1
|
Gupta A, Bajaj S, Nema P, Purohit A, Kashaw V, Soni V, Kashaw SK. Potential of AI and ML in oncology research including diagnosis, treatment and future directions: A comprehensive prospective. Comput Biol Med 2025; 189:109918. [PMID: 40037170 DOI: 10.1016/j.compbiomed.2025.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
Artificial intelligence (AI) and machine learning (ML) have emerged as transformative tools in cancer research, offering the ability to process huge data rapidly and make precise therapeutic decisions. Over the last decade, AI, particularly deep learning (DL) and machine learning (ML), has significantly enhanced cancer prediction, diagnosis, and treatment by leveraging algorithms such as convolutional neural networks (CNNs) and multi-layer perceptrons (MLPs). These technologies provide reliable, efficient solutions for managing aggressive diseases like cancer, which have high recurrence and mortality rates. This review prospective highlights the applications of AI in oncology, a long with FDA-approved technologies like EFAI RTSuite CT HN-Segmentation System, Quantib Prostate, and Paige Prostate, and explore their role in advancing cancer detection, personalized care, and treatment. Furthermore, we also explored broader applications of AI in healthcare, addressing challenges, limitations, regulatory considerations, and ethical implications. By presenting these advancements, we underscore AI's potential to revolutionize cancer care, management and treatment.
Collapse
Affiliation(s)
- Akanksha Gupta
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Samyak Bajaj
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Priyanshu Nema
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Arpana Purohit
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar, M.P., India.
| | - Vandana Soni
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| | - Sushil K Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madya Pradesh, 470003, India.
| |
Collapse
|
2
|
Sheikhy A, Dehghani Firouzabadi F, Lay N, Jarrah N, Yazdian Anari P, Malayeri A. State of the art review of AI in renal imaging. Abdom Radiol (NY) 2025:10.1007/s00261-025-04963-3. [PMID: 40293518 DOI: 10.1007/s00261-025-04963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Renal cell carcinoma (RCC) as a significant health concern, with incidence rates rising annually due to increased use of cross-sectional imaging, leading to a higher detection of incidental renal lesions. Differentiation between benign and malignant renal lesions is essential for effective treatment planning and prognosis. Renal tumors present numerous histological subtypes with different prognoses, making precise subtype differentiation crucial. Artificial intelligence (AI), especially machine learning (ML) and deep learning (DL), shows promise in radiological analysis, providing advanced tools for renal lesion detection, segmentation, and classification to improve diagnosis and personalize treatment. Recent advancements in AI have demonstrated effectiveness in identifying renal lesions and predicting surveillance outcomes, yet limitations remain, including data variability, interpretability, and publication bias. In this review we explored the current role of AI in assessing kidney lesions, highlighting its potential in preoperative diagnosis and addressing existing challenges for clinical implementation.
Collapse
Affiliation(s)
- Ali Sheikhy
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Fatemeh Dehghani Firouzabadi
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Nathan Lay
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA
- Artificial Intelligence Resource, National Institutes of Health, Bethesda, USA
| | - Negin Jarrah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Pouria Yazdian Anari
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA
| | - Ashkan Malayeri
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
3
|
Huang Z, Wang L, Mei H, Liu J, Zeng H, Liu W, Yuan H, Wu K, Liu H. Exploring the Incremental Value of Aorta Enhancement Normalization Method in Evaluating Renal Cell Carcinoma Histological Subtypes: A Multi-center Large Cohort Study. Acad Radiol 2025:S1076-6332(25)00203-X. [PMID: 40157848 DOI: 10.1016/j.acra.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
RATIONALE AND OBJECTIVES The classification of renal cell carcinoma (RCC) histological subtypes plays a crucial role in clinical diagnosis. However, traditional image normalization methods often struggle with discrepancies arising from differences in imaging parameters, scanning devices, and multi-center data, which can impact model robustness and generalizability. MATERIALS AND METHODS This study included 1628 patients with pathologically confirmed RCC who underwent nephrectomy across eight cohorts. These were divided into a training set, a validation set, external test dataset 1, and external test dataset 2. We proposed an "Aortic Enhancement Normalization" (AEN) method based on the lesion-to-aorta enhancement ratio and developed an automated lesion segmentation model along with a multi-scale CT feature extractor. Several machine learning algorithms, including Random Forest, LightGBM, CatBoost, and XGBoost, were used to build classification models and compare the performance of the AEN and traditional approaches for evaluating histological subtypes (clear cell renal cell carcinoma [ccRCC] vs. non-ccRCC). Additionally, we employed SHAP analysis to further enhance the transparency and interpretability of the model's decisions. RESULTS The experimental results demonstrated that the AEN method outperformed the traditional normalization method across all four algorithms. Specifically, in the XGBoost model, the AEN method significantly improved performance in both internal and external validation sets, achieving AUROC values of 0.89, 0.81, and 0.80, highlighting its superior performance and strong generalizability. SHAP analysis revealed that multi-scale CT features played a critical role in the model's decision-making process. CONCLUSION The proposed AEN method effectively reduces the impact of imaging parameter differences, significantly improving the robustness and generalizability of histological subtype (ccRCC vs. non-ccRCC) models. This approach provides new insights for multi-center data analysis and demonstrates promising clinical applicability.
Collapse
Affiliation(s)
- Zexin Huang
- Department of Radiology, Shenzhen Luohu Hospital of Traditional Chinese Medicine (Luohu Hospital Group), Shenzhen 518000, China; Department of Radiology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Lei Wang
- Department of Radiology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Hangru Mei
- Department of Urology, Southern University of Science and Technology Hospital, Shenzhen 518000, China
| | - Jiewen Liu
- Department of Pathology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Haoyang Zeng
- Shantou University Medical College, Shantou University, Shantou 515000, China
| | - Weihao Liu
- Shantou University Medical College, Shantou University, Shantou 515000, China
| | - Haoyuan Yuan
- Shantou University Medical College, Shantou University, Shantou 515000, China
| | - Kai Wu
- Department of Radiology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China
| | - Hanlin Liu
- Department of Radiology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China.
| |
Collapse
|
4
|
Kan HC, Lin PH, Shao IH, Cheng SC, Fan TY, Chang YH, Huang LK, Chu YC, Yu KJ, Chuang CK, Wu CT, Pang ST, Peng SJ. Using deep learning to differentiate among histology renal tumor types in computed tomography scans. BMC Med Imaging 2025; 25:66. [PMID: 40011809 PMCID: PMC11866614 DOI: 10.1186/s12880-025-01606-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND This study employed a convolutional neural network (CNN) to analyze computed tomography (CT) scans with the aim of differentiating among renal tumors according to histologic sub-type. METHODS Contrast-enhanced CT images were collected from patients with renal tumors. The patient cohort was randomly split to create a training dataset (90%) and a testing dataset (10%). Following image dataset augmentation, Inception V3 and Resnet50 models were used to differentiate between renal tumors subtypes, including angiomyolipoma (AML), oncocytoma, clear cell renal cell carcinoma (ccRCC), chromophobe renal cell carcinoma (chRCC), and papillary renal cell carcinoma (pRCC). 5-fold cross validation was then used to evaluate the models in terms of classification performance. RESULTS The study cohort comprised 554 patients, including those with angiomyolipoma (n = 67), oncocytoma (n = 34), clear cell renal cell carcinoma (n = 246), chromophobe renal cell carcinoma (n = 124), and papillary renal cell carcinoma (n = 83). Dataset augmentation of the training dataset included this to 4238 CT images for analysis. The accuracy of the models was as follows: Inception V3 (0.830) and Resnet 50 (0.849). CONCLUSION This study demonstrated the efficacy of using deep learning models for the classification of renal tumor subtypes from contrast-enhanced CT images. While the models showed promising accuracy, further development is necessary to improve their clinical applicability.
Collapse
Affiliation(s)
- Hung-Cheng Kan
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hung Lin
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Hung Shao
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | - Tzuo-Yau Fan
- Center for Artificial Intelligence in Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Hsu Chang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Urology, Department of Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei, Taiwan
| | - Liang-Kang Huang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yuan-Cheng Chu
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Keng Chuang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Te Wu
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - See-Tong Pang
- Division of Urology, Department of Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Syu-Jyun Peng
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, No.250, Wuxing St., Xinyi Dist., Taipei City, 110, Taiwan.
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Jiwani R, Pal K, Paolucci I, Odisio B, Brock K, Tannir NM, Shapiro DD, Msaouel P, Sheth RA. Differentiating between renal medullary and clear cell renal carcinoma with a machine learning radiomics approach. Oncologist 2025; 30:oyae337. [PMID: 39963829 PMCID: PMC11833245 DOI: 10.1093/oncolo/oyae337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/01/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND The objective of this study was to develop and validate a radiomics-based machine learning (ML) model to differentiate between renal medullary carcinoma (RMC) and clear cell renal carcinoma (ccRCC). METHODS This retrospective Institutional Review Board -approved study analyzed CT images and clinical data from patients with RMC (n = 87) and ccRCC (n = 93). Patients without contrast-enhanced CT scans obtained before nephrectomy were excluded. A standard volumetric software package (MIM 7.1.4, MIM Software Inc.) was used for contouring, after which 949 radiomics features were extracted with PyRadiomics 3.1.0. Radiomics analysis was then performed with RadAR for differential radiomics analysis. ML was then performed with extreme gradient boosting (XGBoost 2.0.3) to differentiate between RMC and ccRCC. Three separate ML models were created to differentiate between ccRCC and RMC. These models were based on clinical demographics, radiomics, and radiomics incorporating hemoglobin electrophoresis for sickle cell trait, respectively. RESULTS Performance metrics for the 3 developed ML models were as follows: demographic factors only (AUC = 0.777), calibrated radiomics (AUC = 0.915), and calibrated radiomics with sickle cell trait incorporated (AUC = 1.0). The top 4 ranked features from differential radiomic analysis, ranked by their importance, were run entropy (preprocessing filter = original, AUC = 0.67), dependence entropy (preprocessing filter = wavelet, AUC = 0.67), zone entropy (preprocessing filter = original, AUC = 0.67), and dependence entropy (preprocessing filter = original, AUC = 0.66). CONCLUSION A radiomics-based machine learning model effectively differentiates between ccRCC and RMC. This tool can facilitate the radiologist's ability to suspicion and decrease the misdiagnosis rate of RMC.
Collapse
Affiliation(s)
- Rahim Jiwani
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Koustav Pal
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Iwan Paolucci
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Bruno Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Kristy Brock
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Daniel D Shapiro
- Department of Urology, University of Wisconsin School of Medicine and Public Health, Madison, WI 77030, United States
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Rahul A Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| |
Collapse
|
6
|
Gouravani M, Shahrabi Farahani M, Salehi MA, Shojaei S, Mirakhori S, Harandi H, Mohammadi S, Saleh RR. Diagnostic performance of artificial intelligence in detection of renal cell carcinoma: a systematic review and meta-analysis. BMC Cancer 2025; 25:155. [PMID: 39871201 PMCID: PMC11773916 DOI: 10.1186/s12885-025-13547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
OBJECTIVES The detection of renal cell carcinoma (RCC) tumors in the earlier stages is of great importance for more effective treatment. Encouraged by the key role of imaging in the management of RCC, we conducted a systematic review and meta-analysis of the studies that made use of artificial intelligence (AI) for the detection of RCC to quantitatively determine the performance of AI for distinguishing related renal lesions. MATERIALS AND METHODS PubMed, Scopus, CENTRAL, and Embase electronic databases were systematically searched in November 2024 to identify studies that applied AI for the detection or classification of RCC. We conducted a meta-analysis to evaluate the diagnostic performance of utilized algorithms. Moreover, meta-regression was conducted over suspected covariates to evaluate potential sources of inter-study heterogeneity. Publication bias and quality assessment were also done for the included studies. RESULTS Sixty-four studies were included in this systematic review, of which 31 studies were selected for meta-analysis. The studies assessing algorithms' performance on internal validation showed pooled sensitivity and specificity of 85% (95% confidence interval [CI], 82 to 87) and 76% (95% CI, 70 to 80), respectively. Moreover, externally validated Al algorithms had a pooled sensitivity and specificity of 80% (95% CI, 73 to 84) and 90% (95% CI, 84 to 93), respectively. Studies that performed internal validation for clinician performance had a pooled sensitivity of 79% (95% CI, 72 to 85) and specificity of 60% (95% CI, 49 to 70). CONCLUSION The findings of the present study validate the acceptable performance of AI algorithms when contrasted with medical professionals in the identification and categorization of RCC. Nevertheless, the presence of heterogeneity between studies and the absence of coherence in the results underscore the necessity for the cautious interpretation of these results and additional prospective studies.
Collapse
Affiliation(s)
- Mahdi Gouravani
- Musculoskeletal Imaging Research Center (MIRC), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Amin Salehi
- School of Medicine, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
| | - Shayan Shojaei
- School of Medicine, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Sina Mirakhori
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Harandi
- School of Medicine, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
| | - Soheil Mohammadi
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Saint Louis, USA
| | - Ramy R Saleh
- Department of Oncology, McGill University, Montreal, QC, H3A 0G4, Canada
- Division of Medical Oncology, McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
7
|
Alhussaini AJ, Veluchamy A, Jawli A, Kernohan N, Tang B, Palmer CNA, Steele JD, Nabi G. Radiogenomics Pilot Study: Association Between Radiomics and Single Nucleotide Polymorphism-Based Microarray Copy Number Variation in Diagnosing Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Int J Mol Sci 2024; 25:12512. [PMID: 39684226 DOI: 10.3390/ijms252312512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
RO and ChRCC are kidney tumours with overlapping characteristics, making differentiation between them challenging. The objective of this research is to create a radiogenomics map by correlating radiomic features to molecular phenotypes in ChRCC and RO, using resection as the gold standard. Fourteen patients (6 RO and 8 ChRCC) were included in the prospective study. A total of 1,875 radiomic features were extracted from CT scans, alongside 632 cytobands containing 16,303 genes from the genomic data. Feature selection algorithms applied to the radiomic features resulted in 13 key features. From the genomic data, 24 cytobands highly correlated with histology were selected and cross-correlated with the radiomic features. The analysis identified four radiomic features that were strongly associated with seven genomic features. These findings demonstrate the potential of integrating radiomic and genomic data to enhance the differential diagnosis of RO and ChRCC, paving the way for more precise and non-invasive diagnostic tools in clinical practice.
Collapse
Affiliation(s)
- Abeer J Alhussaini
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Medical Imaging, Al-Amiri Hospital, Ministry of Health, Sulaibikhat, Kuwait City 13001, Kuwait
| | - Abirami Veluchamy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Adel Jawli
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Clinical Radiology, Sheikh Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Sulaibikhat, Kuwait City 13001, Kuwait
| | - Neil Kernohan
- Department of Pathology, Ninewells Hospital, Dundee DD9 1SY, UK
| | - Benjie Tang
- Surgical Skills Centre, Dundee Institute for Healthcare Simulation Respiratory Medicine and Gastroenterology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Colin N A Palmer
- Division of Population Pharmacogenetics, Population Health and Genomics, Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - J Douglas Steele
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Cancer Research, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
8
|
Uhlig A, Uhlig J, Leha A, Biggemann L, Bachanek S, Stöckle M, Reichert M, Lotz J, Zeuschner P, Maßmann A. Radiomics and machine learning for renal tumor subtype assessment using multiphase computed tomography in a multicenter setting. Eur Radiol 2024; 34:6254-6263. [PMID: 38634876 PMCID: PMC11399155 DOI: 10.1007/s00330-024-10731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES To distinguish histological subtypes of renal tumors using radiomic features and machine learning (ML) based on multiphase computed tomography (CT). MATERIAL AND METHODS Patients who underwent surgical treatment for renal tumors at two tertiary centers from 2012 to 2022 were included retrospectively. Preoperative arterial (corticomedullary) and venous (nephrogenic) phase CT scans from these centers, as well as from external imaging facilities, were manually segmented, and standardized radiomic features were extracted. Following preprocessing and addressing the class imbalance, a ML algorithm based on extreme gradient boosting trees (XGB) was employed to predict renal tumor subtypes using 10-fold cross-validation. The evaluation was conducted using the multiclass area under the receiver operating characteristic curve (AUC). Algorithms were trained on data from one center and independently tested on data from the other center. RESULTS The training cohort comprised n = 297 patients (64.3% clear cell renal cell cancer [RCC], 13.5% papillary renal cell carcinoma (pRCC), 7.4% chromophobe RCC, 9.4% oncocytomas, and 5.4% angiomyolipomas (AML)), and the testing cohort n = 121 patients (56.2%/16.5%/3.3%/21.5%/2.5%). The XGB algorithm demonstrated a diagnostic performance of AUC = 0.81/0.64/0.8 for venous/arterial/combined contrast phase CT in the training cohort, and AUC = 0.75/0.67/0.75 in the independent testing cohort. In pairwise comparisons, the lowest diagnostic accuracy was evident for the identification of oncocytomas (AUC = 0.57-0.69), and the highest for the identification of AMLs (AUC = 0.9-0.94) CONCLUSION: Radiomic feature analyses can distinguish renal tumor subtypes on routinely acquired CTs, with oncocytomas being the hardest subtype to identify. CLINICAL RELEVANCE STATEMENT Radiomic feature analyses yield robust results for renal tumor assessment on routine CTs. Although radiologists routinely rely on arterial phase CT for renal tumor assessment and operative planning, radiomic features derived from arterial phase did not improve the accuracy of renal tumor subtype identification in our cohort.
Collapse
Affiliation(s)
- Annemarie Uhlig
- Department of Urology, University Medical Center Goettingen, Goettingen, Germany.
| | - Johannes Uhlig
- Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Lorenz Biggemann
- Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Sophie Bachanek
- Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Mathias Reichert
- Department of Urology, University Medical Center Goettingen, Goettingen, Germany
| | - Joachim Lotz
- Department of Cardiac Imaging, University Medical Center Goettingen, Goettingen, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Alexander Maßmann
- Department of Radiology and Nuclear Medicine, Robert-Bosch-Clinic, Stuttgart, Germany
| |
Collapse
|
9
|
Suresh V, Singh KK, Vaish E, Gurjar M, Ambuli Nambi A, Khulbe Y, Muzaffar S. Artificial Intelligence in the Intensive Care Unit: Current Evidence on an Inevitable Future Tool. Cureus 2024; 16:e59797. [PMID: 38846182 PMCID: PMC11154024 DOI: 10.7759/cureus.59797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
Artificial intelligence (AI) is a technique that attempts to replicate human intelligence, analytical behavior, and decision-making ability. This includes machine learning, which involves the use of algorithms and statistical techniques to enhance the computer's ability to make decisions more accurately. Due to AI's ability to analyze, comprehend, and interpret considerable volumes of data, it has been increasingly used in the field of healthcare. In critical care medicine, where most of the patient load requires timely interventions due to the perilous nature of the condition, AI's ability to monitor, analyze, and predict unfavorable outcomes is an invaluable asset. It can significantly improve timely interventions and prevent unfavorable outcomes, which, otherwise, is not always achievable owing to the constrained human ability to multitask with optimum efficiency. AI has been implicated in intensive care units over the past many years. In addition to its advantageous applications, this article discusses its disadvantages, prospects, and the changes needed to train future critical care professionals. A comprehensive search of electronic databases was performed using relevant keywords. Data from articles pertinent to the topic was assimilated into this review article.
Collapse
Affiliation(s)
- Vinay Suresh
- General Medicine and Surgery, King George's Medical University, Lucknow, IND
| | - Kaushal K Singh
- General Medicine, King George's Medical University, Lucknow, IND
| | - Esha Vaish
- Internal Medicine, Mount Sinai Morningside West, New York, USA
| | - Mohan Gurjar
- Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, IND
| | | | - Yashita Khulbe
- General Medicine and Surgery, King George's Medical University, Lucknow, IND
| | - Syed Muzaffar
- Critical Care Medicine, King George's Medical University, Lucknow, IND
| |
Collapse
|
10
|
Trovato P, Simonetti I, Morrone A, Fusco R, Setola SV, Giacobbe G, Brunese MC, Pecchi A, Triggiani S, Pellegrino G, Petralia G, Sica G, Petrillo A, Granata V. Scientific Status Quo of Small Renal Lesions: Diagnostic Assessment and Radiomics. J Clin Med 2024; 13:547. [PMID: 38256682 PMCID: PMC10816509 DOI: 10.3390/jcm13020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Small renal masses (SRMs) are defined as contrast-enhanced renal lesions less than or equal to 4 cm in maximal diameter, which can be compatible with stage T1a renal cell carcinomas (RCCs). Currently, 50-61% of all renal tumors are found incidentally. Methods: The characteristics of the lesion influence the choice of the type of management, which include several methods SRM of management, including nephrectomy, partial nephrectomy, ablation, observation, and also stereotactic body radiotherapy. Typical imaging methods available for differentiating benign from malignant renal lesions include ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI). Results: Although ultrasound is the first imaging technique used to detect small renal lesions, it has several limitations. CT is the main and most widely used imaging technique for SRM characterization. The main advantages of MRI compared to CT are the better contrast resolution and tissue characterization, the use of functional imaging sequences, the possibility of performing the examination in patients allergic to iodine-containing contrast medium, and the absence of exposure to ionizing radiation. For a correct evaluation during imaging follow-up, it is necessary to use a reliable method for the assessment of renal lesions, represented by the Bosniak classification system. This classification was initially developed based on contrast-enhanced CT imaging findings, and the 2019 revision proposed the inclusion of MRI features; however, the latest classification has not yet received widespread validation. Conclusions: The use of radiomics in the evaluation of renal masses is an emerging and increasingly central field with several applications such as characterizing renal masses, distinguishing RCC subtypes, monitoring response to targeted therapeutic agents, and prognosis in a metastatic context.
Collapse
Affiliation(s)
- Piero Trovato
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Alessio Morrone
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy;
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy;
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Sonia Triggiani
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Pellegrino
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Petralia
- Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| |
Collapse
|
11
|
Deng Y, Wang H, He L. CT radiomics to differentiate between Wilms tumor and clear cell sarcoma of the kidney in children. BMC Med Imaging 2024; 24:13. [PMID: 38182986 PMCID: PMC10768092 DOI: 10.1186/s12880-023-01184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND To investigate the role of CT radiomics in distinguishing Wilms tumor (WT) from clear cell sarcoma of the kidney (CCSK) in pediatric patients. METHODS We retrospectively enrolled 83 cases of WT and 33 cases of CCSK. These cases were randomly stratified into a training set (n = 81) and a test set (n = 35). Several imaging features from the nephrographic phase were analyzed, including the maximum tumor diameter, the ratio of the maximum CT value of the tumor solid portion to the mean CT value of the contralateral renal vein (CTmax/CT renal vein), and the presence of dilated peritumoral cysts. Radiomics features from corticomedullary phase were extracted, selected, and subsequently integrated into a logistic regression model. We evaluated the model's performance using the area under the curve (AUC), 95% confidence interval (CI), and accuracy. RESULTS In the training set, there were statistically significant differences in the maximum tumor diameter (P = 0.021) and the presence of dilated peritumoral cysts (P = 0.005) between WT and CCSK, whereas in the test set, no statistically significant differences were observed (P > 0.05). The radiomics model, constructed using four radiomics features, demonstrated strong performance in the training set with an AUC of 0.889 (95% CI: 0.811-0.967) and an accuracy of 0.864. Upon evaluation using fivefold cross-validation in the training set, the AUC remained high at 0.863 (95% CI: 0.774-0.952), with an accuracy of 0.852. In the test set, the radiomics model achieved an AUC of 0.792 (95% CI: 0.616-0.968) and an accuracy of 0.857. CONCLUSION CT radiomics proves to be diagnostically valuable for distinguishing between WT and CCSK in pediatric cases.
Collapse
Affiliation(s)
- Yaxin Deng
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.
| |
Collapse
|
12
|
Hsieh C, Laguna A, Ikeda I, Maxwell AWP, Chapiro J, Nadolski G, Jiao Z, Bai HX. Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma. Radiology 2023; 309:e222891. [PMID: 37934098 DOI: 10.1148/radiol.222891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.
Collapse
Affiliation(s)
- Celina Hsieh
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Amanda Laguna
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Ian Ikeda
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Aaron W P Maxwell
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Julius Chapiro
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Gregory Nadolski
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Zhicheng Jiao
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Harrison X Bai
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| |
Collapse
|
13
|
Aymerich M, García-Baizán A, Franco PN, Otero-García M. Exploratory Analysis of the Role of Radiomic Features in the Differentiation of Oncocytoma and Chromophobe RCC in the Nephrographic CT Phase. Life (Basel) 2023; 13:1950. [PMID: 37895332 PMCID: PMC10607929 DOI: 10.3390/life13101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
In diagnostic imaging, distinguishing chromophobe renal cell carcinomas (chRCCs) from renal oncocytomas (ROs) is challenging, since they both present similar radiological characteristics. Radiomics has the potential to help in the differentiation between chRCCs and ROs by extracting quantitative imaging. This is a preliminary study of the role of radiomic features in the differentiation of chRCCs and ROs using machine learning models. In this retrospective work, 38 subjects were involved: 19 diagnosed with chRCCs and 19 with ROs. The CT nephrographic contrast phase was selected in each case. Three-dimensional segmentations of the lesions were performed and the radiomic features were extracted. To assess the reliability of the features, the intraclass correlation coefficient was calculated from the segmentations performed by three radiologists with different degrees of expertise. The selection of features was based on the criteria of excellent intraclass correlation coefficient (ICC), high correlation, and statistical significance. Three machine learning models were elaborated: support vector machine (SVM), random forest (RF), and logistic regression (LR). From 105 extracted features, 41 presented an excellent ICC and 6 were not highly correlated with each other. Only two features showed significant differences according to histological type and machine learning models were developed with them. LR was the better model, in particular, with an 83% precision.
Collapse
Affiliation(s)
- María Aymerich
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain; (A.G.-B.); (M.O.-G.)
| | - Alejandra García-Baizán
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain; (A.G.-B.); (M.O.-G.)
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Paolo Niccolò Franco
- Department of Diagnostic Radiology, IRCCS San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy;
| | - Milagros Otero-García
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain; (A.G.-B.); (M.O.-G.)
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| |
Collapse
|
14
|
Maddalo M, Bertolotti L, Mazzilli A, Flore AGM, Perotta R, Pagnini F, Ziglioli F, Maestroni U, Martini C, Caruso D, Ghetti C, De Filippo M. Small Renal Masses: Developing a Robust Radiomic Signature. Cancers (Basel) 2023; 15:4565. [PMID: 37760532 PMCID: PMC10527518 DOI: 10.3390/cancers15184565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background and (2) Methods: In this retrospective, observational, monocentric study, we selected a cohort of eighty-five patients (age range 38-87 years old, 51 men), enrolled between January 2014 and December 2020, with a newly diagnosed renal mass smaller than 4 cm (SRM) that later underwent nephrectomy surgery (partial or total) or tumorectomy with an associated histopatological study of the lesion. The radiomic features (RFs) of eighty-five SRMs were extracted from abdominal CTs bought in the portal venous phase using three different CT scanners. Lesions were manually segmented by an abdominal radiologist. Image analysis was performed with the Pyradiomic library of 3D-Slicer. A total of 108 RFs were included for each volume. A machine learning model based on radiomic features was developed to distinguish between benign and malignant small renal masses. The pipeline included redundant RFs elimination, RFs standardization, dataset balancing, exclusion of non-reproducible RFs, feature selection (FS), model training, model tuning and validation of unseen data. (3) Results: The study population was composed of fifty-one RCCs and thirty-four benign lesions (twenty-five oncocytomas, seven lipid-poor angiomyolipomas and two renal leiomyomas). The final radiomic signature included 10 RFs. The average performance of the model on unseen data was 0.79 ± 0.12 for ROC-AUC, 0.73 ± 0.12 for accuracy, 0.78 ± 0.19 for sensitivity and 0.63 ± 0.15 for specificity. (4) Conclusions: Using a robust pipeline, we found that the developed RFs signature is capable of distinguishing RCCs from benign renal tumors.
Collapse
Affiliation(s)
- Michele Maddalo
- Medical Physics Unit, University Hospital of Parma, 43126 Parma, Italy; (M.M.); (A.M.); (C.G.)
| | - Lorenzo Bertolotti
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
| | - Aldo Mazzilli
- Medical Physics Unit, University Hospital of Parma, 43126 Parma, Italy; (M.M.); (A.M.); (C.G.)
| | | | - Rocco Perotta
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
| | - Francesco Pagnini
- Diagnostic Department, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy;
| | - Francesco Ziglioli
- Department of Urology, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy; (F.Z.); (U.M.)
| | - Umberto Maestroni
- Department of Urology, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy; (F.Z.); (U.M.)
| | - Chiara Martini
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
- Diagnostic Department, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy;
| | - Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sant’Andrea University Hospital, Sapienza-University of Rome, 00100 Rome, Italy
| | - Caterina Ghetti
- Medical Physics Unit, University Hospital of Parma, 43126 Parma, Italy; (M.M.); (A.M.); (C.G.)
| | - Massimo De Filippo
- Department of Medicine and Surgery, Section of Radiology, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (L.B.); (R.P.); (C.M.)
- Diagnostic Department, Parma University Hospital, Via Gramsci 14, 43126 Parma, Italy;
| |
Collapse
|
15
|
Zhou Z, Qian X, Hu J, Geng C, Zhang Y, Dou X, Che T, Zhu J, Dai Y. Multi-phase-combined CECT radiomics models for Fuhrman grade prediction of clear cell renal cell carcinoma. Front Oncol 2023; 13:1167328. [PMID: 37692840 PMCID: PMC10485140 DOI: 10.3389/fonc.2023.1167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023] Open
Abstract
Objective This study aimed to evaluate the effectiveness of multi-phase-combined contrast-enhanced CT (CECT) radiomics methods for noninvasive Fuhrman grade prediction of clear cell renal cell carcinoma (ccRCC). Methods A total of 187 patients with four-phase CECT images were retrospectively enrolled and then were categorized into training cohort (n=126) and testing cohort (n=61). All patients were confirmed as ccRCC by histopathological reports. A total of 110 3D classical radiomics features were extracted from each phase of CECT for individual ccRCC lesion, and contrast-enhanced variation features were also calculated as derived radiomics features. These features were concatenated together, and redundant features were removed by Pearson correlation analysis. The discriminative features were selected by minimum redundancy maximum relevance method (mRMR) and then input into a C-support vector classifier to build multi-phase-combined CECT radiomics models. The prediction performance was evaluated by the area under the curve (AUC) of receiver operating characteristic (ROC). Results The multi-phase-combined CECT radiomics model showed the best prediction performance (AUC=0.777) than the single-phase CECT radiomics model (AUC=0.711) in the testing cohort (p value=0.039). Conclusion The multi-phase-combined CECT radiomics model is a potential effective way to noninvasively predict Fuhrman grade of ccRCC. The concatenation of first-order features and texture features extracted from corticomedullary phase and nephrographic phase are discriminative feature representations.
Collapse
Affiliation(s)
- Zhiyong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Xusheng Qian
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Jisu Hu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou, Jiangsu, China
| | - Chen Geng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Yongsheng Zhang
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Dou
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tuanjie Che
- Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, Gansu, China
- Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jianbing Zhu
- Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yakang Dai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| |
Collapse
|
16
|
Klontzas ME, Koltsakis E, Kalarakis G, Trpkov K, Papathomas T, Sun N, Walch A, Karantanas AH, Tzortzakakis A. A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia. Sci Rep 2023; 13:12594. [PMID: 37537362 PMCID: PMC10400617 DOI: 10.1038/s41598-023-39809-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Differentiating benign renal oncocytic tumors and malignant renal cell carcinoma (RCC) on imaging and histopathology is a critical problem that presents an everyday clinical challenge. This manuscript aims to demonstrate a novel methodology integrating metabolomics with radiomics features (RF) to differentiate between benign oncocytic neoplasia and malignant renal tumors. For this purpose, thirty-three renal tumors (14 renal oncocytic tumors and 19 RCC) were prospectively collected and histopathologically characterised. Matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) was used to extract metabolomics data, while RF were extracted from CT scans of the same tumors. Statistical integration was used to generate multilevel network communities of -omics features. Metabolites and RF critical for the differentiation between the two groups (delta centrality > 0.1) were used for pathway enrichment analysis and machine learning classifier (XGboost) development. Receiver operating characteristics (ROC) curves and areas under the curve (AUC) were used to assess classifier performance. Radiometabolomics analysis demonstrated differential network node configuration between benign and malignant renal tumors. Fourteen nodes (6 RF and 8 metabolites) were crucial in distinguishing between the two groups. The combined radiometabolomics model achieved an AUC of 86.4%, whereas metabolomics-only and radiomics-only classifiers achieved AUC of 72.7% and 68.2%, respectively. Analysis of significant metabolite nodes identified three distinct tumour clusters (malignant, benign, and mixed) and differentially enriched metabolic pathways. In conclusion, radiometabolomics integration has been presented as an approach to evaluate disease entities. In our case study, the method identified RF and metabolites important in differentiating between benign oncocytic neoplasia and malignant renal tumors, highlighting pathways differentially expressed between the two groups. Key metabolites and RF identified by radiometabolomics can be used to improve the identification and differentiation between renal neoplasms.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Emmanouil Koltsakis
- Department of Diagnostic Radiology, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Georgios Kalarakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Diagnostic Radiology, Karolinska University Hospital, Huddinge, Stockholm, Sweden
- University of Crete, School of Medicine, 71500, Heraklion, Greece
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Alberta Precision Labs, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Clinical Pathology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Na Sun
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Crete, Heraklion, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Crete, Heraklion, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion, Greece
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, C2:74, 14 186, Stockholm, Sweden.
| |
Collapse
|
17
|
Klontzas ME, Koltsakis E, Kalarakis G, Trpkov K, Papathomas T, Karantanas AH, Tzortzakakis A. Machine Learning Integrating 99mTc Sestamibi SPECT/CT and Radiomics Data Achieves Optimal Characterization of Renal Oncocytic Tumors. Cancers (Basel) 2023; 15:3553. [PMID: 37509214 PMCID: PMC10377512 DOI: 10.3390/cancers15143553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The increasing evidence of oncocytic renal tumors positive in 99mTc Sestamibi Single Photon Emission Tomography/Computed Tomography (SPECT/CT) examination calls for the development of diagnostic tools to differentiate these tumors from more aggressive forms. This study combined radiomics analysis with the uptake of 99mTc Sestamibi on SPECT/CT to differentiate benign renal oncocytic neoplasms from renal cell carcinoma. A total of 57 renal tumors were prospectively collected. Histopathological analysis and radiomics data extraction were performed. XGBoost classifiers were trained using the radiomics features alone and combined with the results from the visual evaluation of 99mTc Sestamibi SPECT/CT examination. The combined SPECT/radiomics model achieved higher accuracy (95%) with an area under the curve (AUC) of 98.3% (95% CI 93.7-100%) than the radiomics-only model (71.67%) with an AUC of 75% (95% CI 49.7-100%) and visual evaluation of 99mTc Sestamibi SPECT/CT alone (90.8%) with an AUC of 90.8% (95%CI 82.5-99.1%). The positive predictive values of SPECT/radiomics, radiomics-only, and 99mTc Sestamibi SPECT/CT-only models were 100%, 85.71%, and 85%, respectively, whereas the negative predictive values were 85.71%, 55.56%, and 94.6%, respectively. Feature importance analysis revealed that 99mTc Sestamibi uptake was the most influential attribute in the combined model. This study highlights the potential of combining radiomics analysis with 99mTc Sestamibi SPECT/CT to improve the preoperative characterization of benign renal oncocytic neoplasms. The proposed SPECT/radiomics classifier outperformed the visual evaluation of 99mTc Sestamibii SPECT/CT and the radiomics-only model, demonstrating that the integration of 99mTc Sestamibi SPECT/CT and radiomics data provides improved diagnostic performance, with minimal false positive and false negative results.
Collapse
Affiliation(s)
- Michail E Klontzas
- Department of Medical Imaging, University Hospital of Heraklion, Heraklion 71110, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion 70013, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion 71110, Greece
| | - Emmanouil Koltsakis
- Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm 17177, Sweden
| | - Georgios Kalarakis
- Department of Diagnostic Radiology, Karolinska University Hospital, Stockholm 17177, Sweden
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm 14152, Sweden
| | - Kiril Trpkov
- Alberta Precision Labs, Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2L 2K5, Canada
| | - Thomas Papathomas
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, UK
- Department of Clinical Pathology, Vestre Viken Hospital Trust, Drammen 3004, Norway
| | - Apostolos H Karantanas
- Department of Medical Imaging, University Hospital of Heraklion, Heraklion 71110, Greece
- Computational BioMedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion 70013, Greece
- Department of Radiology, School of Medicine, University of Crete, Voutes Campus, Heraklion 71110, Greece
| | - Antonios Tzortzakakis
- Division of Radiology, Department for Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm 14152, Sweden
- Medical Radiation Physics and Nuclear Medicine, Section for Nuclear Medicine, Karolinska University Hospital, Huddinge, Stockholm 14186, Sweden
| |
Collapse
|
18
|
Shehata M, Abouelkheir RT, Gayhart M, Van Bogaert E, Abou El-Ghar M, Dwyer AC, Ouseph R, Yousaf J, Ghazal M, Contractor S, El-Baz A. Role of AI and Radiomic Markers in Early Diagnosis of Renal Cancer and Clinical Outcome Prediction: A Brief Review. Cancers (Basel) 2023; 15:2835. [PMID: 37345172 PMCID: PMC10216706 DOI: 10.3390/cancers15102835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Globally, renal cancer (RC) is the 10th most common cancer among men and women. The new era of artificial intelligence (AI) and radiomics have allowed the development of AI-based computer-aided diagnostic/prediction (AI-based CAD/CAP) systems, which have shown promise for the diagnosis of RC (i.e., subtyping, grading, and staging) and prediction of clinical outcomes at an early stage. This will absolutely help reduce diagnosis time, enhance diagnostic abilities, reduce invasiveness, and provide guidance for appropriate management procedures to avoid the burden of unresponsive treatment plans. This survey mainly has three primary aims. The first aim is to highlight the most recent technical diagnostic studies developed in the last decade, with their findings and limitations, that have taken the advantages of AI and radiomic markers derived from either computed tomography (CT) or magnetic resonance (MR) images to develop AI-based CAD systems for accurate diagnosis of renal tumors at an early stage. The second aim is to highlight the few studies that have utilized AI and radiomic markers, with their findings and limitations, to predict patients' clinical outcome/treatment response, including possible recurrence after treatment, overall survival, and progression-free survival in patients with renal tumors. The promising findings of the aforementioned studies motivated us to highlight the optimal AI-based radiomic makers that are correlated with the diagnosis of renal tumors and prediction/assessment of patients' clinical outcomes. Finally, we conclude with a discussion and possible future avenues for improving diagnostic and treatment prediction performance.
Collapse
Affiliation(s)
- Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| | - Rasha T. Abouelkheir
- Department of Radiology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (R.T.A.); (M.A.E.-G.)
| | | | - Eric Van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA; (E.V.B.); (S.C.)
| | - Mohamed Abou El-Ghar
- Department of Radiology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt; (R.T.A.); (M.A.E.-G.)
| | - Amy C. Dwyer
- Kidney Disease Program, University of Louisville, Louisville, KY 40202, USA; (A.C.D.); (R.O.)
| | - Rosemary Ouseph
- Kidney Disease Program, University of Louisville, Louisville, KY 40202, USA; (A.C.D.); (R.O.)
| | - Jawad Yousaf
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA; (E.V.B.); (S.C.)
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
19
|
Chung A, Raman SS. Radiologist's Disease: Imaging for Renal Cancer. Urol Clin North Am 2023; 50:161-180. [PMID: 36948664 DOI: 10.1016/j.ucl.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
There is a clear benefit of imaging-based differentiation of small indeterminate masses to its subtypes of clear cell renal cell carcinoma (RCC), chromophobe RCC, papillary RCC, fat poor angiomyolipoma and oncocytoma because it helps determine the next step options for the patients. The work thus far in radiology has explored different parameters in computed tomography, MRI, and contrast-enhanced ultrasound with the discovery of many reliable imaging features that suggest certain tissue subtypes. Likert score-based risk stratification systems can help determine management, and new techniques such as perfusion, radiogenomics, single-photon emission tomography, and artificial intelligence can add to the imaging-based evaluation of indeterminate renal masses.
Collapse
Affiliation(s)
- Alex Chung
- Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Steven S Raman
- David Geffen School of Medicine at UCLA, 757 Westwood Bl, RRMC, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Aymerich M, Riveira-Martín M, García-Baizán A, González-Pena M, Sebastià C, López-Medina A, Mesa-Álvarez A, Tardágila de la Fuente G, Méndez-Castrillón M, Berbel-Rodríguez A, Matos-Ugas AC, Berenguer R, Sabater S, Otero-García M. Pilot Study for the Assessment of the Best Radiomic Features for Bosniak Cyst Classification Using Phantom and Radiologist Inter-Observer Selection. Diagnostics (Basel) 2023; 13:diagnostics13081384. [PMID: 37189486 DOI: 10.3390/diagnostics13081384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Since the Bosniak cysts classification is highly reader-dependent, automated tools based on radiomics could help in the diagnosis of the lesion. This study is an initial step in the search for radiomic features that may be good classifiers of benign-malignant Bosniak cysts in machine learning models. A CCR phantom was used through five CT scanners. Registration was performed with ARIA software, while Quibim Precision was used for feature extraction. R software was used for the statistical analysis. Robust radiomic features based on repeatability and reproducibility criteria were chosen. Excellent correlation criteria between different radiologists during lesion segmentation were imposed. With the selected features, their classification ability in benignity-malignity terms was assessed. From the phantom study, 25.3% of the features were robust. For the study of inter-observer correlation (ICC) in the segmentation of cystic masses, 82 subjects were prospectively selected, finding 48.4% of the features as excellent regarding concordance. Comparing both datasets, 12 features were established as repeatable, reproducible, and useful for the classification of Bosniak cysts and could serve as initial candidates for the elaboration of a classification model. With those features, the Linear Discriminant Analysis model classified the Bosniak cysts in terms of benignity or malignancy with 88.2% accuracy.
Collapse
Affiliation(s)
- María Aymerich
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Mercedes Riveira-Martín
- Medical Physics Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Alejandra García-Baizán
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Mariña González-Pena
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Carmen Sebastià
- Centre de Diagnòstic per la Imatge Clínic, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Antonio López-Medina
- Medical Physics Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiophysics Department, Hospital do Meixoeiro, 36214 Vigo, Spain
| | - Alicia Mesa-Álvarez
- Radiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - Marta Méndez-Castrillón
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Andrea Berbel-Rodríguez
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Alejandra C Matos-Ugas
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| | - Roberto Berenguer
- Radiation Oncology, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Sebastià Sabater
- Radiation Oncology, Complejo Hospitalario Universitario de Albacete, 02006 Albacete, Spain
| | - Milagros Otero-García
- Diagnostic Imaging Research Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
- Radiology Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain
| |
Collapse
|
21
|
Ge XY, Lan ZK, Lan QQ, Lin HS, Wang GD, Chen J. Diagnostic accuracy of ultrasound-based multimodal radiomics modeling for fibrosis detection in chronic kidney disease. Eur Radiol 2023; 33:2386-2398. [PMID: 36454259 PMCID: PMC10017610 DOI: 10.1007/s00330-022-09268-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/15/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022]
Abstract
OBJECTIVES To predict kidney fibrosis in patients with chronic kidney disease using radiomics of two-dimensional ultrasound (B-mode) and Sound Touch Elastography (STE) images in combination with clinical features. METHODS The Mindray Resona 7 ultrasonic diagnostic apparatus with SC5-1U convex array probe (bandwidth frequency of 1-5 MHz) was used to perform two-dimensional ultrasound and STE software. The severity of cortical tubulointerstitial fibrosis was divided into three grades: mild interstitial fibrosis and tubular atrophy (IFTA), fibrotic area < 25%; moderate IFTA, fibrotic area 26-50%; and severe IFTA, fibrotic area > 50%. After extracting radiomics from B-mode and STE images in these patients, we analyzed two classification schemes: mild versus moderate-to-severe IFTA, and mild-to-moderate versus severe IFTA. A nomogram was constructed based on multiple logistic regression analyses, combining clinical and radiomics. The performance of the nomogram for differentiation was evaluated using receiver operating characteristic (ROC), calibration, and decision curves. RESULTS A total of 150 patients undergoing kidney biopsy were enrolled (mild IFTA: n = 74; moderate IFTA: n = 33; severe IFTA: n = 43) and randomized into training (n = 105) and validation cohorts (n = 45). To differentiate between mild and moderate-to-severe IFTA, a nomogram incorporating STE radiomics, albumin, and estimated glomerular filtration (eGFR) rate achieved an area under the ROC curve (AUC) of 0.91 (95% confidence interval [CI]: 0.85-0.97) and 0.85 (95% CI: 0.77-0.98) in the training and validation cohorts, respectively. Between mild-to-moderate and severe IFTA, the nomogram incorporating B-mode and STE radiomics features, age, and eGFR achieved an AUC of 0.93 (95% CI: 0.89-0.98) and 0.83 (95% CI: 0.70-0.95) in the training and validation cohorts, respectively. Finally, we performed a decision curve analysis and found that the nomogram using both radiomics and clinical features exhibited better predictability than any other model (DeLong test, p < 0.05 for the training and validation cohorts). CONCLUSION A nomogram based on two-dimensional ultrasound and STE radiomics and clinical features served as a non-invasive tool capable of differentiating kidney fibrosis of different severities. KEY POINTS • Radiomics calculated based on the ultrasound imaging may be used to predict the severities of kidney fibrosis. • Radiomics may be used to identify clinical features associated with the progression of tubulointerstitial fibrosis in patients with CKD. • Non-invasive ultrasound imaging-based radiomics method with accuracy aids in detecting renal fibrosis with different IFTA severities.
Collapse
Affiliation(s)
- Xin-Yue Ge
- Department of Medical Ultrasound, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| | - Zhong-Kai Lan
- Department of Medical Ultrasound, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Qiao-Qing Lan
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hua-Shan Lin
- Department of Pharmaceutical Diagnosis, GE Healthcare, Changsha, 410005, China
| | - Guo-Dong Wang
- Department of Oncology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Jing Chen
- Department of Medical Ultrasound, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
22
|
Lanza C, Carriero S, Biondetti P, Angileri SA, Carrafiello G, Ierardi AM. Advances in imaging guidance during percutaneous ablation of renal tumors. Semin Ultrasound CT MR 2023; 44:162-169. [DOI: 10.1053/j.sult.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
23
|
Ferro M, Musi G, Marchioni M, Maggi M, Veccia A, Del Giudice F, Barone B, Crocetto F, Lasorsa F, Antonelli A, Schips L, Autorino R, Busetto GM, Terracciano D, Lucarelli G, Tataru OS. Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects. Int J Mol Sci 2023; 24:4615. [PMID: 36902045 PMCID: PMC10003020 DOI: 10.3390/ijms24054615] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Alessandro Veccia
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Antonelli
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
24
|
Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation. Abdom Radiol (NY) 2023; 48:642-648. [PMID: 36370180 DOI: 10.1007/s00261-022-03735-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE To assess the performance of a machine learning model trained with contrast-enhanced CT-based radiomics features in distinguishing benign from malignant solid renal masses and to compare model performance with three abdominal radiologists. METHODS Patients who underwent intra-operative ultrasound during a partial nephrectomy were identified within our institutional database, and those who had pre-operative contrast-enhanced CT examinations were selected. The renal masses were segmented from the CT images and radiomics features were derived from the segmentations. The pathology of each mass was identified; masses were labeled as either benign [oncocytoma or angiomyolipoma (AML)] or malignant [clear cell, papillary, or chromophobe renal cell carcinoma (RCC)] depending on the pathology. The data were parsed into a 70/30 train/test split and a random forest machine learning model was developed to distinguish benign from malignant lesions. Three radiologists assessed the cohort of masses and labeled cases as benign or malignant. RESULTS 148 masses were identified from the cohort, including 50 benign lesions (23 AMLs, 27 oncocytomas) and 98 malignant lesions (23 clear cell RCC, 44 papillary RCC, and 31 chromophobe RCCs). The machine learning algorithm yielded an overall accuracy of 0.82 for distinguishing benign from malignant lesions, with an area under the receiver operating curve of 0.80. In comparison, the three radiologists had significantly lower accuracies (p = 0.02) ranging from 0.67 to 0.75. CONCLUSION A machine learning model trained with CT-based radiomics features can provide superior accuracy for distinguishing benign from malignant solid renal masses compared to abdominal radiologists.
Collapse
|
25
|
Dehghani Firouzabadi F, Gopal N, Homayounieh F, Anari PY, Li X, Ball MW, Jones EC, Samimi S, Turkbey E, Malayeri AA. CT radiomics for differentiating oncocytoma from renal cell carcinomas: Systematic review and meta-analysis. Clin Imaging 2023; 94:9-17. [PMID: 36459898 PMCID: PMC9812928 DOI: 10.1016/j.clinimag.2022.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Radiomics is a type of quantitative analysis that provides a more objective approach to detecting tumor subtypes using medical imaging. The goal of this paper is to conduct a comprehensive assessment of the literature on computed tomography (CT) radiomics for distinguishing renal cell carcinomas (RCCs) from oncocytoma. METHODS From February 15th 2012 to 2022, we conducted a broad search of the current literature using the PubMed/MEDLINE, Google scholar, Cochrane Library, Embase, and Web of Science. A meta-analysis of radiomics studies concentrating on discriminating between oncocytoma and RCCs was performed, and the risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies method. The pooled sensitivity, specificity, and diagnostic odds ratio were evaluated via a random-effects model, which was applied for the meta-analysis. This study is registered with PROSPERO (CRD42022311575). RESULTS After screening the search results, we identified 6 studies that utilized radiomics to distinguish oncocytoma from other renal tumors; there were a total of 1064 lesions in 1049 patients (288 oncocytoma lesions vs 776 RCCs lesions). The meta-analysis found substantial heterogeneity among the included studies, with pooled sensitivity and specificity of 0.818 [0.619-0.926] and 0.808 [0.537-0.938], for detecting different subtypes of RCCs (clear cell RCC, chromophobe RCC, and papillary RCC) from oncocytoma. Also, a pooled sensitivity and specificity of 0.83 [0.498-0.960] and 0.92 [0.825-0.965], respectively, was found in detecting oncocytoma from chromophobe RCC specifically. CONCLUSIONS According to this study, CT radiomics has a high degree of accuracy in distinguishing RCCs from RO, including chromophobe RCCs from RO. Radiomics algorithms have the potential to improve diagnosis in scenarios that have traditionally been ambiguous. However, in order for this modality to be implemented in the clinical setting, standardization of image acquisition and segmentation protocols as well as inter-institutional sharing of software is warranted.
Collapse
Affiliation(s)
| | - Nikhil Gopal
- Urology Department, Clinical Center, National Cancer Institutes (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Homayounieh
- Radiology Department, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Pouria Yazdian Anari
- Radiology Department, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Xiaobai Li
- Biostatistics and Clinical Epidemiology Service, NIH Clinical Center, Bethesda, MD, USA
| | - Mark W Ball
- Urology Department, Clinical Center, National Cancer Institutes (NCI), National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth C Jones
- Radiology Department, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Safa Samimi
- Radiology Department, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Evrim Turkbey
- Radiology Department, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA
| | - Ashkan A Malayeri
- Radiology Department, Clinical Center (CC), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
26
|
Liu J, Lin Z, Wang K, Fang D, Zhang Y, Wang X, Zhang X, Wang H, Wang X. A preliminary radiomics model for predicting perirenal fat invasion on renal cell carcinoma with contrast-enhanced CT images. Abdom Radiol (NY) 2023; 48:649-658. [PMID: 36414745 DOI: 10.1007/s00261-022-03699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The aim is to develop a radiomics model based on contrast-enhanced CT scans for preoperative prediction of perirenal fat invasion (PFI) in patients with renal cell carcinoma (RCC). METHODS The CT data of 131 patients with pathology-confirmed PFI status (64 positives) were retrospectively collected and randomly assigned to the training and test datasets. The kidneys and the masses were annotated by semi-automatic segmentation. Eight types of regions of interest (ROI) were chosen for the training of the radiomics models. The areas under the curves (AUCs) from the receiver operating characteristic (ROC) curve analysis were used to analyze the diagnostic performance. Eight types of models with different ROIs have been developed. The models with the highest AUC in the test dataset were used for construction of the corresponding final model, and comparison with radiologists' diagnosis. RESULTS The AUCs of the models for each ROI was 0.783-0.926, and there was no statistically significant difference between them (P > 0.05). Model 4 was using the ROI of the outer half-ring which extended along the edge of the mass at the outer edge of the kidney into the perirenal fat space with a thickness of 3 mm. It yielded the highest AUC (0.926) and its diagnostic accuracy was higher than the radiologists' diagnosis. CONCLUSION We have developed and validated a radiomics model for prediction of PFI on RCC with contrast-enhanced CT scans. The model proved to be more accurate than the radiologists' diagnosis.
Collapse
Affiliation(s)
- Jia Liu
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhiyong Lin
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing, 100034, China
| | - Yaofeng Zhang
- Beijing Smart Tree Medical Technology Co. Ltd, Beijing, 100011, China
| | - Xiangpeng Wang
- Beijing Smart Tree Medical Technology Co. Ltd, Beijing, 100011, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| | - He Wang
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, No. 8, Xishiku Street, Xicheng District, Beijing, 100034, China
| |
Collapse
|
27
|
Lu J, Jiang N, Zhang Y, Li D. A CT based radiomics nomogram for differentiation between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma. Front Oncol 2023; 13:979437. [PMID: 36937433 PMCID: PMC10014827 DOI: 10.3389/fonc.2023.979437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives The purpose of this study was to develop and validate an CT-based radiomics nomogram for the preoperative differentiation of focal-type autoimmune pancreatitis from pancreatic ductal adenocarcinoma. Methods 96 patients with focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma have been enrolled in the study (32 and 64 cases respectively). All cases have been confirmed by imaging, clinical follow-up and/or pathology. The imaging data were considered as: 70% training cohort and 30% test cohort. Pancreatic lesions have been manually delineated by two radiologists and image segmentation was performed to extract radiomic features from the CT images. Independent-sample T tests and LASSO regression were used for feature selection. The training cohort was classified using a variety of machine learning-based classifiers, and 5-fold cross-validation has been performed. The classification performance was evaluated using the test cohort. Multivariate logistic regression analysis was then used to develop a radiomics nomogram model, containing the CT findings and Rad-Score. Calibration curves have been plotted showing the agreement between the predicted and actual probabilities of the radiomics nomogram model. Different patients have been selected to test and evaluate the model prediction process. Finally, receiver operating characteristic curves and decision curves were plotted, and the radiomics nomogram model was compared with a single model to visually assess its diagnostic ability. Results A total of 158 radiomics features were extracted from each image. 7 features were selected to construct the radiomics model, then a variety of classifiers were used for classification and multinomial logistic regression (MLR) was selected to be the optimal classifier. Combining CT findings with radiomics model, a prediction model based on CT findings and radiomics was finally obtained. The nomogram model showed a good sensitivity and specificity with AUCs of 0.87 and 0.83 in training and test cohorts, respectively. The areas under the curve and decision curve analysis showed that the radiomics nomogram model may provide better diagnostic performance than the single model and achieve greater clinical net benefits than the CT finding model and radiomics signature model individually. Conclusions The CT image-based radiomics nomogram model can accurately distinguish between focal-type autoimmune pancreatitis and pancreatic ductal adenocarcinoma patients and provide additional clinical benefits.
Collapse
Affiliation(s)
- Jia Lu
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Nannan Jiang
- Department of Radiology, The People’s Hospital of Liaoning Province, Shenyang, China
| | - Yuqing Zhang
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
| | - Daowei Li
- Department of Radiology, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning Province, Shenyang, China
- *Correspondence: Daowei Li,
| |
Collapse
|
28
|
Nakagawa M, Nakaura T, Yoshida N, Azuma M, Uetani H, Nagayama Y, Kidoh M, Miyamoto T, Yamashita Y, Hirai T. Performance of Machine Learning Methods Based on Multi-Sequence Textural Parameters Using Magnetic Resonance Imaging and Clinical Information to Differentiate Malignant and Benign Soft Tissue Tumors. Acad Radiol 2023; 30:83-92. [PMID: 35725692 DOI: 10.1016/j.acra.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES To evaluate the performance of a machine learning method to differentiate malignant from benign soft tissue tumors based on textural features on multiparametric magnetic resonance imaging (mpMRI). MATERIALS AND METHODS We enrolled 163 patients with soft tissue tumors whose diagnosis was pathologically proven (71 malignant, 92 benign). All patients underwent mpMRI. Twelve histographic and textural parameters were assessed on T1-weighted imaging (T1WI), T2-weighted imaging, diffusion-weighted imaging, apparent diffusion coefficient maps, and contrast-enhanced T1WI imaging. We compared mean signals of all sequences from the malignant and benign tumors using Welch's t-test. Prediction models were developed via a machine learning technique (support vector machine) using textural features of each sequence, clinical information (sex + age + tumor size), and the combined model incorporating all features. Areas under the receiver operating characteristic curves (AUCs) of these models were calculated using fivefold cross validation. RESULTS The diagnostic ability of clinical information model (AUC 0.85) was not inferior to the model with textural features of each sequence (AUC 0.79-0.84). The combined model showed the highest diagnostic ability (AUC 0.89). The AUC of the combined model (0.89) was comparable to those of two board-certified radiologists (0.89 and 0.87). CONCLUSIONS Machine learning methods based on textural features on mpMRI and clinical information offer adequate diagnostic performance to differentiate between malignant and benign soft tissue tumors.
Collapse
Affiliation(s)
- Masataka Nakagawa
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan.
| | - Naofumi Yoshida
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| | - Minako Azuma
- Department of Radiology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| | - Yasuyuki Yamashita
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuoku, Kumamoto, Japan
| |
Collapse
|
29
|
Ferro M, Crocetto F, Barone B, del Giudice F, Maggi M, Lucarelli G, Busetto GM, Autorino R, Marchioni M, Cantiello F, Crocerossa F, Luzzago S, Piccinelli M, Mistretta FA, Tozzi M, Schips L, Falagario UG, Veccia A, Vartolomei MD, Musi G, de Cobelli O, Montanari E, Tătaru OS. Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review. Ther Adv Urol 2023; 15:17562872231164803. [PMID: 37113657 PMCID: PMC10126666 DOI: 10.1177/17562872231164803] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.
Collapse
Affiliation(s)
| | - Felice Crocetto
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Francesco del Giudice
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation
Unit, Department of Emergency and Organ Transplantation, University of Bari,
Bari, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ
Transplantation, University of Foggia, Foggia, Italy
| | | | - Michele Marchioni
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti,
Italy
| | - Francesco Cantiello
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Stefano Luzzago
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Mattia Piccinelli
- Cancer Prognostics and Health Outcomes Unit,
Division of Urology, University of Montréal Health Center, Montréal, QC,
Canada
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Tozzi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Luigi Schips
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
| | | | - Alessandro Veccia
- Urology Unit, Azienda Ospedaliera
Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology,
George Emil Palade University of Medicine, Pharmacy, Science and Technology
of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of
Vienna, Vienna, Austria
| | - Gennaro Musi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca’
Granda – Ospedale Maggiore Policlinico, Department of Clinical Sciences and
Community Health, University of Milan, Milan, Italy
| | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral
Studies (IOSUD), George Emil Palade University of Medicine, Pharmacy,
Science and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
30
|
Whole-Lesion CT Texture Analysis as a Quantitative Biomarker for the Identification of Homogeneous Renal Tumors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122148. [PMID: 36556513 PMCID: PMC9781849 DOI: 10.3390/life12122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Renal tumors are very common in the urinary system, and the preoperative differential diagnosis of homogeneous renal tumors remains a challenge. This study aimed to evaluate the feasibility of the whole-lesion CT texture analysis for the identification of homogeneous renal tumors including clear cell renal cell carcinoma (ccRCC), chromophobe RCC (chRCC), and renal oncocytoma (RO). This retrospective study was approved by our local IRB. Contrast-enhanced CT examination was performed in 128 patients and histopathologically confirmed ccRCC, chRCC, and RO. The one-way ANOVA test with Bonferroni corrections was used to compare the differences, and the receiver operating characteristic (ROC) curve analysis was applied to determine the diagnostic efficiency. The whole-lesion CT histogram analysis was used to demonstrate significant differences between ccRCC and chRCC in both arterial and venous phases, and the entropy demonstrated excellent performance in discriminating these two types of tumors (AUCs = 0.95, 0.91). The inhomogeneity of ccRCC was significantly higher than that of RO both in arterial and venous phases. The entropy of chRCC was significantly lower than that of RO, and the kurtosis and entropy yielded high sensitivity (91%) and moderate specificity (74%) in the arterial phase. The whole-lesion CT histogram analysis could be useful for the differential diagnosis of homogeneous ccRCC, chRCC, and RO.
Collapse
|
31
|
Budai BK, Stollmayer R, Rónaszéki AD, Körmendy B, Zsombor Z, Palotás L, Fejér B, Szendrõi A, Székely E, Maurovich-Horvat P, Kaposi PN. Radiomics analysis of contrast-enhanced CT scans can distinguish between clear cell and non-clear cell renal cell carcinoma in different imaging protocols. Front Med (Lausanne) 2022; 9:974485. [PMID: 36314024 PMCID: PMC9606401 DOI: 10.3389/fmed.2022.974485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction This study aimed to construct a radiomics-based machine learning (ML) model for differentiation between non-clear cell and clear cell renal cell carcinomas (ccRCC) that is robust against institutional imaging protocols and scanners. Materials and methods Preoperative unenhanced (UN), corticomedullary (CM), and excretory (EX) phase CT scans from 209 patients diagnosed with RCCs were retrospectively collected. After the three-dimensional segmentation, 107 radiomics features (RFs) were extracted from the tumor volumes in each contrast phase. For the ML analysis, the cases were randomly split into training and test sets with a 3:1 ratio. Highly correlated RFs were filtered out based on Pearson’s correlation coefficient (r > 0.95). Intraclass correlation coefficient analysis was used to select RFs with excellent reproducibility (ICC ≥ 0.90). The most predictive RFs were selected by the least absolute shrinkage and selection operator (LASSO). A support vector machine algorithm-based binary classifier (SVC) was constructed to predict tumor types and its performance was evaluated based-on receiver operating characteristic curve (ROC) analysis. The “Kidney Tumor Segmentation 2019” (KiTS19) publicly available dataset was used during external validation of the model. The performance of the SVC was also compared with an expert radiologist’s. Results The training set consisted of 121 ccRCCs and 38 non-ccRCCs, while the independent internal test set contained 40 ccRCCs and 13 non-ccRCCs. For external validation, 50 ccRCCs and 23 non-ccRCCs were identified from the KiTS19 dataset with the available UN, CM, and EX phase CTs. After filtering out the highly correlated and poorly reproducible features, the LASSO algorithm selected 10 CM phase RFs that were then used for model construction. During external validation, the SVC achieved an area under the ROC curve (AUC) value, accuracy, sensitivity, and specificity of 0.83, 0.78, 0.80, and 0.74, respectively. UN and/or EX phase RFs did not further increase the model’s performance. Meanwhile, in the same comparison, the expert radiologist achieved similar performance with an AUC of 0.77, an accuracy of 0.79, a sensitivity of 0.84, and a specificity of 0.69. Conclusion Radiomics analysis of CM phase CT scans combined with ML can achieve comparable performance with an expert radiologist in differentiating ccRCCs from non-ccRCCs.
Collapse
Affiliation(s)
- Bettina Katalin Budai
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary,*Correspondence: Bettina Katalin Budai,
| | - Róbert Stollmayer
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Aladár Dávid Rónaszéki
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Borbála Körmendy
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Zita Zsombor
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Lõrinc Palotás
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Bence Fejér
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Attila Szendrõi
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Eszter Székely
- Department of Pathology, Forensic and Insurance Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Pál Maurovich-Horvat
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Pál Novák Kaposi
- Department of Radiology, Faculty of Medicine, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| |
Collapse
|
32
|
Massa'a RN, Stoeckl EM, Lubner MG, Smith D, Mao L, Shapiro DD, Abel EJ, Wentland AL. Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:2896-2904. [PMID: 35723716 DOI: 10.1007/s00261-022-03577-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Solid renal masses are often indeterminate for benignity versus malignancy on magnetic resonance imaging. Such masses are typically evaluated with either percutaneous biopsy or surgical resection. Percutaneous biopsy can be non-diagnostic and some surgically resected lesions are inadvertently benign. PURPOSE To assess the performance of ten machine learning (ML) algorithms trained with MRI-based radiomics features in distinguishing benign from malignant solid renal masses. METHODS Patients with solid renal masses identified on pre-intervention MRI were curated from our institutional database. Masses with a definitive diagnosis via imaging (for angiomyolipomas) or via biopsy or surgical resection (for oncocytomas or renal cell carcinomas) were selected. Each mass was segmented for both T2- and post-contrast T1-weighted images. Radiomics features were derived from the segmented masses for each imaging sequence. Ten ML algorithms were trained with the radiomics features gleaned from each MR sequence, as well as the combination of MR sequences. RESULTS In total, 182 renal masses in 160 patients were included in the study. The support vector machine algorithm trained on radiomics features from T2-weighted images performed superiorly, with an accuracy of 0.80 and an area under the curve (AUC) of 0.79. Linear discriminant analysis (accuracy = 0.84 and AUC = 0.77) and logistic regression (accuracy = 0.78 and AUC = 0.78) algorithms trained on T2-based radiomics features performed similarly. ML algorithms trained on radiomics features from post-contrast T1-weighted images or the combination of radiomics features from T2- and post-contrast T1-weighted images yielded lower performance. CONCLUSION Machine learning models trained with radiomics features derived from T2-weighted images can provide high accuracy for distinguishing benign from malignant solid renal masses. CLINICAL IMPACT Machine learning models derived from MRI-based radiomics features may improve the clinical management of solid renal masses and have the potential to reduce the frequency with which benign solid renal masses are biopsied or surgically resected.
Collapse
Affiliation(s)
- Ruben Ngnitewe Massa'a
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Elizabeth M Stoeckl
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - David Smith
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Daniel D Shapiro
- Department of Urology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - E Jason Abel
- Department of Urology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Andrew L Wentland
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA. .,Department of Medical Physics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
| |
Collapse
|
33
|
Predictive Value of CT-Based Radiomics in Distinguishing Renal Angiomyolipomas with Minimal Fat from Other Renal Tumors. DISEASE MARKERS 2022; 2022:9108129. [PMID: 35669501 PMCID: PMC9167090 DOI: 10.1155/2022/9108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/03/2022] [Indexed: 01/05/2023]
Abstract
Objectives This study is aimed at determining whether CT-based radiomics models can help differentiate renal angiomyolipomas with minimal fat (AMLmf) from other solid renal tumors. Methods This retrospective study included 58 patients with a postoperative pathologically confirmed AMLmf (observation group) and 140 patients with other common renal tumors (control group). Non-contrast-enhanced CT and contrast-enhanced CT data were evaluated. Radiomics features were extracted from manually delineated volume of interest (VOIs). The least absolute shrinkage and selection operator (LASSO) regression was used for feature screening. Five classifiers, including logistic regression, multilayer perceptron (MLP), support vector machine (SVM), k-nearest neighbor (KNN), and logistic regression (LR), were used, with leave-out validation (128 training, 60 testing). The diagnostic performance of the classifier was evaluated and compared by receiver operating characteristic curve (ROC) analysis. Results Among the 1029 extracted features, prediction models of AMLmf were composed, by 2, 10, 4, and 9 selected features for precontrast phase (PCP), corticomedullary phase (CMP), nephrographic phase (NP), and excretory phase (EP), respectively. Models of CMP and NP achieved adequate performance after using MLP classifier, with prediction accuracy of 0.767 (AUC 0.85, sensitivity 0.76, and specificity 0.78) and 0.783 (AUC 0.83, sensitivity 0.79, and specificity 0.78), respectively. MLP model of features selected from the combination of the all features had the best diagnostic performance (accuracy 0.8500, sensitivity 0.8095, specificity 0.9444, and AUC 0.9193). Conclusions Radiomics features may help to distinguish benign AMLmf from common malignant kidney masses, which may contribute to the selection of interventions for renal tumors.
Collapse
|
34
|
Rasmussen R, Sanford T, Parwani AV, Pedrosa I. Artificial Intelligence in Kidney Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-11. [PMID: 35580292 DOI: 10.1200/edbk_350862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Artificial intelligence is rapidly expanding into nearly all facets of life, particularly within the field of medicine. The diagnosis, characterization, management, and treatment of kidney cancer is ripe with areas for improvement that may be met with the promises of artificial intelligence. Here, we explore the impact of current research work in artificial intelligence for clinicians caring for patients with renal cancer, with a focus on the perspectives of radiologists, pathologists, and urologists. Promising preliminary results indicate that artificial intelligence may assist in the diagnosis and risk stratification of newly discovered renal masses and help guide the clinical treatment of patients with kidney cancer. However, much of the work in this field is still in its early stages, limited in its broader applicability, and hampered by small datasets, the varied appearance and presentation of kidney cancers, and the intrinsic limitations of the rigidly structured tasks artificial intelligence algorithms are trained to complete. Nonetheless, the continued exploration of artificial intelligence holds promise toward improving the clinical care of patients with kidney cancer.
Collapse
Affiliation(s)
- Robert Rasmussen
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas Sanford
- Department of Urology, Upstate Medical University, Syracuse, NY
| | - Anil V Parwani
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Ivan Pedrosa
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX.,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX.,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
35
|
M. A, Govindharaju K, A. J, Mohan S, Ahmadian A, Ciano T. A hybrid learning approach for the stage‐wise classification and prediction of COVID‐19 X‐ray images. EXPERT SYSTEMS 2022; 39. [DOI: 10.1111/exsy.12884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/13/2021] [Indexed: 09/15/2023]
Abstract
AbstractBackgroundThe COVID‐19 pandemic has precipitated global apprehensions about increased fatalities and raised concerns about gaps in healthcare infrastructure and accessibility the world over. Consequently, the importance of timely prediction and treatment of the disease to reduce transmission and mortality rates cannot be emphasized enough. Various symptoms of the disease have been identified as it progresses from the time it is contracted. COVID‐19 has been found to internally affect the lungs, and the four progressive stages of the infection can be categorized as mild, moderate, severe, and critical. Therefore, an accurate analysis of the current stage of the disease that can help predict its progression has become critical. X‐ray imaging has been found to be an effective screening procedure for predicting the various stages of this epidemic. Although many different approaches using machine learning, as well as deep learning were utilized to predict and classify diseases in general, till date, such an approach has not been used to predict the various stages of COVID‐19 by using X‐ray imaging to identify and classify those stages.Materials and methodThe proposed hybrid method used three public datasets for its implementation. In this work, extensive images were used for the purposes of testing and training. The dataset‐1 consists of 1200 COVID‐19 as well as 1200 Non‐COVID‐19 images, while dataset‐2 used 700 COVID‐19 as well as 700 Non‐COVID‐19 images, and finally, dataset‐III utilized 1900 COVID‐19 as well as 1900 Non‐COVID‐19 images for purposes of testing and training. The proposed work undertook the task of pre‐processing using textual and morphological features, while the segmentation and prediction of COVID‐19 as well as Non‐COVID‐19 images were undertaken using VGG‐16 with light GBM for better prediction and handing of huge datasets, and finally, the classification of the various stages of COVID‐19 images was performed using Deep Belief Network.ResultsThe outcomes of the proposed work were subjected to several iterations which were then compared using different parameters such as accuracy, specificity, and sensitivity. In general, the prediction and grouping of the various stages of COVID‐19 by using affected images were found to be 99.2%, 99.4% and 99.5%, respectively. The bacterial pneumonia prediction rates were observed to be 98.5%, 99.4% and 98.3%, respectively. The average classification of the stages were found to be 98.1%, 98.6% and 98.3%, while the combined multi‐classification prediction rates were observed to be 98.6%, 99.1% and 98.7%, respectively.
Collapse
Affiliation(s)
- Adimoolam M.
- Department of Computer Science and Engineering Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai India
| | - Karthi Govindharaju
- Department of Artificial Intelligence and Data Science Saveetha Engineering College Chennai India
| | - John A.
- School of Computer Science and Engineering Galgotias University Greater Noida India
| | - Senthilkumar Mohan
- School of Information Technology and Engineering Vellore Institute of Technology Vellore India
| | - Ali Ahmadian
- Institute of IR 4.0 The National University of Malaysia, UKM Bangi Malaysia
- Department of Mathematics Near East University Nicosia, TRNC, Mersin 10 Turkey
| | - Tiziana Ciano
- Faculty of Business and Law University of Portsmouth Portsmouth UK
| |
Collapse
|
36
|
Wu K, Wu P, Yang K, Li Z, Kong S, Yu L, Zhang E, Liu H, Guo Q, Wu S. A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images. Eur Radiol 2022; 32:2255-2265. [PMID: 34800150 DOI: 10.1007/s00330-021-08353-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVES We tried to realize accurate pathological classification, assessment of prognosis, and genomic molecular typing of renal cell carcinoma by CT texture feature analysis. To determine whether CT texture features can perform accurate pathological classification and evaluation of prognosis and genomic characteristics in renal cell carcinoma. METHODS Patients with renal cell carcinoma from five open-source cohorts were analyzed retrospectively in this study. These data were randomly split to train and test machine learning algorithms to segment the lesion, predict the histological subtype, tumor stage, and pathological grade. Dice coefficient and performance metrics such as accuracy and AUC were calculated to evaluate the segmentation and classification model. Quantitative decomposition of the predictive model was conducted to explore the contribution of each feature. Besides, survival analysis and the statistical correlation between CT texture features, pathological, and genomic signatures were investigated. RESULTS A total of 569 enhanced CT images of 443 patients (mean age 59.4, 278 males) were included in the analysis. In the segmentation task, the mean dice coefficient was 0.96 for the kidney and 0.88 for the cancer region. For classification of histologic subtype, tumor stage, and pathological grade, the model was on a par with radiologists and the AUC was 0.83 [Formula: see text] 0.1, 0.80 [Formula: see text] 0.1, and 0.77 [Formula: see text] 0.1 at 95% confidence intervals, respectively. Moreover, specific quantitative CT features related to clinical prognosis were identified. A strong statistical correlation (R2 = 0.83) between the feature crosses and genomic characteristics was shown. The structural equation modeling confirmed significant associations between CT features, pathological (β = - 0.75), and molecular subtype (β = - 0.30). CONCLUSIONS The framework illustrates high performance in the pathological classification of renal cell carcinoma. Prognosis and genomic characteristics can be inferred by quantitative image analysis. KEY POINTS • The analytical framework exhibits high-performance pathological classification of renal cell carcinoma and is on a par with human radiologists. • Quantitative decomposition of the predictive model shows that specific texture features contribute to histologic subtype and tumor stage classification. • Structural equation modeling shows the associations of genomic characteristics to CT texture features. Overall survival and molecular characteristics can be inferred by quantitative CT texture analysis in renal cell carcinoma.
Collapse
Affiliation(s)
- Kai Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Peng Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Kai Yang
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, China
| | - Zhe Li
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Sijia Kong
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Lu Yu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Enpu Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Hanlin Liu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Qing Guo
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen, 518001, China
| | - Song Wu
- Department of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen, 518001, China
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, China
- Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
37
|
Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography Images. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Liver disease is one of the most prominent causes of the increase in the death rate worldwide. These death rates can be reduced by early liver diagnosis. Computed tomography (CT) is a method for the analysis of liver images in clinical practice. To analyze a large number of liver images, radiologists face problems that sometimes lead to the wrong classifications of liver diseases, eventually resulting in severe conditions, such as liver cancer. Thus, a machine-learning-based method is needed to classify such problems based on their texture features. This paper suggests two different kinds of algorithms to address this challenging task of liver disease classification. Our first method, which is based on conventional machine learning, uses texture features for classification. This method uses conventional machine learning through automated texture analysis and supervised machine learning methods. For this purpose, 3000 clinically verified CT image samples were obtained from 71 patients. Appropriate image classes belonging to the same disease were trained to confirm the abnormalities in liver tissues by using supervised learning methods. Our proposed method correctly quantified asymmetric patterns in CT images using machine learning. We evaluated the effectiveness of the feature vector with the K Nearest Neighbor (KNN), Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) classifiers. The second algorithm proposes a semantic segmentation model for liver disease identification. Our model is based on semantic image segmentation (SIS) using a convolutional neural network (CNN). The model encodes high-density maps through a specific guided attention method. The trained model classifies CT images into five different categories of various diseases. The compelling results obtained confirm the effectiveness of the proposed model. The study concludes that abnormalities in the human liver could be discriminated and diagnosed by texture analysis techniques, which may also assist radiologists and medical physicists in predicting the severity and proliferation of abnormalities in liver diseases.
Collapse
|
38
|
Bandara MS, Gurunayaka B, Lakraj G, Pallewatte A, Siribaddana S, Wansapura J. Ultrasound Based Radiomics Features of Chronic Kidney Disease. Acad Radiol 2022; 29:229-235. [PMID: 33589307 DOI: 10.1016/j.acra.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Interstitial fibrosis, common to most chronic kidney diseases, can potentially affect the speckle patterns of kidney ultrasound (US). Here we use Radiomics features derived from US images to identify kidneys with chronic kidney disease. MATERIALS AND METHODS B-mode US without speckle reduction was performed on a cohort of CKD patients (n = 75) and healthy subjects (n = 27). Images of the patients with renal cysts, agenesis and calculi were excluded. After background subtraction, regions of interest were selected from each kidney. Four hundred and sixty-five Radiomics features including first and second-order gray level statistics were calculated on the selected regions. Second-order features were also calculated on wavelet transformed images. A random forest model was used to identify the most important features that can differentiate healthy and diseased kidneys. The ten most important features, based on the Gini index, were used to train a support vector machine. Synthetic minority oversampling technique was used to remove over fitting. RESULTS Wavelet transformed, Gray Level Run Length Matrix based Normalized Run Length Non-uniformity, WT (LH) (GRLN) was identified as the most significant feature in differentiating CKD and healthy kidneys (accuracy - 0.85, sensitivity - 1.0). The mean WT (LH) GRLN of healthy kidneys (0.40 ± 0.01) was significantly higher (p < 0.01) than that of the CKD kidneys (0.24 ± 0.01). According to the Gini Index, the differentiability of WT (LH) GRLN was highest when the long axis of the kidney was oriented perpendicular to the columns of the image matrix. CONCLUSION Radiomics features based on wavelet transformation are sensitive to directionality of US speckle patters and can be successfully used to differentiate CKD and healthy US kidney images.
Collapse
Affiliation(s)
| | - Buddika Gurunayaka
- Department of Radiology, Teaching Hospital Anuradhapura, Anuradhapura, Sri Lanka
| | - Gamage Lakraj
- Department of Statistic, University of Colombo, Colombo, Sri Lanka
| | - Aruna Pallewatte
- Department of Neuroradiology, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Sisira Siribaddana
- Department of Medicine, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura, Sri Lanka
| | - Janaka Wansapura
- Department of Physics, University of Colombo, Colombo, Sri Lanka; Advanced Imaging Research Center, UT Southwestern Medical center, 5323 Harry Hines Blvd, Dallas, TX.
| |
Collapse
|
39
|
Li X, Ma Q, Nie P, Zheng Y, Dong C, Xu W. A CT-based radiomics nomogram for differentiation of renal oncocytoma and chromophobe renal cell carcinoma with a central scar-matched study. Br J Radiol 2022; 95:20210534. [PMID: 34735296 PMCID: PMC8722238 DOI: 10.1259/bjr.20210534] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Pre-operative differentiation between renal oncocytoma (RO) and chromophobe renal cell carcinoma (chRCC) is critical due to their different clinical behavior and different clinical treatment decisions. The aim of this study was to develop and validate a CT-based radiomics nomogram for the pre-operative differentiation of RO from chRCC. METHODS A total of 141 patients (84 in training data set and 57 in external validation data set) with ROs (n = 47) or chRCCs (n = 94) were included. Radiomics features were extracted from tri-phasic enhanced-CT images. A clinical model was developed based on significant patient characteristics and CT imaging features. A radiomics signature model was developed and a radiomics score (Rad-score) was calculated. A radiomics nomogram model incorporating the Rad-score and independent clinical factors was developed by multivariate logistic regression analysis. The diagnostic performance was evaluated and validated in three models using ROC curves. RESULTS Twelve features from CT images were selected to develop the radiomics signature. The radiomics nomogram combining a clinical factor (segmental enhancement inversion) and radiomics signature showed an AUC value of 0.988 in the validation set. Decision curve analysis revealed that the diagnostic performance of the radiomics nomogram was better than the clinical model and the radiomics signature. CONCLUSIONS The radiomics nomogram combining clinical factors and radiomics signature performed well for distinguishing RO from chRCC. ADVANCES IN KNOWLEDGE Differential diagnosis between renal oncocytoma (RO) and chromophobe renal cell carcinoma (chRCC) is rather difficult by conventional imaging modalities when a central scar was present.A radiomics nomogram integrated with the radiomics signature, demographics, and CT findings facilitates differentiation of RO from chRCC with improved diagnostic efficacy.The CT-based radiomics nomogram might spare unnecessary surgery for RO.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Qianli Ma
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Pei Nie
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yingmei Zheng
- Health Management Center, The Affiliated Hospital of Qingdao University, Qingdao Shandong, China
| | - Cheng Dong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjian Xu
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
40
|
Li X, Ma Q, Tao C, Liu J, Nie P, Dong C. A CT-based radiomics nomogram for differentiation of small masses (< 4 cm) of renal oncocytoma from clear cell renal cell carcinoma. Abdom Radiol (NY) 2021; 46:5240-5249. [PMID: 34268628 DOI: 10.1007/s00261-021-03213-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Renal oncocytoma (RO) is the most commonly resected benign renal tumor because of misdiagnosis as renal cell carcinoma. This misdiagnosis is generally owing to overlapping imaging features. This study describes the building of a radiomics nomogram based on clinical data and radiomics signature for the preoperative differentiation of RO from clear cell renal cell carcinoma (ccRCC) on tri-phasic contrast-enhanced CT. METHODS A total of 122 patients (85 in training set and 37 in external validation set) with ROs (n = 46) or ccRCCs (n = 76) were enrolled. Patient characteristics and tri-phasic contrast-enhanced CT imaging features were evaluated to build a clinical factors model. A radiomics signature was constructed by extracting radiomics features from tri-phasic contrast-enhanced CT images and a radiomics score (Rad-score) was calculated. A radiomics nomogram was then built by incorporating the Rad-score and significant clinical factors according to a multivariate logistic regression analysis. The diagnostic performance of the above three models was evaluated in training and validation sets. RESULTS Central stellate area and perirenal fascia thickening were selected to build the clinical factors model. Eleven radiomics features were combined to construct the radiomics signature. The AUCs of the radiomics nomogram, which was based on the selected clinical factors and Rad-score, were 0.960 and 0.898 in the training and validation sets, respectively. The decision curves of the radiomics nomogram and radiomics signature in the validation set indicated an overall net benefit over the clinical factors model. CONCLUSION Our radiomics nomogram can effectively predict the preoperative diagnosis of ROs and may therefore be of assistance in sparing unnecessary surgery and tailoring precise therapy. The ROC curves of the clinical model, the radiomics signature and the radiomics nomogram for the validation set. RO = Renal oncocytoma; ccRCC = Clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianli Ma
- Department of Radiology, Qingdao Municipal Hospital, Qingdao, China
| | - Cheng Tao
- Department of Research Management and International Cooperation, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinling Liu
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pei Nie
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng Dong
- Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
41
|
A Reliable Prediction Model for Renal Cell Carcinoma Subtype Based on Radiomic Features from 3D Multiphase Enhanced CT Images. JOURNAL OF ONCOLOGY 2021; 2021:6595212. [PMID: 34594377 PMCID: PMC8478553 DOI: 10.1155/2021/6595212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 12/04/2022]
Abstract
Background This study aimed to develop a prediction model to distinguish renal cell carcinoma (RCC) subtypes. Methods The radiomic features (RFs) from 5 different computed tomography (CT) phases were used in the prediction models: noncontrast phase (NCP), corticomedullary phase (CMP), nephrographic phase (NP), excretory phase (EP), and all-phase (ALL-P). Results For the ALL-P model, all of the RFs obtained from the 4 single-phase images were combined to 420 RFs. The ALL-P model performed the best of all models, with an accuracy of 0.80; the sensitivity and specificity for clear cell RCC (ccRCC) were 0.85 and 0.83; those for papillary RCC (pRCC) were 0.60 and 0.91; those for chromophobe RCC (cRCC) were 0.66 and 0.91, respectively. Binary classification experiments showed for distinguishing ccRCC vs. not-ccRCC that the area under the receiver operating characteristic curve (AUC) of the ALL-P and CMP models was 0.89, but the overall sensitivity/specificity/accuracy of the ALL-P model was better. For cRCC vs. non-cRCC, the ALL-P model had the best performance. Conclusions A reliable prediction model for RCC subtypes was constructed. The performance of the ALL-P prediction model was the best as compared to individual single-phase models and the traditional prediction model.
Collapse
|
42
|
Xu Q, Zhu Q, Liu H, Chang L, Duan S, Dou W, Li S, Ye J. Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists. J Magn Reson Imaging 2021; 55:1251-1259. [PMID: 34462986 DOI: 10.1002/jmri.27900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Differentiating benign from malignant renal tumors is important for selection of the most effective treatment. PURPOSE To develop magnetic resonance imaging (MRI)-based deep learning (DL) models for differentiation of benign and malignant renal tumors and to compare their discrimination performance with the performance of radiomics models and assessment by radiologists. STUDY TYPE Retrospective. POPULATION A total of 217 patients were randomly assigned to a training cohort (N = 173) or a testing cohort (N = 44). FIELD STRENGTH/SEQUENCE Diffusion-weighted imaging (DWI) and fast spin-echo sequence T2-weighted imaging (T2WI) at 3.0T. ASSESSMENT A radiologist manually labeled the region of interest (ROI) on each image. Three DL models using ResNet-18 architecture and three radiomics models using random forest were developed using T2WI alone, DWI alone, and a combination of the two image sets to discriminate between benign and malignant renal tumors. The diagnostic performance of two radiologists was assessed based on professional experience. We also compared the performance of each model and the radiologists. STATISTICAL TESTS The area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of each model and the radiologists. P < 0.05 indicated statistical significance. RESULTS The AUC of the DL models based on T2WI, DWI, and the combination was 0.906, 0.846, and 0.925 in the testing cohorts, respectively. The AUC of the combination DL model was significantly better than that of the models based on individual sequences (0.925 > 0.906, 0.925 > 0.846). The AUC of the radiomics models based on T2WI, DWI, and the combination was 0.824, 0.742, and 0.826 in the testing cohorts, respectively. The AUC of two radiologists was 0.724 and 0.667 in the testing cohorts. CONCLUSION Thus, the MRI-based DL model is useful for differentiating benign from malignant renal tumors in clinic, and the DL model based on T2WI + DWI had the best performance. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Qing Xu
- Department of Medical Imaging, Clinic Medical School, Yangzhou University, Northern Jiangsu Province Hospital, Yangzhou, China
| | - QingQiang Zhu
- Department of Medical Imaging, Clinic Medical School, Yangzhou University, Northern Jiangsu Province Hospital, Yangzhou, China
| | - Hao Liu
- Yizhun Medical AI, Beijing, China
| | | | | | | | - SaiYang Li
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jing Ye
- Department of Medical Imaging, Clinic Medical School, Yangzhou University, Northern Jiangsu Province Hospital, Yangzhou, China
| |
Collapse
|
43
|
Stanzione A, Ricciardi C, Cuocolo R, Romeo V, Petrone J, Sarnataro M, Mainenti PP, Improta G, De Rosa F, Insabato L, Brunetti A, Maurea S. MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study. J Digit Imaging 2021; 33:879-887. [PMID: 32314070 DOI: 10.1007/s10278-020-00336-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Fuhrman nuclear grade is a recognized prognostic factor for patients with clear cell renal cell carcinoma (CCRCC) and its pre-treatment evaluation significantly affects decision-making in terms of management. In this study, we aimed to assess the feasibility of a combined approach of radiomics and machine learning based on MR images for a non-invasive prediction of Fuhrman grade, specifically differentiation of high- from low-grade tumor and grade assessment. Images acquired on a 3-Tesla scanner (T2-weighted and post-contrast) from 32 patients (20 with low-grade and 12 with high-grade tumor) were annotated to generate volumes of interest enclosing CCRCC lesions. After image resampling, normalization, and filtering, 2438 features were extracted. A two-step feature reduction process was used to between 1 and 7 features depending on the algorithm employed. A J48 decision tree alone and in combination with ensemble learning methods were used. In the differentiation between high- and low-grade tumors, all the ensemble methods achieved an accuracy greater than 90%. On the other end, the best results in terms of accuracy (84.4%) in the assessment of tumor grade were achieved by the random forest. These evidences support the hypothesis that a combined radiomic and machine learning approach based on MR images could represent a feasible tool for the prediction of Fuhrman grade in patients affected by CCRCC.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Carlo Ricciardi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy.
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Jessica Petrone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Michela Sarnataro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Research Council (CNR), Naples, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Filippo De Rosa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| |
Collapse
|
44
|
Kuusk T, Neves JB, Tran M, Bex A. Radiomics to better characterize small renal masses. World J Urol 2021; 39:2861-2868. [PMID: 33495866 DOI: 10.1007/s00345-021-03602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Radiomics is a specific field of medical research that uses programmable recognition tools to extract objective information from standard images to combine with clinical data, with the aim of improving diagnostic, prognostic, and predictive accuracy beyond standard visual interpretation. We performed a narrative review of radiomic applications that may support improved characterization of small renal masses (SRM). The main focus of the review was to identify and discuss methods which may accurately differentiate benign from malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat (fat-poor AML) and oncocytoma. Furthermore, prediction of grade, sarcomatoid features, and gene mutations would be of importance in terms of potential clinical utility in prognostic stratification and selecting personalised patient management strategies. METHODS A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 September 2020 to identify the English literature relevant to radiomics applications in renal tumour assessment. In total, 42 articles were included in the analysis in 3 main categories related to SRM: prediction of benign versus malignant SRM, subtypes, and nuclear grade, and other features of aggressiveness. CONCLUSION Overall, studies reported the superiority of radiomics over expert radiological assessment, but were mainly of retrospective design and therefore of low-quality evidence. However, it is clear that radiomics is an attractive modality that has the potential to improve the non-invasive diagnostic accuracy of SRM imaging and prediction of its natural behaviour. Further prospective validation studies of radiomics are needed to augment management algorithms of SRM.
Collapse
Affiliation(s)
- Teele Kuusk
- Urology Department, Darent Valley Hospital, Dartford and Gravesham NHS Trust, Dartford, UK
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
| | - Joana B Neves
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
| | - Maxine Tran
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
- UCL Division of Surgery and Interventional Science, London, UK
| | - Axel Bex
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK.
- UCL Division of Surgery and Interventional Science, London, UK.
- Surgical Oncology Division, Urology Department, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
45
|
Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease. Sci Rep 2021; 11:15144. [PMID: 34312450 PMCID: PMC8313653 DOI: 10.1038/s41598-021-94535-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Heterogeneous clinical manifestations and progression of chronic obstructive pulmonary disease (COPD) affect patient health risk assessment, stratification, and management. Pulmonary function tests are used to diagnose and classify the severity of COPD, but they cannot fully represent the type or range of pathophysiologic abnormalities of the disease. To evaluate whether deep radiomics from chest computed tomography (CT) images can predict mortality in patients with COPD, we designed a convolutional neural network (CNN) model for extracting representative features from CT images and then performed random survival forest to predict survival in COPD patients. We trained CNN-based binary classifier based on six-minute walk distance results (> 440 m or not) and extracted high-throughput image features (i.e., deep radiomics) directly from the last fully connected layer of it. The various sizes of fully connected layers and combinations of deep features were experimented using a discovery cohort with 344 patients from the Korean Obstructive Lung Disease cohort and an external validation cohort with 102 patients from Penang General Hospital in Malaysia. In the integrative analysis of discovery and external validation cohorts, with combining 256 deep features from the coronal slice of the vertebral body and two sagittal slices of the left/right lung, deep radiomics for survival prediction achieved concordance indices of 0.8008 (95% CI, 0.7642–0.8373) and 0.7156 (95% CI, 0.7024–0.7288), respectively. Deep radiomics from CT images could be used to predict mortality in COPD patients.
Collapse
|
46
|
Radiomics models based on enhanced computed tomography to distinguish clear cell from non-clear cell renal cell carcinomas. Sci Rep 2021; 11:13729. [PMID: 34215760 PMCID: PMC8253856 DOI: 10.1038/s41598-021-93069-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
This study was to assess the effect of the predictive model for distinguishing clear cell RCC (ccRCC) from non-clear cell RCC (non-ccRCC) by establishing predictive radiomic models based on enhanced-computed tomography (CT) images of renal cell carcinoma (RCC). A total of 190 cases with RCC confirmed by pathology were retrospectively analyzed, with the patients being randomly divided into two groups, including the training set and testing set according to the ratio of 7:3. A total of 396 radiomic features were computationally obtained and analyzed with the Correlation between features, Univariate Logistics and Multivariate Logistics. Finally, 4 features were selected, and three machine models (Random Forest (RF), Support Vector Machine (SVM) and Logistic Regression (LR)) were established to discriminate RCC subtypes. The radiomics performance was compared with that of radiologist diagnosis. In the testing set, the RF model had an area under the curve (AUC) value of 0.909, a sensitivity of 0.956, and a specificity of 0.538. The SVM model had an AUC value of 0.841, a sensitivity of 1.0, and a specificity of 0.231, in the testing set. The LR model had an AUC value of 0.906, a sensitivity of 0.956, and a specificity of 0.692, in the testing set. The sensitivity and specificity of radiologist diagnosis to differentiate ccRCC from non-ccRCC were 0.850 and 0.581, respectively, with the AUC value of the radiologist diagnosis as 0.69. In conclusion, radiomics models based on CT imaging data show promise for augmenting radiological diagnosis in renal cancer, especially for differentiating ccRCC from non-ccRCC.
Collapse
|
47
|
Grajo JR, Batra NV, Bozorgmehri S, Magnelli LL, Pavlinec J, O'Malley P, Su LM, Crispen PL. Validation of aorta-lesion-attenuation difference on preoperative contrast-enhanced computed tomography scan to differentiate between malignant and benign oncocytic renal tumors. Abdom Radiol (NY) 2021; 46:3269-3279. [PMID: 33665734 DOI: 10.1007/s00261-021-02971-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We previously noted that the aorta-lesion-attenuation difference (ALAD) determined on CT scan discriminated well between chromophobe RCC and oncocytoma. The current evaluation seeks to validate these initial findings in a second cohort of nephrectomy patients. METHODS A retrospective review of preoperative CT scans and surgical pathology was performed on patients undergoing nephrectomy for small, solid renal masses. ALAD was calculated by measuring the difference in Hounsfield units (HU) between the aorta and the lesion of interest on the same image slice on preoperative CT scan. The discriminative ability of ALAD to differentiate malignant pathology from oncocytoma was evaluated by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under curve (AUC) using ROC analysis. RESULTS Twenty-one preoperative CT scans and corresponding pathology reports were reviewed and included in the validation cohort. ALAD values were calculated during the excretory and nephrographic phases. Compared to the training cohort, patients in the validation cohort were significantly older (62 versus 59 years old), had larger tumors (3.7 versus 2.7 cm), and higher stage disease (59% versus 79% T1a disease). Nephrographic ALAD was able to differentiate malignant pathology from oncocytoma in the training and validation cohorts with a sensitivity of 84% versus 73%, specificity of 86% and 67%, PPV of 98% versus 91%, and NPV of 33% versus 35%. The AUC for malignant pathology versus oncocytoma in the validation cohort was 0.72 (95% CI 0.63-0.82). Nephrographic ALAD was able to differentiate chromophobe RCC from oncocytoma in the training and validation cohorts with a sensitivity of 100% versus 67%, specificity of 86% versus 67%, PPV of 75% versus 43%, and NPV of 100% versus 84%. The AUC for chromophobe RCC versus oncocytoma in the validation cohort was 0.72 (95% CI 0.48-0.96). CONCLUSIONS The ability of ALAD to discriminate between chromophobe RCC and oncocytoma was diminished in the validation cohort compared to the training cohort, but remained significant. The current findings support further investigation in the role of ALAD in the management of patients with indeterminate diagnoses of oncocytic neoplasm.
Collapse
Affiliation(s)
- Joseph R Grajo
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Nikhil V Batra
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Shahab Bozorgmehri
- Department of Epidemiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Laura L Magnelli
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Jonathan Pavlinec
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Padraic O'Malley
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Li-Ming Su
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Paul L Crispen
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
48
|
Hussain L, Huang P, Nguyen T, Lone KJ, Ali A, Khan MS, Li H, Suh DY, Duong TQ. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response. Biomed Eng Online 2021; 20:63. [PMID: 34183038 PMCID: PMC8240261 DOI: 10.1186/s12938-021-00899-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/09/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study used machine learning classification of texture features from MRI of breast tumor and peri-tumor at multiple treatment time points in conjunction with molecular subtypes to predict eventual pathological complete response (PCR) to neoadjuvant chemotherapy. Materials and method This study employed a subset of patients (N = 166) with PCR data from the I-SPY-1 TRIAL (2002–2006). This cohort consisted of patients with stage 2 or 3 breast cancer that underwent anthracycline–cyclophosphamide and taxane treatment. Magnetic resonance imaging (MRI) was acquired pre-neoadjuvant chemotherapy, early, and mid-treatment. Texture features were extracted from post-contrast-enhanced MRI, pre- and post-contrast subtraction images, and with morphological dilation to include peri-tumoral tissue. Molecular subtypes and Ki67 were also included in the prediction model. Performance of classification models used the receiver operating characteristics curve analysis including area under the curve (AUC). Statistical analysis was done using unpaired two-tailed t-tests. Results Molecular subtypes alone yielded moderate prediction performance of PCR (AUC = 0.82, p = 0.07). Pre-, early, and mid-treatment data alone yielded moderate performance (AUC = 0.88, 0.72, and 0.78, p = 0.03, 0.13, 0.44, respectively). The combined pre- and early treatment data markedly improved performance (AUC = 0.96, p = 0.0003). Addition of molecular subtypes improved performance slightly for individual time points but substantially for the combined pre- and early treatment (AUC = 0.98, p = 0.0003). The optimal morphological dilation was 3–5 pixels. Subtraction of post- and pre-contrast MRI further improved performance (AUC = 0.98, p = 0.00003). Finally, among the machine-learning algorithms evaluated, the RUSBoosted Tree machine-learning method yielded the highest performance. Conclusion AI-classification of texture features from MRI of breast tumor at multiple treatment time points accurately predicts eventual PCR. Longitudinal changes in texture features and peri-tumoral features further improve PCR prediction performance. Accurate assessment of treatment efficacy early on could minimize unnecessary toxic chemotherapy and enable mid-treatment modification for patients to achieve better clinical outcomes.
Collapse
Affiliation(s)
- Lal Hussain
- Department of Computer Science & IT, Neelum Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.,Department of Computer Science & IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan.,Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA.,Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467, USA
| | - Pauline Huang
- Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Tony Nguyen
- Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Kashif J Lone
- Department of Computer Science & IT, King Abdullah Campus, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir, Pakistan
| | - Amjad Ali
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Salman Khan
- Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Haifang Li
- Department of Radiology, Renaissance School of Medicine At Stony, Brook University, 101 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Doug Young Suh
- College of Electronics and Convergence Engineering, Kyung Hee University, Seoul, South Korea.
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, 111 East 210th Street, Bronx, NY, 10467, USA
| |
Collapse
|
49
|
Value of Quantitative CTTA in Differentiating Malignant From Benign Bosniak III Renal Lesions on CT Images. J Comput Assist Tomogr 2021; 45:528-536. [PMID: 34176873 DOI: 10.1097/rct.0000000000001181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of this study was to investigate whether computed tomography texture analysis can differentiate malignant from benign Bosniak III renal lesions on computed tomography (CT) images. METHODS This retrospective case-control study included 45 patients/lesions (22 benign and 23 malignant lesions) with Bosniak III renal lesions who underwent CT examination. Axial image slices in the unenhanced phase, corticomedullary phase, and nephrographic phase were selected and delineated manually. Computed tomography texture analysis was performed on each lesion during these 3 phases. Histogram-based, gray-level co-occurrence matrix, and gray-level run-length matrix features were extracted using open-source software and analyzed. In addition, receiver operating characteristic curve was constructed, and the area under the receiver operating characteristic curve (AUC) of each feature was constructed. RESULTS Of the 33 extracted features, 16 features showed significant differences (P < 0.05). Eight features were significantly different between the 2 groups after Holm-Bonferroni correction, including 3 histogram-based, 4 gray-level co-occurrence matrix, and 1 gray-level run-length matrix features (P < 0.01). The texture features resulted in the highest AUC of 0.769 ± 0.074. Renal cell carcinomas were labeled with a higher degree of lesion gray-level disorder and lower lesion homogeneity, and a model incorporating the 3 most discriminative features resulted in an AUC of 0.846 ± 0.058. CONCLUSIONS The results of this study showed that CT texture features were related to malignancy in Bosniak III renal lesions. Computed tomography texture analysis might help in differentiating malignant from benign Bosniak III renal lesions on CT images.
Collapse
|
50
|
Frank V, Shariati S, Budai BK, Fejér B, Tóth A, Orbán V, Bérczi V, Kaposi PN. CT texture analysis of abdominal lesions – Part II: Tumors of the Kidney and Pancreas. IMAGING 2021; 13:25-36. [DOI: 10.1556/1647.2021.00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractIt has been proven in a few early studies that radiomic analysis offers a promising opportunity to detect or differentiate between organ lesions based on their unique texture parameters. Recently, the utilization of CT texture analysis (CTTA) has been receiving significant attention, especially for response evaluation and prognostication of different oncological diagnoses. In this review article, we discuss the unique ability of radiomics and its subfield CTTA to diagnose lesions in the pancreas and kidney. We review studies in which CTTA was used for the classification of histology grades in pancreas and kidney tumors. We also review the role of radiogenomics in the prediction of the molecular and genetic subtypes of pancreatic tumors. Furthermore, we provide a short report on recent advancements of radiomic analysis in predicting prognosis and survival of patients with pancreatic and renal cancers.
Collapse
Affiliation(s)
- Veronica Frank
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Sonaz Shariati
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Bettina Katalin Budai
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Bence Fejér
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Ambrus Tóth
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Vince Orbán
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Viktor Bérczi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Pál Novák Kaposi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| |
Collapse
|