMID: 35112139 DOI: 10.1007/s00256-021-03979-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/02/2023]
Abstract
Dual energy CT (DECT) is becoming increasingly popular and valuable in the domain of musculoskeletal imaging. Gout maps and crystal detection have been predominant indications for about a decade. Other important indications of bone marrow maps and metal artifact reduction are also frequent with added advantages of detection and characterization of bone marrow lesions similar to MR imaging and diagnosis of hardware related complications, respectively. This article discusses technical considerations and physics of DECT imaging and its role in musculoskeletal indications apart from crystal imaging with respective case examples and review of the related literature. DECT pitfalls in these domains are also highlighted and the reader can gain knowledge of above concepts for prudent use of DECT in their musculoskeletal and general practices.
Collapse
Affiliation(s)
| | - Salil Sharma
- Mary Imogene Bassett Hospital, Cooperstown, NY, USA
| | | |
Collapse
|
19
|
Mroueh N, Cao J, Kambadakone A. Dual-Energy CT in the Pancreas. JOURNAL OF GASTROINTESTINAL AND ABDOMINAL RADIOLOGY 2022. [DOI: 10.1055/s-0042-1744494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
AbstractDual-energy computed tomography (DECT) is an evolving imaging technology that is gaining popularity, particularly in different abdominopelvic applications. Essentially, DECT uses two energy spectra simultaneously to acquire CT attenuation data which is used to distinguish among structures with different tissue composition. The wide variety of reconstructed image data sets makes DECT especially attractive in pancreatic imaging. This article reviews the current literature on DECT as it applies to imaging the pancreas, focusing on pancreatitis, trauma, pancreatic ductal adenocarcinoma, and other solid and cystic neoplasms. The advantages of DECT over conventional CT are highlighted, including improved lesion detection, radiation dose reduction, and enhanced image contrast. Additionally, data exploring the ideal protocol for pancreatic imaging using DECT is reviewed. Finally, limitations of DECT in pancreatic imaging as well as recommendations for future research are provided.
Collapse
Affiliation(s)
- Nayla Mroueh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
20
|
Dual-energy CT of acute bowel ischemia. Abdom Radiol (NY) 2022; 47:1660-1683. [PMID: 34191075 DOI: 10.1007/s00261-021-03188-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/17/2022]
Abstract
Acute bowel ischemia is a condition with high mortality and requires rapid intervention to avoid catastrophic outcomes. Swift and accurate imaging diagnosis is essential because clinical findings are commonly nonspecific. Conventional contrast enhanced CT of the abdomen has been the imaging modality of choice to evaluate suspected acute bowel ischemia. However, subtlety of image findings and lack of non-contrast or arterial phase images can make correct diagnosis challenging. Dual-energy CT provides valuable information toward assessing bowel ischemia. Dual-energy CT exploits the differential X-ray attenuation at two different photon energy levels to characterize the composition of tissues and reveal the presence or absence of faint intravenous iodinated contrast to improve reader confidence in detecting subtle bowel wall enhancement. With the same underlying technique, virtual non-contrast images can help to show non-enhancing hyperdense hemorrhage of the bowel wall in intravenous contrast-enhanced scans without the need to acquire actual non-contrast scans. Dual-energy CT derived low photon energy (keV) virtual monoenergetic images emphasize iodine contrast and provide CT angiography-like images from portal venous phase scans to better evaluate abdominal arterial patency. In Summary, dual-energy CT aids diagnosing acute bowel ischemia in multiple ways, including improving visualization of the bowel wall and mesenteric vasculature, revealing intramural hemorrhage in contrast enhanced scans, or possibly reducing intravenous contrast dose.
Collapse
|
21
|
Cester D, Eberhard M, Alkadhi H, Euler A. Virtual monoenergetic images from dual-energy CT: systematic assessment of task-based image quality performance. Quant Imaging Med Surg 2022; 12:726-741. [PMID: 34993114 DOI: 10.21037/qims-21-477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Background To compare task-based image quality (TB-IQ) among virtual monoenergetic images (VMI) and linear-blended images (LBI) from dual-energy CT as a function of contrast task, radiation dose, size, and lesion diameter. Methods A TB-IQ phantom (Mercury Phantom 4.0, Sun Nuclear Corporation) was imaged on a third-generation dual-source dual-energy CT with 100/Sn150 kVp at three volume CT dose levels (5, 10, 15 mGy). Three size sections (diameters 16, 26, 36 cm) with subsections for image noise and spatial resolution analysis were used. High-contrast tasks (e.g., calcium-containing stone and vascular lesion) were emulated using bone and iodine inserts. A low-contrast task (e.g., low-contrast lesion or hematoma) was emulated using a polystyrene insert. VMI at 40-190 keV and LBI were reconstructed. Noise power spectrum (NPS) determined the noise magnitude and texture. Spatial resolution was assessed using the task-transfer function (TTF) of the three inserts. The detectability index (d') served as TB-IQ metric. Results Noise magnitude increased with increasing phantom size, decreasing dose, and decreasing VMI-energy. Overall, noise magnitude was higher for VMI at 40-60 keV compared to LBI (range of noise increase, 3-124%). Blotchier noise texture was found for low and high VMIs (40-60 keV, 130-190 keV) compared to LBI. No difference in spatial resolution was observed for high contrast tasks. d' increased with increasing dose level or lesion diameter and decreasing size. For high-contrast tasks, d' was higher at 40-80 keV and lower at high VMIs. For the low-contrast task, d' was higher for VMI at 70-90 keV and lower at 40-60 keV. Conclusions Task-based image quality differed among VMI-energy and LBI dependent on the contrast task, dose level, phantom size, and lesion diameter. Image quality could be optimized by tailoring VMI-energy to the contrast task. Considering the clinical relevance of iodine, VMIs at 50-60 keV could be proposed as an alternative to LBI.
Collapse
Affiliation(s)
- Davide Cester
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Eberhard
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Hatem Alkadhi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - André Euler
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Lennartz S, Parakh A, Cao J, Kambadakone A. Longitudinal reproducibility of attenuation measurements on virtual unenhanced images: multivendor dual-energy CT evaluation. Eur Radiol 2021; 31:9240-9249. [PMID: 34110426 DOI: 10.1007/s00330-021-08083-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/10/2021] [Accepted: 05/20/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The accuracy of virtual unenhanced (VUE) images has been extensively investigated, yet data on their longitudinal reproducibility is limited. The study purpose was to evaluate the longitudinal reproducibility of VUE attenuation measurements on three different dual-energy CT (DECT) scanner types. METHODS A total of 137 patients with repeated abdominal DECT either on a rapid kV switching (rsDECT; n = 46), a dual-layer detector (dlDECT; n = 43), or a dual-source scanner (dsDECT; n = 48) were retrospectively included. Attenuation was measured on VUE and corresponding contrast-enhanced images in the liver, spleen, kidneys, aorta, portal vein, and fat. Longitudinal reproducibility was evaluated by calculating the absolute inter-scan differences (HU) and the inter-scan variation (%). Measurement pairs with differences ≤ 10 HU were considered reproducible. Influence of contrast-enhanced attenuation on VUE reproducibility was analyzed using linear regression. RESULTS The scanner-specific cohorts showed similar age (p-range: 0.35-0.99), sex (p-range: 0.68-1), body weight (p-range: 0.26-0.87), body diameter (p-range: 0.34-0.76), and inter-scan time (p-range: 0.52-0.83). In total, 94.9% of VUE measurements were reproducible for rsDECT, 93.8% for dlDECT, and 90.6% for dsDECT. Overall inter-scan variation was lowest in fat (4.0 (1.7-8.2)%) and highest in tissues with high contrast enhancement: the aorta (13.3 (4.6-21.3)%), portal vein (10.8 (5.7-19.8)%), and kidneys (10.7 (3.9-18.0)%). Significant differences in inter-scan variation were found between the scanner types for the aorta, portal vein, kidneys, and spleen. Inter-scan differences in contrast-enhanced attenuation significantly influenced inter-scan differences in VUE attenuation (p < 0.001; t-ratio: 4.34). CONCLUSIONS Longitudinal reproducibility of VUE attenuation was high for all scanners, yet inter-scan variation of VUE attenuation was influenced by contrast enhancement, showing greatest magnitude and discrepancy between scanner types in vessels and the kidneys. KEY POINTS • We found that 94.9% of attenuation measurements on virtual unenhanced images were reproducible for rapid kV switching DECT, 93.8% for dual-layer detector DECT, and 90.6% for dual-source DECT. • Inter-scan variation of attenuation in virtual unenhanced images was comparable between the three scanner types in the liver and fat, whereas inter-scan variation in the spleen, kidneys, portal vein, and aorta showed significant differences between scanner types (p < 0.05). • Inter-scan attenuation differences in contrast-enhanced images significantly influenced inter-scan differences in virtual unenhanced attenuation (p < 0.001, t-ratio: 4.34), suggesting a residual impact of contrast enhancement differences between examinations.
Collapse
Affiliation(s)
- Simon Lennartz
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine, University Cologne and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| | - Anushri Parakh
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA, 02114-2696, USA.
| |
Collapse
|
23
|
Voss BA, Khandelwal A, Wells ML, Inoue A, Venkatesh SK, Lee YS, Johnson MP, Fletcher JG. Impact of dual-energy 50-keV virtual monoenergetic images on radiologist confidence in detection of key imaging findings of small hepatocellular carcinomas using multiphase liver CT. Acta Radiol 2021; 63:1443-1452. [PMID: 34723681 DOI: 10.1177/02841851211052993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Dual-energy virtual monoenergetic images can increase iodine signal, potentially increasing the conspicuity of hepatic masses. PURPOSE To determine if dual-energy 50-keV virtual monoenergetic images improve visualization of key imaging findings or diagnostic confidence for small (≤2 cm) hepatocellular carcinomas (HCC) at multiphase, contrast-enhanced liver computed tomography (CT). MATERIAL AND METHODS Patients with chronic liver disease underwent multiphase dual-energy CT imaging for HCC, with late arterial and delayed phase dual-energy 50-keV images reconstructed. Two non-reader subspecialized gastrointestinal (GI) radiologists established the reference standard, determining the location and diagnosis of all hepatic lesions using predetermined criteria. Three GI radiologists interpreted mixed kV CT images without or with dual-energy 50-keV images. Radiologists identified potential HCCs and rated their confidence (0-100 scales) in imaging findings of arterial enhancement, enhancing capsule, tumor washout, and LI-RADS 5 (2018) category. RESULTS In total, 45 patients (14 women; mean age = 59.5 ± 10.9 years) with chronic liver disease were included. Of them, 19 patients had 25 HCCs ≤2 cm (mean size = 1.5 ± 0.4 cm). There were 17 LI-RADS 3 and 4 lesions and 19 benign lesions. Reader confidence in imaging findings of arterial enhancement, enhancing capsule, and non-peripheral washout significantly increased with dual-energy images (P ≤ 0.022). Overall confidence in HCC diagnosis increased significantly with dual-energy 50-keV images (52.4 vs. 68.8; P = 0.001). Dual-energy images demonstrated a slight but significant decrease in overall image quality. CONCLUSION Radiologist confidence in key imaging features of small HCCs and confidence in imaging diagnosis increases with use of dual-energy 50-keV images at multiphase, contrast-enhanced liver CT.
Collapse
Affiliation(s)
| | | | | | - Akitoshi Inoue
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Yong S Lee
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Johnson
- Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
24
|
Virtual Monoenergetic Images of Dual-Energy CT-Impact on Repeatability, Reproducibility, and Classification in Radiomics. Cancers (Basel) 2021; 13:cancers13184710. [PMID: 34572937 PMCID: PMC8467875 DOI: 10.3390/cancers13184710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Virtual monoenergetic images from dual-energy CT are incrementally used in routine clinical practice. Thus, radiomic analysis will be more often performed on these images in the future. This study characterized the test–retest repeatability and reproducibility of radiomic features from virtual monoenergetic images and their impact on machine-learning-based lesion classification. The results of this study provide a basis to improve radiomic analyses and identify the role of feature stability in classification tasks when using virtual monoenergetic imaging with different scan or reconstruction parameters in multicenter clinical studies. Abstract The purpose of this study was to (i) evaluate the test–retest repeatability and reproducibility of radiomic features in virtual monoenergetic images (VMI) from dual-energy CT (DECT) depending on VMI energy (40, 50, 75, 120, 190 keV), radiation dose (5 and 15 mGy), and DECT approach (dual-source and split-filter DECT) in a phantom (ex vivo), and (ii) to assess the impact of VMI energy and feature repeatability on machine-learning-based classification in vivo in 72 patients with 72 hypodense liver lesions. Feature repeatability and reproducibility were determined by concordance–correlation–coefficient (CCC) and dynamic range (DR) ≥0.9. Test–retest repeatability was high within the same VMI energies and scan conditions (percentage of repeatable features ranging from 74% for SFDE mode at 40 keV and 15 mGy to 86% for DSDE at 190 keV and 15 mGy), while reproducibility varied substantially across different VMI energies and DECTs (percentage of reproducible features ranging from 32.8% for SFDE at 5 mGy comparing 40 with 190 keV to 99.2% for DSDE at 15 mGy comparing 40 with 50 keV). No major differences were observed between the two radiation doses (<10%) in all pair-wise comparisons. In vivo, machine learning classification using penalized regression and random forests resulted in the best discrimination of hemangiomas and metastases at low-energy VMI (40 keV), and for cysts at high-energy VMI (120 keV). Feature selection based on feature repeatability did not improve classification performance. Our results demonstrate the high repeatability of radiomics features when keeping scan and reconstruction conditions constant. Reproducibility diminished when using different VMI energies or DECT approaches. The choice of optimal VMI energy improved lesion classification in vivo and should hence be adapted to the specific task.
Collapse
|
25
|
Yoo J, Lee JM, Yoon JH, Joo I, Lee ES, Jeon SK, Jang S. Comparison of low kVp CT and dual-energy CT for the evaluation of hypervascular hepatocellular carcinoma. Abdom Radiol (NY) 2021; 46:3217-3226. [PMID: 33713160 DOI: 10.1007/s00261-020-02888-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE To compare lesion conspicuity and image quality of arterial phase images obtained from low kVp (90-kVp) and dual-energy (DE) scans for the evaluation of hypervascular hepatocellular carcinoma (HCC). METHODS This retrospective study included 229 patients with HCC who underwent either 90 kVp (n = 106) or DE scan (80- and 150-kVp with a tin filter) (n = 123) during the arterial phase. DE scans were reconstructed into a linearly blended image with a mixed ratio of 0.6 (60% 80kVp and 40% 150 kVp) and post-processed for 40 keV and 50 keV images. The contrast-to-noise ratio (CNR) of HCC to the liver and image noise was measured. Lesion conspicuity, liver parenchymal image quality, and overall image preference were assessed qualitatively by three independent radiologists. RESULTS DE 40 keV images had the highest CNR of HCC, and DE blended images had the lowest image noise among four image sets (p = 0.01 and p < 0.001, respectively). There was no significant difference in mean volume CT dose index and dose-length product between DE and low kVp scan (ps > 0.05). For qualitative analyses, DE blended images had the highest scores for image quality and overall image preference (ps < 0.001). CONCLUSION At an equal radiation dose, DE 40 keV showed higher CNR of HCC and DE blended image showed higher image quality and image preference compared with low kVp CT.
Collapse
Affiliation(s)
- Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea.
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Daehak-ro 101, Jongno-gu, Seoul, 03080, Korea.
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea
| | - Eun Sun Lee
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Sun Kyung Jeon
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Siwon Jang
- Department of Radiology, Seoul National University Boramae Hospital, Seoul, Korea
| |
Collapse
|
26
|
Mastrodicasa D, Willemink MJ, Madhuripan N, Chima RS, Ho AA, Ding Y, Marin D, Patel BN. Diagnostic performance of single-phase dual-energy CT to differentiate vascular and nonvascular incidental renal lesions on portal venous phase: comparison with CT. Eur Radiol 2021; 31:9600-9611. [PMID: 34114058 DOI: 10.1007/s00330-021-08097-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/13/2021] [Accepted: 05/25/2021] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To determine whether single-phase dual-energy CT (DECT) differentiates vascular and nonvascular renal lesions in the portal venous phase (PVP). Optimal iodine threshold was determined and compared to Hounsfield unit (HU) measurements. METHODS We retrospectively included 250 patients (266 renal lesions) who underwent a clinically indicated PVP abdominopelvic CT on a rapid-kilovoltage-switching single-source DECT (rsDECT) or a dual-source DECT (dsDECT) scanner. Iodine concentration and HU measurements were calculated by four experienced readers. Diagnostic accuracy was determined using biopsy results and follow-up imaging as reference standard. Area under the curve (AUC) was calculated for each DECT scanner to differentiate vascular from nonvascular lesions and vascular lesions from hemorrhagic/proteinaceous cysts. Univariable and multivariable logistic regression analyses evaluated the association between variables and the presence of vascular lesions. RESULTS A normalized iodine concentration threshold of 0.25 mg/mL yielded high accuracy in differentiating vascular and nonvascular lesions (AUC 0.93, p < 0.001), with comparable performance to HU measurements (AUC 0.93). Both iodine concentration and HU measurements were independently associated with vascular lesions when adjusted for age, gender, body mass index, and lesion size (AUC 0.95 and 0.95, respectively). When combined, diagnostic performance was higher (AUC 0.96). Both absolute and normalized iodine concentrations performed better than HU measurements (AUC 0.92 vs. AUC 0.87) in differentiating vascular lesions from hemorrhagic/proteinaceous cysts. CONCLUSION A single-phase (PVP) DECT scan yields high accuracy to differentiate vascular from nonvascular renal lesions. Iodine concentration showed a slightly higher performance than HU measurements in differentiating vascular lesions from hemorrhagic/proteinaceous cysts. KEY POINTS • A single-phase dual-energy CT scan in the portal venous phase differentiates vascular from nonvascular renal lesions with high accuracy (AUC 0.93). • When combined, iodine concentration and HU measurements showed the highest diagnostic performance (AUC 0.96) to differentiate vascular from nonvascular renal lesions. • Compared to HU measurements, iodine concentration showed a slightly higher performance in differentiating vascular lesions from hemorrhagic/proteinaceous cysts.
Collapse
Affiliation(s)
- Domenico Mastrodicasa
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Martin J Willemink
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Nikhil Madhuripan
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA.,Department of Radiology, University of Colorado, 12401 East 17th Avenue, Aurora, CO, 80045, USA
| | - Ranjit Singh Chima
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Amanzo A Ho
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| | - Yuqin Ding
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Durham, NC, 27710, USA.,Department of Radiology, Zhongshan Hospital, Fudan University; Shanghai Institute of Medical Imaging, Shanghai, 200032, People's Republic of China
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, 2301 Erwin Rd, Durham, NC, 27710, USA
| | - Bhavik N Patel
- Department of Radiology, Mayo Clinic, 13400 E Shea Blvd, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
27
|
Parakh A, An C, Lennartz S, Rajiah P, Yeh BM, Simeone FJ, Sahani DV, Kambadakone AR. Recognizing and Minimizing Artifacts at Dual-Energy CT. Radiographics 2021; 41:509-523. [PMID: 33606565 PMCID: PMC7924411 DOI: 10.1148/rg.2021200049] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Dual-energy CT (DECT) is an exciting innovation in CT technology with profound capabilities to improve diagnosis and add value to patient care. Significant advances in this technology over the past decade have improved our ability to successfully adopt DECT into the clinical routine. To enable effective use of DECT, one must be aware of the pitfalls and artifacts related to this technology. Understanding the underlying technical basis of artifacts and the strategies to mitigate them requires optimization of scan protocols and parameters. The ability of radiologists and technologists to anticipate their occurrence and provide recommendations for proper selection of patients, intravenous and oral contrast media, and scan acquisition parameters is key to obtaining good-quality DECT images. In addition, choosing appropriate reconstruction algorithms such as image kernel, postprocessing parameters, and appropriate display settings is critical for preventing quantitative and qualitative interpretive errors. Therefore, knowledge of the appearances of these artifacts is essential to prevent errors and allows maximization of the potential of DECT. In this review article, the authors aim to provide a comprehensive and practical overview of possible artifacts that may be encountered at DECT across all currently available commercial clinical platforms. They also provide a pictorial overview of the diagnostic pitfalls and outline strategies for mitigating or preventing the occurrence of artifacts, when possible. The broadening scope of DECT applications necessitates up-to-date familiarity with these technologies to realize their full diagnostic potential.
Collapse
Affiliation(s)
- Anushri Parakh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Chansik An
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Simon Lennartz
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Prabhakar Rajiah
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Benjamin M. Yeh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Frank J. Simeone
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Dushyant V. Sahani
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Avinash R. Kambadakone
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., S.L., F.J.S., A.R.K.); Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Calif (C.A., B.M.Y.); Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany (S.L.); Department of Radiology, Mayo Clinic, Rochester, Minn (P.R.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| |
Collapse
|
28
|
Abstract
Dual-energy CT (DECT) overcomes several limitations of conventional single-energy CT (SECT) for the evaluation of gastrointestinal diseases. This article provides an overview of practical aspects of the DECT technology and acquisition protocols, reviews existing clinical applications, discusses current challenges, and describes future directions, with a focus on gastrointestinal imaging. A head-to-head comparison of technical specifications among DECT scanner implementations is provided. Energy- and material-specific DECT image reconstructions enable retrospective (i.e., after examination acquisition) image quality adjustments that are not possible using SECT. Such adjustments may, for example, correct insufficient contrast bolus or metal artifacts, thereby potentially avoiding patient recalls. A combination of low-energy monochromatic images, iodine maps, and virtual unenhanced images can be included in protocols to improve lesion detection and disease characterization. Relevant literature is reviewed regarding use of DECT for evaluation of the liver, gallbladder, pancreas, and bowel. Challenges involving cost, workflow, body habitus, and variability in DECT measurements are considered. Artificial intelligence and machine-learning image reconstruction algorithms, PACS integration, photon-counting hardware, and novel contrast agents are expected to expand the multienergy capability of DECT and further augment its value.
Collapse
|
29
|
Agostini A, Borgheresi A, Bruno F, Natella R, Floridi C, Carotti M, Giovagnoni A. New advances in CT imaging of pancreas diseases: a narrative review. Gland Surg 2020; 9:2283-2294. [PMID: 33447580 PMCID: PMC7804533 DOI: 10.21037/gs-20-551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Computed tomography (CT) plays a pivotal role as a diagnostic tool in many diagnostic and diffuse pancreatic diseases. One of the major limits of CT is related to the radiation exposure of young patients undergoing repeated examinations. Besides the standard CT protocol, the most recent technological advances, such as low-voltage acquisitions with high performance X-ray tubes and iterative reconstructions, allow for significant optimization of the protocol with dose reduction. The variety of CT tools are further expanded by the introduction of dual energy: the production of energy-selective images (i.e., virtual monochromatic images) improves the image contrast and lesion detection while the material-selective images (e.g., iodine maps or virtual unenhanced images) are valuable for lesion detection and dose reduction. The perfusion techniques provide diagnostic and prognostic information lesion and parenchymal vascularization and interstitium. Both dual energy and perfusion CT have the potential for pushing the limits of conventional CT from morphological evaluation to quantitative imaging applied to inflammatory and oncological diseases. Advances in post-processing of CT images, such as pancreatic volumetry, texture analysis and radiomics provide relevant information for pancreatic function but also for the diagnosis, management and prognosis of pancreatic neoplasms. Artificial intelligence is promising for optimization of the workflow in qualitative and quantitative analyses. Finally, basic concepts on the role of imaging on screening of pancreatic diseases will be provided.
Collapse
Affiliation(s)
- Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Federico Bruno
- Department of Biotechnological and Applied Sciences, University of L’Aquila, L’Aquila, Italy
| | - Raffaele Natella
- Department of Precision Medicine, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Chiara Floridi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Marina Carotti
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Ancona (AN), Italy
- Department of Radiology, University Hospital “Umberto I – Lancisi – Salesi”, Ancona (AN), Italy
| |
Collapse
|
30
|
Building a dual-energy CT service line in abdominal radiology. Eur Radiol 2020; 31:4330-4339. [PMID: 33210201 DOI: 10.1007/s00330-020-07441-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
As the access of radiology practices to dual-energy CT (DECT) has increased worldwide, seamless integration into clinical workflows and optimized use of this technology are desirable. In this article, we provide basic concepts of commercially available DECT hardware implementations, discuss financial and logistical aspects, provide tips for protocol building and image routing strategies, and review radiation dose considerations to establish a DECT service line in abdominal imaging. KEY POINTS: • Tube-based and detector-based DECT implementations with varying features and strengths are available on the imaging market. • Thorough assessment of financial and logistical aspects is key to successful implementation of a DECT service line. • Optimized protocol building and image routing strategies are of critical importance for effective use and seamless inception of DECT in routine clinical workflows.
Collapse
|
31
|
Thiravit S, Brunnquell C, Cai LM, Flemon M, Mileto A. Use of dual-energy CT for renal mass assessment. Eur Radiol 2020; 31:3721-3733. [PMID: 33210200 DOI: 10.1007/s00330-020-07426-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/11/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Although dual-energy CT (DECT) may prove useful in a variety of abdominal imaging tasks, renal mass evaluation represents the area where this technology can be most impactful in abdominal imaging compared to routinely performed contrast-enhanced-only single-energy CT exams. DECT post-processing techniques, such as creation of virtual unenhanced and iodine density images, can help in the characterization of incidentally discovered renal masses that would otherwise remain indeterminate based on post-contrast imaging only. The purpose of this article is to review the use of DECT for renal mass assessment, including its benefits and existing limitations. KEY POINTS: • If DECT is selected as the scanning mode for most common abdominal protocols, many incidentally found renal masses can be fully triaged within the same exam. • Virtual unenhanced and iodine density DECT images can provide additional information when renal masses are discovered in the post-contrast-only setting. • For renal mass evaluation, virtual unenhanced and iodine density DECT images should be interpreted side-by-side to troubleshoot pitfalls that can potentially lead to erroneous interpretation.
Collapse
Affiliation(s)
- Shanigarn Thiravit
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.,Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Christina Brunnquell
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Larry M Cai
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Mena Flemon
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA
| | - Achille Mileto
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 357115, Seattle, WA, 98195, USA.
| |
Collapse
|
32
|
Duan X, Ananthakrishnan L, Guild JB, Xi Y, Rajiah P. Radiation doses and image quality of abdominal CT scans at different patient sizes using spectral detector CT scanner: a phantom and clinical study. Abdom Radiol (NY) 2020; 45:3361-3368. [PMID: 31587100 DOI: 10.1007/s00261-019-02247-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PURPOSE To compare radiation dose and image quality for abdominal CTs performed on a spectral detector CT (SDCT) and a comparable single-energy conventional CT scanner for patients of different sizes. METHODS Four semi-anthropomorphic phantoms were scanned on an SDCT (IQon, Philips Healthcare) and a comparable single-energy CT (iCT 256, Philips Healthcare) under matched scan parameters. Image noise and radiation dose were compared. For the HIPAA-compliant, IRB-approved retrospective cohort patient study, radiation dose was compared after adjusting for patient water equivalent diameter. Difference in subjective and objective image quality was assessed on a subset of 50 patients scanned on both scanners by two readers. RESULTS CTDIvol and noise from SDCT were higher than conventional CT for all phantoms, with a relative difference of 7.8% (range 5.3-14%) for radiation dose and average difference of 9.0% (range 5.5-11%) for noise. 718 SDCT and 937 conventional CT patients were included in the patient study. CTDIvol for SDCT patients tends to be lower for smaller patients (- 2%, 95% confidence interval (- 5%, - 0.2%) for 200 mm water equivalent diameter) and higher for larger patients compared to conventional CT (8%, (6%, 11%) for 400 mm). No difference was seen for subjective image quality, SNR, CNR, or image noise between the two scanners, except for higher image noise in the portal vein and higher signal in the aorta on SDCT. CONCLUSION Radiation dose for abdominal CT performed on SDCT is similar to the dose on a conventional CT for average size patients, lower for smaller patients, and slightly higher for larger patients. Image quality is similar between the two scanners.
Collapse
Affiliation(s)
- Xinhui Duan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
| | - Lakshmi Ananthakrishnan
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Jeffrey B Guild
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Prabhakar Rajiah
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
33
|
Acute mesenteric ischemia: A review of the main imaging techniques and signs. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Isquemia mesentérica aguda: Revisión de las principales técnicas y signos radiológicos. RADIOLOGIA 2020; 62:336-348. [DOI: 10.1016/j.rx.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 01/15/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
|
35
|
Garnett R. A comprehensive review of dual-energy and multi-spectral computed tomography. Clin Imaging 2020; 67:160-169. [PMID: 32795784 DOI: 10.1016/j.clinimag.2020.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/19/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023]
Abstract
This review will provide a brief introduction to the development of the first Computed Tomography (CT) scan, from the beginnings of x-ray imaging to the first functional CT system introduced by Godfrey Houndsfield. The principles behind photon interactions and the methods by which they can be leveraged to generate dual-energy or multi-spectral CT images are discussed. The clinical applications of these methodologies are investigated, showing the immense potential for dual-energy or multi-spectral CT to change the fields of in-vivo and non-destructive imaging for quantitative analysis of tissues and materials. Lastly the current trends of research for dual-energy and multi-spectral CT are covered, showing that the majority of instrument development is focused on photon counting detectors for mutli-spectral CT and that clinical research is dominated by validation studies for the implementation of dual-energy and multi-spectral CT.
Collapse
Affiliation(s)
- Richard Garnett
- McMaster University, TAB 202, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
36
|
Patel BN, Boltyenkov AT, Martinez MG, Mastrodicasa D, Marin D, Jeffrey RB, Chung B, Pandharipande P, Kambadakone A. Cost-effectiveness of dual-energy CT versus multiphasic single-energy CT and MRI for characterization of incidental indeterminate renal lesions. Abdom Radiol (NY) 2020; 45:1896-1906. [PMID: 31894384 DOI: 10.1007/s00261-019-02380-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate the cost-effectiveness of DECT versus multiphasic CT and MRI for characterizing small incidentally detected indeterminate renal lesions using a Markov Monte Carlo decision-analytic model. BACKGROUND Incidental renal lesions are commonly encountered due to the increasing utilization of medical imaging and the increasing prevalence of renal lesions with age. Currently recommended imaging modalities to further characterize incidental indeterminate renal lesions have some inherent drawbacks. Single-phase DECT may overcome these limitations, but its cost-effectiveness remains uncertain. MATERIALS AND METHODS A decision-analytic (Markov) model was constructed to estimate life expectancy and lifetime costs for otherwise healthy 64-year-old patients with small (≤ 4 cm) incidentally detected, indeterminate renal lesions on routine imaging (e.g., ultrasound or single-phase CT). Three strategies for evaluating renal lesions for enhancement were compared: multiphase SECT (e.g., true unenhanced and nephrographic phase), multiphasic MRI, and single-phase DECT (nephrographic phase in dual-energy mode). The model incorporated modality-specific diagnostic test performance, incidence, and prevalence of incidental renal cell carcinomas (RCCs), effectiveness, costs, and health outcomes. An incremental cost-effectiveness analysis was performed to identify strategy preference at willingness-to-pay (WTP) thresholds of $50,000 and $100,000 per quality-adjusted life-year (QALY) gained. Deterministic and probabilistic sensitivity analysis were performed. RESULTS In the base case analysis, expected mean costs per patient undergoing characterization of incidental renal lesions were $2567 for single-phase DECT, $3290 for multiphasic CT, and $3751 for multiphasic MRI. Associated quality-adjusted life-years were the highest for single-phase DECT at 0.962, for multiphasic MRI it was 0.940, and was the lowest for multiphasic CT at 0.925. Because of lower associated costs and higher effectiveness, the single-phase DECT strategy dominated the other two strategies. CONCLUSIONS Single-phase DECT is potentially more cost-effective than multiphasic SECT and MRI for evaluating small incidentally detected indeterminate renal lesions.
Collapse
|
37
|
Gosangi B, Mandell JC, Weaver MJ, Uyeda JW, Smith SE, Sodickson AD, Khurana B. Bone Marrow Edema at Dual-Energy CT: A Game Changer in the Emergency Department. Radiographics 2020; 40:859-874. [DOI: 10.1148/rg.2020190173] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Babina Gosangi
- From the Departments of Radiology (B.G., J.C.M., J.W.U., S.E.S., A.D.S., B.K.) and Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital Emergency Radiology Division, 75 Francis St, Boston, MA 02115
| | - Jacob C. Mandell
- From the Departments of Radiology (B.G., J.C.M., J.W.U., S.E.S., A.D.S., B.K.) and Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital Emergency Radiology Division, 75 Francis St, Boston, MA 02115
| | - Michael J. Weaver
- From the Departments of Radiology (B.G., J.C.M., J.W.U., S.E.S., A.D.S., B.K.) and Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital Emergency Radiology Division, 75 Francis St, Boston, MA 02115
| | - Jennifer W. Uyeda
- From the Departments of Radiology (B.G., J.C.M., J.W.U., S.E.S., A.D.S., B.K.) and Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital Emergency Radiology Division, 75 Francis St, Boston, MA 02115
| | - Stacy E. Smith
- From the Departments of Radiology (B.G., J.C.M., J.W.U., S.E.S., A.D.S., B.K.) and Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital Emergency Radiology Division, 75 Francis St, Boston, MA 02115
| | - Aaron D. Sodickson
- From the Departments of Radiology (B.G., J.C.M., J.W.U., S.E.S., A.D.S., B.K.) and Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital Emergency Radiology Division, 75 Francis St, Boston, MA 02115
| | - Bharti Khurana
- From the Departments of Radiology (B.G., J.C.M., J.W.U., S.E.S., A.D.S., B.K.) and Orthopedic Surgery (M.J.W.), Brigham and Women’s Hospital Emergency Radiology Division, 75 Francis St, Boston, MA 02115
| |
Collapse
|
38
|
Zamboni GA, Ambrosetti MC, Pezzullo M, Bali MA, Mansueto G. Optimum imaging of chronic pancreatitis. Abdom Radiol (NY) 2020; 45:1410-1419. [PMID: 32215694 DOI: 10.1007/s00261-020-02492-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic pancreatitis is an inflammatory process of the pancreas characterized by progressive parenchyma destruction, resulting in pain and exocrine and endocrine insufficiency. In the advanced stages the diagnosis by imaging is usually straightforward, while in the early phases of the disease there can be a paucity of findings at imaging, thus making an early diagnosis challenging. Different imaging modalities can have a role in the initial diagnosis and in the longitudinal follow-up of patients affected by chronic pancreatitis, also enabling to assess the complications of the disease. Radiography, Ultrasonography, CT and MRI can all provide morphological information, and MRI with the administration of secretin can also provide functional information. The use of an appropriate technique is fundamental for optimizing the examination to the clinical question.
Collapse
|
39
|
Abstract
MRI and MRCP play an important role in the diagnosis of chronic pancreatitis (CP) by imaging pancreatic parenchyma and ducts. MRI/MRCP is more widely used than computed tomography (CT) for mild to moderate CP due to its increased sensitivity for pancreatic ductal and gland changes; however, it does not detect the calcifications seen in advanced CP. Quantitative MR imaging offers potential advantages over conventional qualitative imaging, including simplicity of analysis, quantitative and population-based comparisons, and more direct interpretation of detected changes. These techniques may provide quantitative metrics for determining the presence and severity of acinar cell loss and aid in the diagnosis of chronic pancreatitis. Given the fact that the parenchymal changes of CP precede the ductal involvement, there would be a significant benefit from developing MRI/MRCP-based, more robust diagnostic criteria combining ductal and parenchymal findings. Among cross-sectional imaging modalities, multi-detector CT (MDCT) has been a cornerstone for evaluating chronic pancreatitis (CP) since it is ubiquitous, assesses primary disease process, identifies complications like pseudocyst or vascular thrombosis with high sensitivity and specificity, guides therapeutic management decisions, and provides images with isotropic resolution within seconds. Conventional MDCT has certain limitations and is reserved to provide predominantly morphological (e.g., calcifications, organ size) rather than functional information. The emerging applications of radiomics and artificial intelligence are poised to extend the current capabilities of MDCT. In this review article, we will review advanced imaging techniques by MRI, MRCP, CT, and ultrasound.
Collapse
|
40
|
Kulkarni NM, Mannelli L, Zins M, Bhosale PR, Arif-Tiwari H, Brook OR, Hecht EM, Kastrinos F, Wang ZJ, Soloff EV, Tolat PP, Sangster G, Fleming J, Tamm EP, Kambadakone AR. White paper on pancreatic ductal adenocarcinoma from society of abdominal radiology's disease-focused panel for pancreatic ductal adenocarcinoma: Part II, update on imaging techniques and screening of pancreatic cancer in high-risk individuals. Abdom Radiol (NY) 2020; 45:729-742. [PMID: 31768594 DOI: 10.1007/s00261-019-02290-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive gastrointestinal malignancy with a poor 5-year survival rate. Its high mortality rate is attributed to its aggressive biology and frequently late presentation. While surgical resection remains the only potentially curative treatment, only 10-20% of patients will present with surgically resectable disease. Over the past several years, development of vascular bypass graft techniques and introduction of neoadjuvant treatment regimens have increased the number of patients who can undergo resection with a curative intent. While the role of conventional imaging in the detection, characterization, and staging of patients with PDAC is well established, its role in monitoring treatment response, particularly following neoadjuvant therapy remains challenging because of the complex anatomic and histological nature of PDAC. Novel morphologic and functional imaging techniques (such as DECT, DW-MRI, and PET/MRI) are being investigated to improve the diagnostic accuracy and the ability to measure response to therapy. There is also a growing interest to detect PDAC and its precursor lesions at an early stage in asymptomatic patients to increase the likelihood of achieving cure. This has led to the development of pancreatic cancer screening programs. This article will review recent updates in imaging techniques and the current status of screening and surveillance of individuals at a high risk of developing PDAC.
Collapse
Affiliation(s)
- Naveen M Kulkarni
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA.
| | | | - Marc Zins
- Department of Radiology, Groupe Hospitalier Paris Saint-Joseph, 185 rue Raymond Losserand, 75014, Paris, France
| | - Priya R Bhosale
- Abdominal Imaging Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1473, Houston, TX, 77030-400, USA
| | - Hina Arif-Tiwari
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave, P.O. Box 245067, Tucson, AZ, 85724, USA
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Shapiro 4, Boston, MA, 02215-5400, USA
| | - Elizabeth M Hecht
- Department of Radiology, Columbia University Medical Center, 622 W 168th St, PH1-317, New York, NY, 10032, USA
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Medical Cancer, 161 Fort Washington Avenue, Suite: 862, New York, NY, 10032, USA
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Erik V Soloff
- Department of Radiology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
| | - Parag P Tolat
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Milwaukee, WI, 53226, USA
| | - Guillermo Sangster
- Department of Radiology, Ochsner LSU Health Shreveport, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Jason Fleming
- Gastrointestinal Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Eric P Tamm
- Abdominal Imaging Department, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1473, Houston, TX, 77030-400, USA
| | - Avinash R Kambadakone
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA, 02114, USA
| |
Collapse
|
41
|
Trabzonlu TA, Mozaffary A, Kim D, Yaghmai V. Dual-energy CT evaluation of gastrointestinal bleeding. Abdom Radiol (NY) 2020; 45:1-14. [PMID: 31728614 DOI: 10.1007/s00261-019-02226-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastrointestinal bleeding is a common cause for hospital admissions and is an important cause of morbidity and mortality. Although endoscopy is accepted as the standard initial diagnostic modality for the evaluation of gastrointestinal bleeding, multiphasic computed tomography (CT) imaging has become an alternative diagnostic tool. Dual-energy CT with post-processing techniques may have additional advantages over single-energy computed tomography in evaluation of gastrointestinal bleeding. In this article, we discuss the role of dual-energy CT in the evaluation of gastrointestinal bleeding with potential advantages over conventional CT and limitations.
Collapse
|
42
|
Dual-Energy Computed Tomography in Thoracic Imaging—Current Practices and Utility. J Thorac Imaging 2019; 35:W43-W50. [DOI: 10.1097/rti.0000000000000450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Interscanner and Intrascanner Comparison of Virtual Unenhanced Attenuation Values Derived From Twin Beam Dual-Energy and Dual-Source, Dual-Energy Computed Tomography. Invest Radiol 2019; 54:1-6. [PMID: 30096063 DOI: 10.1097/rli.0000000000000501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the current study was to evaluate the reliability and comparability of virtual unenhanced (VUE) attenuation values derived from scans of a single-source, dual-energy computed tomography using a split-filter (tbDECT) to a dual-source dual-energy CT (dsDECT). MATERIALS AND METHODS In this retrospective study, comparisons for tbDECT and dsDECT were made within and between different dual-energy platforms. For the interscanner comparison, 126 patients were scanned with both scanners within a time interval of 224 ± 180 days; for the intrascanner comparison, another 90 patients were scanned twice with the same scanner within a time interval of 136 ± 140 days. Virtual unenhanced images were processed off of venous phase series. Attenuation values of 7 different tissues were recorded. Disagreement for VUE HU measurements greater than 10 HU between 2 scans was defined as inadequate. RESULTS The interscanner analysis showed significant difference between tbDE and dsDE VUE CT values (P < 0.01) for 6 of 7 organs. Percentage of cases that had more than 10 HU difference between tbDE and dsDE for an individual patient ranged between 15% (left kidney) and 62% (spleen).The intrascanner analysis showed no significant difference between repeat scans for both tbDECT and dsDECT (P > 0.05). However, intrascanner disagreements for the VUE HU measurements greater than 10 HU were recorded in 10% of patients scanned on the tbDECT and 0% of patients scanned on the dsDECT. The organs with the highest portion of greater than 10 HU errors were the liver and the aorta (both 20%). CONCLUSIONS Dual-energy techniques vary in reproducibility of VUE attenuation values. In the current study, tbDECT demonstrated higher variation in VUE HU measurements in comparison to a dsDECT. Virtual unenhanced HU measurements cannot be reliably compared on follow-up CT, if these 2 different dual-energy CT platforms are used.
Collapse
|
44
|
Jacobsen MC, Cressman ENK, Tamm EP, Baluya DL, Duan X, Cody DD, Schellingerhout D, Layman RR. Dual-Energy CT: Lower Limits of Iodine Detection and Quantification. Radiology 2019; 292:414-419. [PMID: 31237496 PMCID: PMC6694721 DOI: 10.1148/radiol.2019182870] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 01/30/2023]
Abstract
Background Assessments of the quantitative limitations among the six commercially available dual-energy (DE) CT acquisition schemes used by major CT manufacturers could aid researchers looking to use iodine quantification as an imaging biomarker. Purpose To determine the limits of detection and quantification of DE CT in phantoms by comparing rapid peak kilovoltage switching, dual-source, split-filter, and dual-layer detector systems in six different scanners. Materials and Methods Seven 50-mL iohexol solutions were used, with concentrations of 0.03-2.0 mg iodine per milliliter. The solutions and water sample were scanned five times each in two phantoms (small, 20-cm diameter; large, 30 × 40-cm diameter) with six DE CT systems and a total of 10 peak kilovoltage settings or combinations. Iodine maps were created, and the mean iodine signal in each sample was recorded. The limit of blank (LOB) was defined as the upper limit of the 95% confidence interval of the water sample. The limit of detection (LOD) was defined as the concentration with a 95% chance of having a signal above the LOB. The limit of quantification (LOQ) was defined as the lowest concentration where the coefficient of variation was less than 20%. Results The LOD range was 0.021-0.26 mg/mL in the small phantom and 0.026-0.55 mg/mL in the large phantom. The LOQ range was 0.07-0.50 mg/mL in the small phantom and 0.20-1.0 mg/mL in the large phantom. The dual-source and rapid peak kilovoltage switching systems had the lowest LODs, and the dual-layer detector systems had the highest LODs. Conclusion The iodine limit of detection using dual-energy CT systems varied with scanner and phantom size, but all systems depicted iodine in the small and large phantoms at or below 0.3 and 0.5 mg/mL, respectively, and enabled quantification at concentrations of 0.5 and 1.0 mg/mL, respectively. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Hindman in this issue.
Collapse
Affiliation(s)
- Megan C. Jacobsen
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| | - Erik N. K. Cressman
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| | - Eric P. Tamm
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| | - Dodge L. Baluya
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| | - Xinhui Duan
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| | - Dianna D. Cody
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| | - Dawid Schellingerhout
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| | - Rick R. Layman
- From the Departments of Imaging Physics (M.C.J., D.D.C., R.R.L.),
Interventional Radiology (E.N.K.C., D.L.B.), Diagnostic Radiology, Abdominal
Imaging Section (E.P.T.), and Diagnostic Radiology, Neuroradiology Section
(D.S.), The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd,
Houston, TX 77030; and Radiology, Medical Physics Section (X.D.), University of
Texas Southwestern Medical Center, Dallas, Tex
| |
Collapse
|
45
|
Abstract
This article explores the technical background of dual-energy CT (DECT) imaging along with its basic principles, before turning to a review of the various DECT applications specific to pancreatic imaging. In light of the most recent literature, we will review the constellation of DECT applications available for pancreatic imaging in both oncologic and non-oncologic applications. We emphasize the increased lesion conspicuity and the improved tissue characterization available with DECT post-processing tools. Finally, future clinical applications and opportunities for research will be overviewed.
Collapse
Affiliation(s)
- Domenico Mastrodicasa
- Division of Body Imaging, Department of Radiology, Stanford University School of Medicine, Stanford, CA.
| | - Andrea Delli Pizzi
- ITAB Institute for Advanced Biomedical Technologies, Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Bhavik Natvar Patel
- Division of Body Imaging, Department of Radiology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
46
|
Parakh A, Negreros-Osuna AA, Patino M, McNulty F, Kambadakone A, Sahani DV. Low-keV and Low-kVp CT for Positive Oral Contrast Media in Patients with Cancer: A Randomized Clinical Trial. Radiology 2019; 291:620-629. [PMID: 30964423 DOI: 10.1148/radiol.2019182393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Substantial gain in the attenuation of iodine on low-kVp and dual-energy CT processed low-keV virtual monochromatic images provides an opportunity for customization of positive oral contrast media administration. Purpose To perform an intrapatient comparison of bowel labeling, opacification, and taste preference with iodinated oral contrast medium (ICM) in standard (sICM) and 25%-reduced (rICM) concentrations at low tube voltage (100 kVp) or on low-energy (50-70 keV) virtual monochromatic images compared with barium-based oral contrast medium (BCM) at 120 kVp. Materials and Methods In this prospective clinical trial, 200 adults (97 men, 103 women; mean age, 63 years ± 13 [standard deviation]) who weighed less than 113 kg and who were undergoing oncologic surveillance (from April 2017 to July 2018) and who had previously undergone 120-kVp abdominopelvic CT with BCM randomly received sICM (7.2 g iodine) or rICM (5.4 g iodine) and underwent 100-kVp CT or dual-energy CT (80/140 kVp) scans to be in one of four groups (n = 50 each): sICM/100 kVp, rICM/100 kVp, sICM/dual-energy CT, and rICM/dual-energy CT. Qualitative analysis was performed for image quality (with a five-point scale), extent of bowel labeling, and homogeneity of opacification (with a four-point scale). Intraluminal attenuation of opacified small bowel was measured. A post-CT patient survey was performed to indicate contrast medium preference, taste of ICM (with a five-point scale), and adverse effects. Data were analyzed with analogs of analysis of variance. Results All CT studies were of diagnostic image quality (3.4 ± 0.3), with no difference in the degree of bowel opacification between sICM and rICM (P > .05). Compared with BCM/120 kVp (282 HU ± 73), mean attenuation was 78% higher with sICM/100 kVp (459 HU ± 282) and 26%-121% higher at sICM/50-65 keV (50 keV = 626 HU ± 285; 65 keV = 356 HU ± 171). With rICM, attenuation was 46% higher for 100 kVp (385 HU ± 215) and 19%-108% higher for 50-65 keV (50 keV = 567 HU ± 270; 65 keV = 325 HU ± 156) compared with BCM (P < .05). A total of 171 of 200 study participants preferred ICM to BCM, with no taste differences between sICM and rICM (3.9 ± 0.6). Fifteen participants had diarrhea with BCM, but none had diarrhea with ICM. Conclusion A 25%-reduced concentration of iodinated oral contrast medium resulted in acceptable bowel labeling while yielding substantially higher luminal attenuation at low-kVp and low-keV CT examinations with improved preference in patients undergoing treatment for cancer. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Laghi in this issue.
Collapse
Affiliation(s)
- Anushri Parakh
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Adrian Antonio Negreros-Osuna
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Manuel Patino
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Fredrick McNulty
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Avinash Kambadakone
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| | - Dushyant V Sahani
- From the Department of Radiology, Massachusetts General Hospital, 55 Fruit St, White 270, Boston, MA 02114 (A.P., A.A.N., M.P., F.M., A.K., D.V.S.); Department of Radiology, Hospital Universitario Jose Eleuterio Gonzalez, Monterrey, Mexico (A.A.N.); and Department of Radiology, University of Washington, Seattle, Wash (D.V.S.)
| |
Collapse
|
47
|
Patino M, Parakh A, Lo GC, Agrawal M, Kambadakone AR, Oliveira GR, Sahani DV. Virtual Monochromatic Dual-Energy Aortoiliac CT Angiography With Reduced Iodine Dose: A Prospective Randomized Study. AJR Am J Roentgenol 2019; 212:467-474. [DOI: 10.2214/ajr.18.19935] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Manuel Patino
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Anushri Parakh
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Grace C. Lo
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Mukta Agrawal
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Avinash R. Kambadakone
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - George R. Oliveira
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| | - Dushyant V. Sahani
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA 02114
| |
Collapse
|
48
|
Dual-Energy CT Material Density Iodine Quantification for Distinguishing Vascular From Nonvascular Renal Lesions: Normalization Reduces Intermanufacturer Threshold Variability. AJR Am J Roentgenol 2019; 212:366-376. [DOI: 10.2214/ajr.18.20115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
49
|
Pfeiffer D, Parakh A, Patino M, Kambadakone A, Rummeny EJ, Sahani DV. Iodine material density images in dual-energy CT: quantification of contrast uptake and washout in HCC. Abdom Radiol (NY) 2018; 43:3317-3323. [PMID: 29774382 DOI: 10.1007/s00261-018-1636-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE To determine the diagnostic potential of Material Density (MD) iodine images in dual-energy CT (DECT) for visualization and quantification of arterial phase hyperenhancement and washout in hepatocellular carcinomas compared to magnetic resonance imaging (MRI). MATERIALS AND METHODS The study complied with HIPAA guidelines and was approved by the ethics committee of the institutional review board. Thirty-one patients (23 men, 8 women; age range, 36-87 years) with known or suspected Hepatocellular Carcinoma (HCC) were included. All of them underwent both single-source DECT and MRI within less than 3 months. Late arterial phase and portal venous phase CT imaging was performed with dual energies of 140 and 80 kVp, and virtual monoenergetic images (at 65 keV) and MD-iodine images were generated. We determined the contrast-to-noise ratio (CNR) for HCC in arterial phase and portal venous phase images. In addition, we introduced a new parameter which combines information of CNR in arterial and portal venous phase images into a single ratio (combined CNR). All parameters were assessed on monoenergetic 65 keV images, MD-iodine images, and MRI. Paired t test was used to compare CNR values in Mono-65 keV, MD-iodine, and MR images. RESULTS CNR was significantly higher in the MD-iodine images in both the arterial (81.87 ± 40.42) and the portal venous phases (33.31 ± 27.86), compared to the Mono-65 keV (6.34 ± 4.23 and 1.89 ± 1.87) and MRI (30.48 ± 25.52 and 8.27 ± 8.36), respectively. Combined CNR assessment from arterial and portal venous phase showed higher contrast ratios for all imaging modalities (Mono-65 keV, 8.73 ± 4.03; MD-iodine, 119.87 ± 52.94; MRI, 34.87 ± 27.34). In addition, highest contrast ratio was achieved in MD-iodine images with combined CNR evaluation (119.87 ± 52.94, P < 0.001). CONCLUSION MD-iodine images in DECT allow for a quantitative assessment of contrast enhancement and washout, with improved CNR in hepatocellular carcinoma in comparison to MRI.
Collapse
|
50
|
Dual-Energy Imaging of the Pancreas. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|