1
|
Greco F, D’Andrea V, Buoso A, Cea L, Bernetti C, Beomonte Zobel B, Mallio CA. Advancements in Radiogenomics for Clear Cell Renal Cell Carcinoma: Understanding the Impact of BAP1 Mutation. J Clin Med 2024; 13:3960. [PMID: 38999524 PMCID: PMC11242378 DOI: 10.3390/jcm13133960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Recent advancements in understanding clear cell renal cell carcinoma (ccRCC) have underscored the critical role of the BAP1 gene in its pathogenesis and prognosis. While the von Hippel-Lindau (VHL) mutation has been extensively studied, emerging evidence suggests that mutations in BAP1 and other genes significantly impact patient outcomes. Radiogenomics with and without texture analysis based on CT imaging holds promise in predicting BAP1 mutation status and overall survival outcomes. However, prospective studies with larger cohorts and standardized imaging protocols are needed to validate these findings and translate them into clinical practice effectively, paving the way for personalized treatment strategies in ccRCC. This review aims to summarize the current knowledge on the role of BAP1 mutation in ccRCC pathogenesis and prognosis, as well as the potential of radiogenomics in predicting mutation status and clinical outcomes.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella della Salute, Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi, 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
| | - Valerio D’Andrea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Andrea Buoso
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Laura Cea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Caterina Bernetti
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; (V.D.); (A.B.); (L.C.); (C.B.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| |
Collapse
|
2
|
Greco F, D’Andrea V, Beomonte Zobel B, Mallio CA. Radiogenomics and Texture Analysis to Detect von Hippel-Lindau (VHL) Mutation in Clear Cell Renal Cell Carcinoma. Curr Issues Mol Biol 2024; 46:3236-3250. [PMID: 38666933 PMCID: PMC11049152 DOI: 10.3390/cimb46040203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Radiogenomics, a burgeoning field in biomedical research, explores the correlation between imaging features and genomic data, aiming to link macroscopic manifestations with molecular characteristics. In this review, we examine existing radiogenomics literature in clear cell renal cell carcinoma (ccRCC), the predominant renal cancer, and von Hippel-Lindau (VHL) gene mutation, the most frequent genetic mutation in ccRCC. A thorough examination of the literature was conducted through searches on the PubMed, Medline, Cochrane Library, Google Scholar, and Web of Science databases. Inclusion criteria encompassed articles published in English between 2014 and 2022, resulting in 10 articles meeting the criteria out of 39 initially retrieved articles. Most of these studies applied computed tomography (CT) images obtained from open source and institutional databases. This literature review investigates the role of radiogenomics, with and without texture analysis, in predicting VHL gene mutation in ccRCC patients. Radiogenomics leverages imaging modalities such as CT and magnetic resonance imaging (MRI), to analyze macroscopic features and establish connections with molecular elements, providing insights into tumor heterogeneity and biological behavior. The investigations explored diverse mutations, with a specific focus on VHL mutation, and applied CT imaging features for radiogenomic analysis. Moreover, radiomics and machine learning techniques were employed to predict VHL gene mutations based on CT features, demonstrating promising results. Additional studies delved into the relationship between VHL mutation and body composition, revealing significant associations with adipose tissue distribution. The review concludes by highlighting the potential role of radiogenomics in guiding targeted and selective therapies.
Collapse
Affiliation(s)
- Federico Greco
- Department of Radiology, Cittadella Della Salute Azienda Sanitaria Locale di Lecce, Piazza Filippo Bottazzi 2, 73100 Lecce, Italy
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
| | - Valerio D’Andrea
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Bruno Beomonte Zobel
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| | - Carlo Augusto Mallio
- Research Unit of Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy; (V.D.); (B.B.Z.); (C.A.M.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
| |
Collapse
|
3
|
O’Sullivan NJ, Temperley HC, Horan MT, Corr A, Mehigan BJ, Larkin JO, McCormick PH, Kavanagh DO, Meaney JFM, Kelly ME. Radiogenomics: Contemporary Applications in the Management of Rectal Cancer. Cancers (Basel) 2023; 15:5816. [PMID: 38136361 PMCID: PMC10741704 DOI: 10.3390/cancers15245816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Radiogenomics, a sub-domain of radiomics, refers to the prediction of underlying tumour biology using non-invasive imaging markers. This novel technology intends to reduce the high costs, workload and invasiveness associated with traditional genetic testing via the development of 'imaging biomarkers' that have the potential to serve as an alternative 'liquid-biopsy' in the determination of tumour biological characteristics. Radiogenomics also harnesses the potential to unlock aspects of tumour biology which are not possible to assess by conventional biopsy-based methods, such as full tumour burden, intra-/inter-lesion heterogeneity and the possibility of providing the information of tumour biology longitudinally. Several studies have shown the feasibility of developing a radiogenomic-based signature to predict treatment outcomes and tumour characteristics; however, many lack prospective, external validation. We performed a systematic review of the current literature surrounding the use of radiogenomics in rectal cancer to predict underlying tumour biology.
Collapse
Affiliation(s)
- Niall J. O’Sullivan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Hugo C. Temperley
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Michelle T. Horan
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Alison Corr
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
| | - Brian J. Mehigan
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - John O. Larkin
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Paul H. McCormick
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
| | - Dara O. Kavanagh
- Department of Surgery, Tallaght University Hospital, D24 NR0A Dublin, Ireland
- Department of Surgery, Royal College of Surgeons, D02 YN77 Dublin, Ireland
| | - James F. M. Meaney
- Department of Radiology, St. James’s Hospital, D08 NHY1 Dublin, Ireland; (M.T.H.)
- The National Centre for Advanced Medical Imaging (CAMI), St. James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Michael E. Kelly
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Surgery, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Trinity St. James’s Cancer Institute (TSJCI), D08 NHY1 Dublin, Ireland
| |
Collapse
|
4
|
Mendes Serrão E, Klug M, Moloney BM, Jhaveri A, Lo Gullo R, Pinker K, Luker G, Haider MA, Shinagare AB, Liu X. Current Status of Cancer Genomics and Imaging Phenotypes: What Radiologists Need to Know. Radiol Imaging Cancer 2023; 5:e220153. [PMID: 37921555 DOI: 10.1148/rycan.220153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Ongoing discoveries in cancer genomics and epigenomics have revolutionized clinical oncology and precision health care. This knowledge provides unprecedented insights into tumor biology and heterogeneity within a single tumor, among primary and metastatic lesions, and among patients with the same histologic type of cancer. Large-scale genomic sequencing studies also sparked the development of new tumor classifications, biomarkers, and targeted therapies. Because of the central role of imaging in cancer diagnosis and therapy, radiologists need to be familiar with the basic concepts of genomics, which are now becoming the new norm in oncologic clinical practice. By incorporating these concepts into clinical practice, radiologists can make their imaging interpretations more meaningful and specific, facilitate multidisciplinary clinical dialogue and interventions, and provide better patient-centric care. This review article highlights basic concepts of genomics and epigenomics, reviews the most common genetic alterations in cancer, and discusses the implications of these concepts on imaging by organ system in a case-based manner. This information will help stimulate new innovations in imaging research, accelerate the development and validation of new imaging biomarkers, and motivate efforts to bring new molecular and functional imaging methods to clinical radiology. Keywords: Oncology, Cancer Genomics, Epignomics, Radiogenomics, Imaging Markers Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
- Eva Mendes Serrão
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Maximiliano Klug
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Brian M Moloney
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Aaditeya Jhaveri
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Roberto Lo Gullo
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Katja Pinker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Gary Luker
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Masoom A Haider
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Atul B Shinagare
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| | - Xiaoyang Liu
- From the Joint Department of Medical Imaging, University Medical Imaging Toronto, University Health Network, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2 (E.M.S., A.J., M.A.H., X.L.); Division of Diagnostic Imaging, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel (M.K.); Department of Radiology, The Christie NHS Trust, Manchester, England (B.M.M.); Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, Weill Medical College of Cornell University, New York, NY (R.L.G., K.P.); Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Mich (G.L.); Lunenfeld Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Toronto, Ontario, Canada (M.A.H.); and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.B.S.)
| |
Collapse
|
5
|
Guo C, Zhou H, Chen X, Feng Z. Computed tomography texture-based models for predicting KIT exon 11 mutation of gastrointestinal stromal tumors. Heliyon 2023; 9:e20983. [PMID: 37876490 PMCID: PMC10590931 DOI: 10.1016/j.heliyon.2023.e20983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Background KIT exon 11 mutation in gastrointestinal stromal tumors (GISTs) is associated with treatment strategies. However, few studies have shown the role of imaging-based texture analysis in KIT exon 11 mutation in GISTs. In this study, we aimed to show the association between computed tomography (CT)-based texture features and KIT exon 11 mutation. Methods Ninety-five GISTs confirmed by surgery and identified with mutational genotype of KIT were included in this study. By amplifying the samples using over-sampling technique, a total of 183 region of interest (ROI) segments were extracted from 63 patients as training cohort. The 63 new ROI segments were extracted from the 63 patients as internal validation cohort. Thirty-two patients who underwent KIT exon 11 mutation test during 2021-2023 was selected as external validation cohort. The textural parameters were evaluated both in training cohort and validation cohort. Least absolute shrinkage and selection operator (LASSO) algorithms and logistic regression analysis were used to select the discriminant features. Results Three of textural features were obtained using LASSO analysis. Logistic regression analysis showed that patients' age, tumor location and radiomics features were significantly associated with KIT exon 11 mutation (p < 0.05). A nomogram was developed based on the associated factors. The area under the curve (AUC) of clinical features, radiomics features and their combination in training cohort was 0.687 (95 % CI: 0.604-0.771), 0.829 (95 % CI: 0.768-0.890) and 0.874 (95 % CI: 0.822-0.926), respectively. The AUC of radiomics features in internal validation cohort and external cohort was 0.880 (95 % CI: 0.796-0.964) and 0.827 (95%CI: 0.667-0.987), respectively. Conclusion The CT texture-based model can be used to predict KIT exon 11 mutation in GISTs.
Collapse
Affiliation(s)
- Chuangen Guo
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Hao Zhou
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 hanzhong Road, Nanjing, 210029, China
| | - Xiao Chen
- Department of Radiology, The Affiliated Hospital of Nanjing University of Chinese Medicine, 155 hanzhong Road, Nanjing, 210029, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| |
Collapse
|
6
|
Toffoli T, Saut O, Etchegaray C, Jambon E, Le Bras Y, Grenier N, Marcelin C. Differentiation of Small Clear Renal Cell Carcinoma and Oncocytoma through Magnetic Resonance Imaging-Based Radiomics Analysis: Toward the End of Percutaneous Biopsy. J Pers Med 2023; 13:1444. [PMID: 37888055 PMCID: PMC10608459 DOI: 10.3390/jpm13101444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
PURPOSE The aim of this study was to ascertain whether radiomics data can assist in differentiating small (<4 cm) clear cell renal cell carcinomas (ccRCCs) from small oncocytomas using T2-weighted magnetic resonance imaging (MRI). MATERIAL AND METHODS This retrospective study incorporated 48 tumors, 28 of which were ccRCCs and 20 were oncocytomas. All tumors were less than 4 cm in size and had undergone pre-biopsy or pre-surgery MRI. Following image pre-processing, 102 radiomics features were evaluated. A univariate analysis was performed using the Wilcoxon rank-sum test with Bonferroni correction. We compared multiple radiomics pipelines of normalization, feature selection, and machine learning (ML) algorithms, including random forest (RF), logistic regression (LR), AdaBoost, K-nearest neighbor, and support vector machine, using a supervised ML approach. RESULTS No statistically significant features were identified via the univariate analysis with Bonferroni correction. The most effective algorithm was identified using a pipeline incorporating standard normalization, RF-based feature selection, and LR, which achieved an area under the curve (AUC) of 83%, accuracy of 73%, sensitivity of 79%, and specificity of 65%. Subsequently, the most significant features were identified from this algorithm, and two groups of uncorrelated features were established based on Pearson correlation scores. Using these features, an algorithm was established after a pipeline of standard normalization and LR, achieving an AUC of 90%, an accuracy of 77%, sensitivity of 83%, and specificity of 69% for distinguishing ccRCCs from oncocytomas. CONCLUSIONS Radiomics analysis based on T2-weighted MRI can aid in distinguishing small ccRCCs from small oncocytomas. However, it is not superior to standard multiparameter renal MRI and does not yet allow us to dispense with percutaneous biopsy.
Collapse
Affiliation(s)
- Thibault Toffoli
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Imaging and Interventional Radiology, Hôpital Pellegrin, 33000 Bordeaux, France; (T.T.); (E.J.); (Y.L.B.)
| | - Olivier Saut
- University of Bordeaux, IMB, UMR CNRS 5251, INRIA Project Team Monc, F-33400 Talence, France; (O.S.); (C.E.); (N.G.)
| | - Christele Etchegaray
- University of Bordeaux, IMB, UMR CNRS 5251, INRIA Project Team Monc, F-33400 Talence, France; (O.S.); (C.E.); (N.G.)
| | - Eva Jambon
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Imaging and Interventional Radiology, Hôpital Pellegrin, 33000 Bordeaux, France; (T.T.); (E.J.); (Y.L.B.)
| | - Yann Le Bras
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Imaging and Interventional Radiology, Hôpital Pellegrin, 33000 Bordeaux, France; (T.T.); (E.J.); (Y.L.B.)
| | - Nicolas Grenier
- University of Bordeaux, IMB, UMR CNRS 5251, INRIA Project Team Monc, F-33400 Talence, France; (O.S.); (C.E.); (N.G.)
| | - Clément Marcelin
- Centre Hospitalier Universitaire (CHU) de Bordeaux, Imaging and Interventional Radiology, Hôpital Pellegrin, 33000 Bordeaux, France; (T.T.); (E.J.); (Y.L.B.)
- Bordeaux Institute of Oncology, BRIC U1312, INSERM, Bordeaux University, 33000 Bordeaux, France
| |
Collapse
|
7
|
Semenescu LE, Tataranu LG, Dricu A, Ciubotaru GV, Radoi MP, Rodriguez SMB, Kamel A. A Neurosurgical Perspective on Brain Metastases from Renal Cell Carcinoma: Multi-Institutional, Retrospective Analysis. Biomedicines 2023; 11:2485. [PMID: 37760926 PMCID: PMC10526360 DOI: 10.3390/biomedicines11092485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND While acknowledging the generally poor prognostic features of brain metastases from renal cell carcinoma (BM RCC), it is important to be aware of the fact that neurosurgery still plays a vital role in managing this disease, even though we have entered an era of targeted therapies. Notwithstanding their initial high effectiveness, these agents often fail, as tumors develop resistance or relapse. METHODS The authors of this study aimed to evaluate patients presenting with BM RCC and their outcomes after being treated in the Neurosurgical Department of Clinical Emergency Hospital "Bagdasar-Arseni", and the Neurosurgical Department of the National Institute of Neurology and Neurovascular Diseases, Bucharest, Romania. The study is based on a thorough appraisal of the patient's demographic and clinicopathological data and is focused on the strategic role of neurosurgery in BM RCC. RESULTS A total of 24 patients were identified with BM RCC, of whom 91.6% had clear-cell RCC (ccRCC) and 37.5% had a prior nephrectomy. Only 29.1% of patients harbored extracranial metastases, while 83.3% had a single BM RCC. A total of 29.1% of patients were given systemic therapy. Neurosurgical resection of the BM was performed in 23 out of 24 patients. Survival rates were prolonged in patients who underwent nephrectomy, in patients who received systemic therapy, and in patients with a single BM RCC. Furthermore, higher levels of hemoglobin were associated in our study with a higher number of BMs. CONCLUSION Neurosurgery is still a cornerstone in the treatment of symptomatic BM RCC. Among the numerous advantages of neurosurgical intervention, the most important is represented by the quick reversal of neurological manifestations, which in most cases can be life-saving.
Collapse
Affiliation(s)
- Liliana Eleonora Semenescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2–4, 710204 Craiova, Romania; (L.E.S.); (A.D.)
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (G.V.C.); (S.M.B.R.); (A.K.)
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2–4, 710204 Craiova, Romania; (L.E.S.); (A.D.)
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (G.V.C.); (S.M.B.R.); (A.K.)
| | - Mugurel Petrinel Radoi
- Neurosurgical Department, National Institute of Neurology and Neurovascular Diseases, Soseaua Berceni 10, 041914 Bucharest, Romania;
| | - Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (G.V.C.); (S.M.B.R.); (A.K.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (G.V.C.); (S.M.B.R.); (A.K.)
| |
Collapse
|
8
|
Chen Y, Liu Z, Yu Q, Sun X, Wang S, Zhu Q, Yang J, Jiang R. Investigation of Underlying Biological Association and Targets between Rejection of Renal Transplant and Renal Cancer. Int J Genomics 2023; 2023:5542233. [PMID: 37261105 PMCID: PMC10229252 DOI: 10.1155/2023/5542233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023] Open
Abstract
Background Post-renal transplant patients have a high likelihood of developing renal cancer. However, the underlying biological mechanisms behind the development of renal cancer in post-kidney transplant patients remain to be elucidated. Therefore, this study aimed to investigate the underlying biological mechanism behind the development of renal cell carcinoma in post-renal transplant patients. Methods Next-generation sequencing data and corresponding clinical information of patients with clear cell renal cell carcinoma (ccRCC) were obtained from The Cancer Genome Atlas Program (TCGA) database. The microarray data of kidney transplant patients with or without rejection response was obtained from the Gene Expression Omnibus (GEO) database. In addition, statistical analysis was conducted in R software. Results We identified 55 upregulated genes in the transplant patients with rejection from the GEO datasets (GSE48581, GSE36059, and GSE98320). Furthermore, we conducted bioinformatics analyses, which showed that all of these genes were upregulated in ccRCC tissue. Moreover, a prognosis model was constructed based on four rejection-related genes, including PLAC8, CSTA, AIM2, and LYZ. The prognosis model showed excellent performance in prognosis prediction in a ccRCC cohort. In addition, the machine learning algorithms identified 19 rejection-related genes, including PLAC8, involved in ccRCC occurrence. Finally, the PLAC8 was selected for further research, including its clinical and biological role. Conclusion In all, our study provides novel insight into the transition from the rejection of renal transplant to renal cancer. Meanwhile, PLAC8 could be a potential biomarker for ccRCC diagnosis and prognosis in post-kidney transplant patients.
Collapse
Affiliation(s)
- Yinwei Chen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanpeng Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Yu
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Xu Sun
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuai Wang
- Department of Orthopedics, Huai'an No. 1 People's Hospital, Huai'an, China
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Yang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rongjiang Jiang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Demirel E, Dilek O. Relationship between body composition and PBRM1 mutations in clear cell renal cell carcinoma: a propensity score matching analysis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2023; 69:e20220415. [PMID: 37222312 DOI: 10.1590/1806-9282.20220415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/20/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE This study aimed to examine the relationship between body muscle and adipose tissue composition in clear cell renal cell carcinoma patients with PBRM1 gene mutation. METHODS Cancer Genome Atlas Kidney clear cell renal cell carcinoma and Clinical Proteomic Tumor Analysis Consortium clear cell renal cell carcinoma collections were retrieved from the Cancer Imaging Archive. A total of 291 clear cell renal cell carcinoma patients were included in the study retrospectively. Patients' characteristics were obtained from Cancer Imaging Archive. Body composition was assessed with abdominal computed tomography using the automated artificial intelligence software (AID-U™, iAID Inc., Seoul, Korea). Body composition parameters of the patients were calculated. To investigate the net effect of body composition, the propensity score matching procedure was applied over age, gender, and T-stage parameters. RESULTS Of the patients, 184 were males and 107 were females. Mutations in the PBRM1 gene were detected in 77 of the patients. While there was no difference in adipose tissue areas between the PBRM1 mutation group and those without PBRM1 mutation, statistically significant differences were found in normal attenuated muscle area parameters. CONCLUSION This study shows that there was no difference between adipose tissue areas in patients with PBMR1 mutation, but normal attenuated muscle area was found to be higher in PBRM1 patients.
Collapse
Affiliation(s)
- Emin Demirel
- Emirdag City of Hospital, Department of Radiology - Afyonkarahisar, Turkey
| | - Okan Dilek
- University of Health Sciences, Adana City Training and Research Hospital, Department of Radiology - Adana, Turkey
| |
Collapse
|
10
|
O'Sullivan NJ, Kelly ME. Radiomics and Radiogenomics in Pelvic Oncology: Current Applications and Future Directions. Curr Oncol 2023; 30:4936-4945. [PMID: 37232830 DOI: 10.3390/curroncol30050372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Radiomics refers to the conversion of medical imaging into high-throughput, quantifiable data in order to analyse disease patterns, guide prognosis and aid decision making. Radiogenomics is an extension of radiomics that combines conventional radiomics techniques with molecular analysis in the form of genomic and transcriptomic data, serving as an alternative to costly, labour-intensive genetic testing. Data on radiomics and radiogenomics in the field of pelvic oncology remain novel concepts in the literature. We aim to perform an up-to-date analysis of current applications of radiomics and radiogenomics in the field of pelvic oncology, particularly focusing on the prediction of survival, recurrence and treatment response. Several studies have applied these concepts to colorectal, urological, gynaecological and sarcomatous diseases, with individual efficacy yet poor reproducibility. This article highlights the current applications of radiomics and radiogenomics in pelvic oncology, as well as the current limitations and future directions. Despite a rapid increase in publications investigating the use of radiomics and radiogenomics in pelvic oncology, the current evidence is limited by poor reproducibility and small datasets. In the era of personalised medicine, this novel field of research has significant potential, particularly for predicting prognosis and guiding therapeutic decisions. Future research may provide fundamental data on how we treat this cohort of patients, with the aim of reducing the exposure of high-risk patients to highly morbid procedures.
Collapse
Affiliation(s)
- Niall J O'Sullivan
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Michael E Kelly
- The Trinity St. James's Cancer Institute, D08 NHY1 Dublin, Ireland
- School of Medicine, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
11
|
Nolazco JI, Soerensen SJC, Chung BI. Biomarkers for the Detection and Surveillance of Renal Cancer. Urol Clin North Am 2023; 50:191-204. [PMID: 36948666 DOI: 10.1016/j.ucl.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Renal cell carcinoma (RCC) is a heterogeneous disease characterized by a broad spectrum of disorders in terms of genetics, molecular and clinical characteristics. There is an urgent need for noninvasive tools to stratify and select patients for treatment accurately. In this review, we analyze serum, urinary, and imaging biomarkers that have the potential to detect malignant tumors in patients with RCC. We discuss the characteristics of these numerous biomarkers and their ability to be used routinely in clinical practice. The development of biomarkers continues to evolve with promising prospects.
Collapse
Affiliation(s)
- José Ignacio Nolazco
- Division of Urological Surgery, Brigham and Women's Hospital, Harvard Medical School, 45 Francis Street, Boston, MA 02115, USA; Servicio de Urología, Hospital Universitario Austral, Universidad Austral, Av Juan Domingo Perón 1500, B1629AHJ Pilar, Argentina.
| | - Simon John Christoph Soerensen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA; Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, USA
| | - Benjamin I Chung
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Ferro M, Musi G, Marchioni M, Maggi M, Veccia A, Del Giudice F, Barone B, Crocetto F, Lasorsa F, Antonelli A, Schips L, Autorino R, Busetto GM, Terracciano D, Lucarelli G, Tataru OS. Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects. Int J Mol Sci 2023; 24:4615. [PMID: 36902045 PMCID: PMC10003020 DOI: 10.3390/ijms24054615] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Alessandro Veccia
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Antonelli
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
13
|
Posada Calderon L, Eismann L, Reese SW, Reznik E, Hakimi AA. Advances in Imaging-Based Biomarkers in Renal Cell Carcinoma: A Critical Analysis of the Current Literature. Cancers (Basel) 2023; 15:cancers15020354. [PMID: 36672304 PMCID: PMC9856305 DOI: 10.3390/cancers15020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cross-sectional imaging is the standard diagnostic tool to determine underlying biology in renal masses, which is crucial for subsequent treatment. Currently, standard CT imaging is limited in its ability to differentiate benign from malignant disease. Therefore, various modalities have been investigated to identify imaging-based parameters to improve the noninvasive diagnosis of renal masses and renal cell carcinoma (RCC) subtypes. MRI was reported to predict grading of RCC and to identify RCC subtypes, and has been shown in a small cohort to predict the response to targeted therapy. Dynamic imaging is promising for the staging and diagnosis of RCC. PET/CT radiotracers, such as 18F-fluorodeoxyglucose (FDG), 124I-cG250, radiolabeled prostate-specific membrane antigen (PSMA), and 11C-acetate, have been reported to improve the identification of histology, grading, detection of metastasis, and assessment of response to systemic therapy, and to predict oncological outcomes. Moreover, 99Tc-sestamibi and SPECT scans have shown promising results in distinguishing low-grade RCC from benign lesions. Radiomics has been used to further characterize renal masses based on semantic and textural analyses. In preliminary studies, integrated machine learning algorithms using radiomics proved to be more accurate in distinguishing benign from malignant renal masses compared to radiologists' interpretations. Radiomics and radiogenomics are used to complement risk classification models to predict oncological outcomes. Imaging-based biomarkers hold strong potential in RCC, but require standardization and external validation before integration into clinical routines.
Collapse
Affiliation(s)
- Lina Posada Calderon
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lennert Eismann
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen W. Reese
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ed Reznik
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abraham Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
14
|
Ferro M, Crocetto F, Barone B, del Giudice F, Maggi M, Lucarelli G, Busetto GM, Autorino R, Marchioni M, Cantiello F, Crocerossa F, Luzzago S, Piccinelli M, Mistretta FA, Tozzi M, Schips L, Falagario UG, Veccia A, Vartolomei MD, Musi G, de Cobelli O, Montanari E, Tătaru OS. Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review. Ther Adv Urol 2023; 15:17562872231164803. [PMID: 37113657 PMCID: PMC10126666 DOI: 10.1177/17562872231164803] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.
Collapse
Affiliation(s)
| | - Felice Crocetto
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Francesco del Giudice
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation
Unit, Department of Emergency and Organ Transplantation, University of Bari,
Bari, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ
Transplantation, University of Foggia, Foggia, Italy
| | | | - Michele Marchioni
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti,
Italy
| | - Francesco Cantiello
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Stefano Luzzago
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Mattia Piccinelli
- Cancer Prognostics and Health Outcomes Unit,
Division of Urology, University of Montréal Health Center, Montréal, QC,
Canada
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Tozzi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Luigi Schips
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
| | | | - Alessandro Veccia
- Urology Unit, Azienda Ospedaliera
Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology,
George Emil Palade University of Medicine, Pharmacy, Science and Technology
of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of
Vienna, Vienna, Austria
| | - Gennaro Musi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca’
Granda – Ospedale Maggiore Policlinico, Department of Clinical Sciences and
Community Health, University of Milan, Milan, Italy
| | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral
Studies (IOSUD), George Emil Palade University of Medicine, Pharmacy,
Science and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
15
|
Han JH, Jeong SH, Han S, Yuk HD, Ku JH, Kwak C, Kim HH, Jeong CW. Association between decreased ipsilateral renal function and aggressive behavior in renal cell carcinoma. BMC Cancer 2022; 22:1143. [PMID: 36344958 PMCID: PMC9639309 DOI: 10.1186/s12885-022-10268-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To assess prognostic value of pre-operative ipsilateral split renal function (SRF) on disease-free survival (DFS) and its association with aggressive pathological features in renal cell carcinoma (RCC) patients. METHODS: We examined patients registered in SNUG-RCC-Nx who underwent partial or radical nephrectomy at Seoul National University Hospital between January 1, 2010 and December 31, 2020. Patients with the following criteria were excluded from the study. 1) non-kidney origin cancer or benign renal tumor, 2) no pre-operative Tc 99 m-DTPA renal scan, 3) single kidney status or previous partial or radical nephrectomy, and 4) bilateral renal mass. Finally, 1,078 patients were included. RESULTS Among 1,078 patients, 899 (83.4%) showed maintained ipsilateral SRF on DTPA renal scan; 179 patients (16.6%) showed decreased SRF. The decreased SRF group showed significantly large tumor size (maintained vs. decreased SRF; 3.31 ± 2.15 vs. 6.85 ± 3.25, p < 0.001), high Fuhrman grade (grade 3-4) (41.7% vs. 55.6%, p < 0.001), and high T stage (T stage 3-4) (9.0% vs. 20.1%, p < 0.001). Pathological invasive features, including invasion of the renal capsule, perirenal fat, renal sinus fat, vein, and collecting duct system, were associated with low SRF of the ipsilateral kidney. Univariate Cox regression analysis identified higher SSIGN (The stage, size, grade, and necrosis) score and decreased ipsilateral SRF as significant risk factors, while multivariate analysis showed SSIGN (5-7) (hazard ratio [HR] 11.9, p < 0.001) and SSIGN (8-10) (HR 69.2, p < 0.001) were significantly associated with shortened DFS, while decreased ipsilateral SRF (HR 1.75, p = 0.065) showed borderline significance. Kaplan-Meier analysis showed that decreased ipsilateral SRF (< 45%) group had shorter DFS than the other group (median DFS: 90.3 months vs. not reached, p < 0.001). CONCLUSIONS Among unilateral RCC patients, those with low ipsilateral SRF showed poor prognosis with pathologically invasive features. Our novel approach may facilitate risk stratification in RCC patients, helping formulate a treatment strategy.
Collapse
Affiliation(s)
- Jang Hee Han
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Seung-Hwan Jeong
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Sanghun Han
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
| | - Hyeong Dong Yuk
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ja Hyeon Ku
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyeon Hoe Kim
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Korea.
- Department of Urology, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
16
|
The Next Paradigm Shift in the Management of Clear Cell Renal Cancer: Radiogenomics—Definition, Current Advances, and Future Directions. Cancers (Basel) 2022; 14:cancers14030793. [PMID: 35159060 PMCID: PMC8833879 DOI: 10.3390/cancers14030793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
With improved molecular characterization of clear cell renal cancer and advances in texture analysis as well as machine learning, diagnostic radiology is primed to enter personalized medicine with radiogenomics: the identification of relationships between tumor image features and underlying genomic expression. By developing surrogate image biomarkers, clinicians can augment their ability to non-invasively characterize a tumor and predict clinically relevant outcomes (i.e., overall survival; metastasis-free survival; or complete/partial response to treatment). It is thus important for clinicians to have a basic understanding of this nascent field, which can be difficult due to the technical complexity of many of the studies. We conducted a review of the existing literature for radiogenomics in clear cell kidney cancer, including original full-text articles until September 2021. We provide a basic description of radiogenomics in diagnostic radiology; summarize existing literature on relationships between image features and gene expression patterns, either computationally or by radiologists; and propose future directions to facilitate integration of this field into the clinical setting.
Collapse
|
17
|
Khodabakhshi Z, Amini M, Mostafaei S, Haddadi Avval A, Nazari M, Oveisi M, Shiri I, Zaidi H. Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 2021. [PMID: 34382117 DOI: 10.1007/s10278-021-00500-y/figures/5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients' overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival (OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area density, and median are significantly correlated with OS of RCC patients.
Collapse
Affiliation(s)
- Zahra Khodabakhshi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Nazari
- Department of Biomedical Engineering and Medical Physics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Oveisi
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine , Kings College London, London, UK
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva 4, Switzerland.
- Geneva University Neurocenter, Geneva University, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
18
|
Wang X, Song G, Jiang H, Zheng L, Pang P, Xu J. Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma? Abdom Radiol (NY) 2021; 46:4289-4300. [PMID: 33909090 DOI: 10.1007/s00261-021-03090-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The purpose was to investigate the value of texture analysis in predicting the World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading of localized clear cell renal cell carcinoma (ccRCC) based on unenhanced CT (UECT). MATERIALS AND METHODS Pathologically confirmed subjects (n = 104) with localized ccRCC who received UECT scanning were collected retrospectively for this study. All cases were classified into low grade (n = 53) and high grade (n = 51) according to the WHO/ISUP grading and were randomly divided into training set and test set as a ratio of 7:3. Using 3D-ROI segmentation on UECT images and extracted ninety-three texture features (first-order, gray-level co-occurrence matrix [GLCM], gray-level run length matrix [GLRLM], gray-level size zone matrix [GLSZM], neighboring gray tone difference matrix [NGTDM] and gray-level dependence matrix [GLDM] features). Univariate analysis and the least absolute shrinkage selection operator (LASSO) regression were used for feature dimension reduction, and logistic regression classifier was used to develop the prediction model. Using receiver operating characteristic (ROC) curve, bar chart and calibration curve to evaluate the performance of the prediction model. RESULTS Dimension reduction screened out eight optimal texture features (maximum, median, dependence variance [DV], long run emphasis [LRE], run entropy [RE], gray-level non-uniformity [GLN], gray-level variance [GLV] and large area low gray-level emphasis [LALGLE]), and then the prediction model was developed according to the linear combination of these features. The accuracy, sensitivity, specificity, and AUC of the model in training set were 86.1%, 91.4%, 81.1%, and 0.937, respectively. The accuracy, sensitivity, specificity, and AUC of the model in test set were 81.2%, 81.2%, 81.2%, and 0.844, respectively. The calibration curves showed good calibration both in training set and test set (P > 0.05). CONCLUSION This study has demonstrated that the radiomics model based on UECT texture analysis could accurately evaluate the WHO/ISUP grading of localized ccRCC.
Collapse
Affiliation(s)
- Xu Wang
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Ge Song
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | - Haitao Jiang
- Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China.
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China.
| | - Linfeng Zheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
| | | | - Jingjing Xu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
- Department of Pathology, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), No 1, Banshan East Road, Hangzhou, 310022, Zhejiang, China
| |
Collapse
|
19
|
Stanzione A, Ricciardi C, Cuocolo R, Romeo V, Petrone J, Sarnataro M, Mainenti PP, Improta G, De Rosa F, Insabato L, Brunetti A, Maurea S. MRI Radiomics for the Prediction of Fuhrman Grade in Clear Cell Renal Cell Carcinoma: a Machine Learning Exploratory Study. J Digit Imaging 2021; 33:879-887. [PMID: 32314070 DOI: 10.1007/s10278-020-00336-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Fuhrman nuclear grade is a recognized prognostic factor for patients with clear cell renal cell carcinoma (CCRCC) and its pre-treatment evaluation significantly affects decision-making in terms of management. In this study, we aimed to assess the feasibility of a combined approach of radiomics and machine learning based on MR images for a non-invasive prediction of Fuhrman grade, specifically differentiation of high- from low-grade tumor and grade assessment. Images acquired on a 3-Tesla scanner (T2-weighted and post-contrast) from 32 patients (20 with low-grade and 12 with high-grade tumor) were annotated to generate volumes of interest enclosing CCRCC lesions. After image resampling, normalization, and filtering, 2438 features were extracted. A two-step feature reduction process was used to between 1 and 7 features depending on the algorithm employed. A J48 decision tree alone and in combination with ensemble learning methods were used. In the differentiation between high- and low-grade tumors, all the ensemble methods achieved an accuracy greater than 90%. On the other end, the best results in terms of accuracy (84.4%) in the assessment of tumor grade were achieved by the random forest. These evidences support the hypothesis that a combined radiomic and machine learning approach based on MR images could represent a feasible tool for the prediction of Fuhrman grade in patients affected by CCRCC.
Collapse
Affiliation(s)
- Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Carlo Ricciardi
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Renato Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy.
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Jessica Petrone
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Michela Sarnataro
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Pier Paolo Mainenti
- Institute of Biostructures and Bioimaging of the National Research Council (CNR), Naples, Italy
| | - Giovanni Improta
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Filippo De Rosa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Luigi Insabato
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| | - Simone Maurea
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via S. Pansini, 5, 80123, Naples, Italy
| |
Collapse
|
20
|
Overall Survival Prediction in Renal Cell Carcinoma Patients Using Computed Tomography Radiomic and Clinical Information. J Digit Imaging 2021; 34:1086-1098. [PMID: 34382117 PMCID: PMC8554934 DOI: 10.1007/s10278-021-00500-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/28/2021] [Accepted: 07/22/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this work is to investigate the applicability of radiomic features alone and in combination with clinical information for the prediction of renal cell carcinoma (RCC) patients’ overall survival after partial or radical nephrectomy. Clinical studies of 210 RCC patients from The Cancer Imaging Archive (TCIA) who underwent either partial or radical nephrectomy were included in this study. Regions of interest (ROIs) were manually defined on CT images. A total of 225 radiomic features were extracted and analyzed along with the 59 clinical features. An elastic net penalized Cox regression was used for feature selection. Accelerated failure time (AFT) with the shared frailty model was used to determine the effects of the selected features on the overall survival time. Eleven radiomic and twelve clinical features were selected based on their non-zero coefficients. Tumor grade, tumor malignancy, and pathology t-stage were the most significant predictors of overall survival (OS) among the clinical features (p < 0.002, < 0.02, and < 0.018, respectively). The most significant predictors of OS among the selected radiomic features were flatness, area density, and median (p < 0.02, < 0.02, and < 0.05, respectively). Along with important clinical features, such as tumor heterogeneity and tumor grade, imaging biomarkers such as tumor flatness, area density, and median are significantly correlated with OS of RCC patients.
Collapse
|
21
|
Katabathina VS, Marji H, Khanna L, Ramani N, Yedururi S, Dasyam A, Menias CO, Prasad SR. Decoding Genes: Current Update on Radiogenomics of Select Abdominal Malignancies. Radiographics 2021; 40:1600-1626. [PMID: 33001791 DOI: 10.1148/rg.2020200042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Technologic advances in chromosomal analysis and DNA sequencing have enabled genome-wide analysis of cancer cells, yielding considerable data on the genetic basis of malignancies. Evolving knowledge of tumor genetics and oncologic pathways has led to a better understanding of histopathologic features, tumor classification, tumor biologic characteristics, and imaging findings and discovery of targeted therapeutic agents. Radiogenomics is a rapidly evolving field of imaging research aimed at correlating imaging features with gene mutations and gene expression patterns, and it may provide surrogate imaging biomarkers that may supplant genetic tests and be used to predict treatment response and prognosis and guide personalized treatment options. Multidetector CT, multiparametric MRI, and PET with use of multiple radiotracers are some of the imaging techniques commonly used to assess radiogenomic associations. Select abdominal malignancies demonstrate characteristic imaging features that correspond to gene mutations. Recent advances have enabled us to understand the genetics of steatotic and nonsteatotic hepatocellular adenomas, a plethora of morphologic-molecular subtypes of hepatic malignancies, a variety of clear cell and non-clear cell renal cell carcinomas, a myriad of hereditary and sporadic exocrine and neuroendocrine tumors of the pancreas, and the development of targeted therapeutic agents for gastrointestinal stromal tumors based on characteristic KIT gene mutations. Mutations associated with aggressive phenotypes of these malignancies can sometimes be predicted on the basis of their imaging characteristics. Radiologists should be familiar with the genetics and pathogenesis of common cancers that have associated imaging biomarkers, which can help them be integral members of the cancer management team and guide clinicians and pathologists. Online supplemental material is available for this article. ©RSNA, 2020 See discussion on this article by Luna (pp 1627-1630).
Collapse
Affiliation(s)
- Venkata S Katabathina
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Haneen Marji
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Lokesh Khanna
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Nisha Ramani
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Sireesha Yedururi
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Anil Dasyam
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Christine O Menias
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Srinivasa R Prasad
- From the Department of Radiology, University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 (V.S.K., H.M., L.K.); Departments of Radiology (S.Y., S.R.P.) and Pathology (N.R.), University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| |
Collapse
|
22
|
Frank V, Shariati S, Budai BK, Fejér B, Tóth A, Orbán V, Bérczi V, Kaposi PN. CT texture analysis of abdominal lesions – Part II: Tumors of the Kidney and Pancreas. IMAGING 2021; 13:25-36. [DOI: 10.1556/1647.2021.00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
AbstractIt has been proven in a few early studies that radiomic analysis offers a promising opportunity to detect or differentiate between organ lesions based on their unique texture parameters. Recently, the utilization of CT texture analysis (CTTA) has been receiving significant attention, especially for response evaluation and prognostication of different oncological diagnoses. In this review article, we discuss the unique ability of radiomics and its subfield CTTA to diagnose lesions in the pancreas and kidney. We review studies in which CTTA was used for the classification of histology grades in pancreas and kidney tumors. We also review the role of radiogenomics in the prediction of the molecular and genetic subtypes of pancreatic tumors. Furthermore, we provide a short report on recent advancements of radiomic analysis in predicting prognosis and survival of patients with pancreatic and renal cancers.
Collapse
Affiliation(s)
- Veronica Frank
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Sonaz Shariati
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Bettina Katalin Budai
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Bence Fejér
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Ambrus Tóth
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Vince Orbán
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Viktor Bérczi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | - Pál Novák Kaposi
- Department of Radiology, Medical Imaging Centre, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| |
Collapse
|
23
|
Chen X, Wang H, Huang K, Liu H, Ding H, Zhang L, Zhang T, Yu W, He L. CT-Based Radiomics Signature With Machine Learning Predicts MYCN Amplification in Pediatric Abdominal Neuroblastoma. Front Oncol 2021; 11:687884. [PMID: 34109133 PMCID: PMC8181422 DOI: 10.3389/fonc.2021.687884] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose MYCN amplification plays a critical role in defining high-risk subgroup of patients with neuroblastoma. We aimed to develop and validate the CT-based machine learning models for predicting MYCN amplification in pediatric abdominal neuroblastoma. Methods A total of 172 patients with MYCN amplified (n = 47) and non-amplified (n = 125) were enrolled. The cohort was randomly stratified sampling into training and testing groups. Clinicopathological parameters and radiographic features were selected to construct the clinical predictive model. The regions of interest (ROIs) were segmented on three-phrase CT images to extract first-, second- and higher-order radiomics features. The ICCs, mRMR and LASSO methods were used for dimensionality reduction. The selected features from the training group were used to establish radiomics models using Logistic regression, Support Vector Machine (SVM), Bayes and Random Forest methods. The performance of four different radiomics models was evaluated according to the area under the receiver operator characteristic (ROC) curve (AUC), and then compared by Delong test. The nomogram incorporated of clinicopathological parameters, radiographic features and radiomics signature was developed through multivariate logistic regression. Finally, the predictive performance of the clinical model, radiomics models, and nomogram was evaluated in both training and testing groups. Results In total, 1,218 radiomics features were extracted from the ROIs on three-phrase CT images, and then 14 optimal features, including one original first-order feature and eight wavelet-transformed features and five LoG-transformed features, were identified and selected to construct the radiomics models. In the training group, the AUC of the Logistic, SVM, Bayes and Random Forest model was 0.940, 0.940, 0.780 and 0.927, respectively, and the corresponding AUC in the testing group was 0.909, 0.909, 0.729, 0.851, respectively. There was no significant difference among the Logistic, SVM and Random Forest model, but all better than the Bayes model (p <0.005). The predictive performance of the Logistic radiomics model based on three-phrase is similar to nomogram, but both better than the clinical model and radiomics model based on single venous phase. Conclusion The CT-based radiomics signature is able to predict MYCN amplification of pediatric abdominal NB with high accuracy based on SVM, Logistic and Random Forest classifiers, while Bayes classifier yields lower predictive performance. When combined with clinical and radiographic qualitative features, the clinics-radiomics nomogram can improve the performance of predicting MYCN amplification.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Kaiping Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | | | - Hao Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ting Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Wenqing Yu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
24
|
Lin P, Lin YQ, Gao RZ, Wen R, Qin H, He Y, Yang H. Radiomic profiling of clear cell renal cell carcinoma reveals subtypes with distinct prognoses and molecular pathways. Transl Oncol 2021; 14:101078. [PMID: 33862522 PMCID: PMC8065300 DOI: 10.1016/j.tranon.2021.101078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Radiomics profile of clear cell renal cell carcinoma is heterogeneity. Multi-scale Radiogenomics could link molecular features and images. Radiomic subtypes could be used for risk stratification.
Background To identify radiomic subtypes of clear cell renal cell carcinoma (ccRCC) patients with distinct clinical significance and molecular characteristics reflective of the heterogeneity of ccRCC. Methods Quantitative radiomic features of ccRCC were extracted from preoperative CT images of 160 ccRCC patients. Unsupervised consensus cluster analysis was performed to identify robust radiomic subtypes based on these features. The Kaplan–Meier method and chi-square test were used to assess the different clinicopathological characteristics and gene mutations among the radiomic subtypes. Subtype-specific marker genes were identified, and gene set enrichment analyses were performed to reveal the specific molecular characteristics of each subtype. Moreover, a gene expression-based classifier of radiomic subtypes was developed using the random forest algorithm and tested in another independent cohort (n = 101). Results Radiomic profiling revealed three ccRCC subtypes with distinct clinicopathological features and prognoses. VHL, MUC16, FBN2, and FLG were found to have different mutation frequencies in these radiomic subtypes. In addition, transcriptome analysis revealed that the dysregulation of cell cycle-related pathways may be responsible for the distinct clinical significance of the obtained subtypes. The prognostic value of the radiomic subtypes was further validated in another independent cohort (log-rank P = 0.015). Conclusion In the present multi-scale radiogenomic analysis of ccRCC, radiomics played a central role. Radiomic subtypes could help discern genomic alterations and non-invasively stratify ccRCC patients.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yi-Qun Lin
- Department of Radiology, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, Fujian Province 363020, China
| | - Rui-Zhi Gao
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Hui Qin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, China.
| |
Collapse
|
25
|
Campi R, Stewart GD, Staehler M, Dabestani S, Kuczyk MA, Shuch BM, Finelli A, Bex A, Ljungberg B, Capitanio U. Novel Liquid Biomarkers and Innovative Imaging for Kidney Cancer Diagnosis: What Can Be Implemented in Our Practice Today? A Systematic Review of the Literature. Eur Urol Oncol 2021; 4:22-41. [DOI: 10.1016/j.euo.2020.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022]
|
26
|
Relationship between visceral adipose tissue and genetic mutations (VHL and KDM5C) in clear cell renal cell carcinoma. Radiol Med 2021; 126:645-651. [PMID: 33400184 DOI: 10.1007/s11547-020-01310-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The sequencing of the renal cell carcinoma (RCC) genome has detected several mutations with prognostic meaning. The association between visceral adipose tissue (VAT) and clear cell renal cell carcinoma (ccRCC) is well known. The relationship among abdominal adipose tissue distribution and ccRCC-VHL and KDM5C genetic mutations is, to the knowledge of the authors, not known. METHODS In this retrospective study, we enrolled 97 Caucasian male patients divided into three groups: the control group (n = 35), the ccRCC-VHL group (n = 52) composed of ccRCC patients with VHL mutations and ccRCC-KDM5C group (n = 10) composed of ccRCC patients with KDM5C mutation. Total adipose tissue (TAT) area, VAT area and subcutaneous adipose tissue (SAT) area were measured in the groups. VAT/SAT ratio was calculated for each subject. RESULTS Statistically significant differences between ccRCC-KDM5C group and ccRCC-VHL group were obtained for TAT area (p < 0.05), VAT area (p < 0.05) and VAT/SAT ratio (p < 0.05); between ccRCC-VHL group and control group for TAT area (p < 0.001) and VAT area (p < 0.01); and between ccRCC-KDM5C group and control group for TAT area (p < 0.0001), VAT area (p < 0.0001) and SAT area (p < 0.01). CONCLUSIONS This study demonstrates for the first time an increased amount of TAT, especially VAT, in the ccRCC-VHL and ccRCC-KDM5C groups. The effect was greater for the ccRCC-KDM5C group.
Collapse
|
27
|
Machine Learning in Radiomic Renal Mass Characterization: Fundamentals, Applications, Challenges, and Future Directions. AJR Am J Roentgenol 2020; 215:920-928. [PMID: 32783560 DOI: 10.2214/ajr.19.22608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE. The purpose of this study is to provide an overview of the traditional machine learning (ML)-based and deep learning-based radiomic approaches, with focus placed on renal mass characterization. CONCLUSION. ML currently has a very low barrier to entry into general medical practice because of the availability of many open-source, free, and easy-to-use toolboxes. Therefore, it should not be surprising to see its related applications in renal mass characterization. A wider picture of the previous works might be beneficial to move this field forward.
Collapse
|
28
|
Crispin-Ortuzar M, Gehrung M, Ursprung S, Gill AB, Warren AY, Beer L, Gallagher FA, Mitchell TJ, Mendichovszky IA, Priest AN, Stewart GD, Sala E, Markowetz F. Three-Dimensional Printed Molds for Image-Guided Surgical Biopsies: An Open Source Computational Platform. JCO Clin Cancer Inform 2020; 4:736-748. [PMID: 32804543 PMCID: PMC7469624 DOI: 10.1200/cci.20.00026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Spatial heterogeneity of tumors is a major challenge in precision oncology. The relationship between molecular and imaging heterogeneity is still poorly understood because it relies on the accurate coregistration of medical images and tissue biopsies. Tumor molds can guide the localization of biopsies, but their creation is time consuming, technologically challenging, and difficult to interface with routine clinical practice. These hurdles have so far hindered the progress in the area of multiscale integration of tumor heterogeneity data. METHODS We have developed an open-source computational framework to automatically produce patient-specific 3-dimensional-printed molds that can be used in the clinical setting. Our approach achieves accurate coregistration of sampling location between tissue and imaging, and integrates seamlessly with clinical, imaging, and pathology workflows. RESULTS We applied our framework to patients with renal cancer undergoing radical nephrectomy. We created personalized molds for 6 patients, obtaining Dice similarity coefficients between imaging and tissue sections ranging from 0.86 to 0.96 for tumor regions and between 0.70 and 0.76 for healthy kidneys. The framework required minimal manual intervention, producing the final mold design in just minutes, while automatically taking into account clinical considerations such as a preference for specific cutting planes. CONCLUSION Our work provides a robust and automated interface between imaging and tissue samples, enabling the development of clinical studies to probe tumor heterogeneity on multiple spatial scales.
Collapse
Affiliation(s)
- Mireia Crispin-Ortuzar
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Marcel Gehrung
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephan Ursprung
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Andrew B. Gill
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Anne Y. Warren
- Department of Histopathology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| | - Lucian Beer
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | | | - Thomas J. Mitchell
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Iosif A. Mendichovszky
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Andrew N. Priest
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
| | - Evis Sala
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Florian Markowetz
- Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
Heller MT, Furlan A, Kawashima A. Multiparametric MR for Solid Renal Mass Characterization. Magn Reson Imaging Clin N Am 2020; 28:457-469. [PMID: 32624162 DOI: 10.1016/j.mric.2020.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Multiparametric MR provides a noninvasive means for improved differentiation between benign and malignant solid renal masses. Although most large, heterogeneous renal masses are due to renal cell carcinoma, smaller "indeterminate" renal masses are being identified on cross-sectional imaging. Although definitive diagnosis of a solid renal mass may not always be possible by MR imaging, integrated evaluation of multiple MR imaging parameters can result in concise differential diagnosis. Multiparametric MR should be considered a critical step in the triage of patients with a solid renal mass for whom treatment options are being considered in the context of morbidity, prognosis, and mortality.
Collapse
Affiliation(s)
- Matthew T Heller
- Department of Radiology, Mayo Clinic, Mayo Clinic Hospital, 5777 East Mayo Boulevard, PX SS 01 RADLGY, Phoenix, AZ 85054, USA.
| | - Alessandro Furlan
- Department of Radiology, University of Pittsburgh, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Akira Kawashima
- Department of Radiology, Mayo Clinic, Mayo Clinic Hospital, 5777 East Mayo Boulevard, PX SS 01 RADLGY, Phoenix, AZ 85054, USA
| |
Collapse
|
30
|
Liu Z, Zhang J. Radiogenomics correlation between MR imaging features and mRNA-based subtypes in lower-grade glioma. BMC Neurol 2020; 20:259. [PMID: 32600353 PMCID: PMC7322922 DOI: 10.1186/s12883-020-01838-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/22/2020] [Indexed: 11/30/2022] Open
Abstract
Background To investigate associations between lower-grade glioma (LGG) mRNA-based subtypes (R1-R4) and MR features. Methods mRNA-based subtyping was obtained from the LGG dataset in The Cancer Genome Atlas (TCGA). We identified matching patients (n = 145) in The Cancer Imaging Archive (TCIA) who underwent MR imaging. The associations between mRNA-based subtypes and MR features were assessed. Results In the TCGA-LGG dataset, patients with the R2 subtype had the shortest median OS months (P < 0.05). The time-dependent ROC for the R2 subtype was 0.78 for survival at 12 months, 0.76 for survival at 24 months, and 0.76 for survival at 36 months. In the TCIA-LGG dataset, 41 (23.7%) R1 subtype, 40 (23.1%) R2 subtype, 19 (11.0%) R3 subtype and 45 (26.0%) R4 subtype cases were identified. Multivariate analysis revealed that enhancing margin (ill-defined, OR: 9.985; P = 0.003) and T1 + C/T2 mismatch (yes, OR: 0.091; P = 0.023) were associated with the R1 subtype (AUC: 0.708). The average accuracy of the ten-fold cross validation was 71%. Proportion of contrast-enhanced (CE) tumour (> 5%, OR: 14.733; P < 0.001) and necrosis/cystic changes (yes, OR: 0.252; P = 0.009) were associated with the R2 subtype (AUC: 0.832). The average accuracy of the ten-fold cross validation was 82%. Haemorrhage (yes, OR: 8.55; P < 0.001) was positively associated with the R3 subtype (AUC: 0.689). The average accuracy of the ten-fold cross validation was 87%. Proportion of CE tumour (> 5%, OR: 0.14; P < 0.001) was negatively associated with the R4 subtype (AUC: 0.672). The average accuracy of the ten-fold cross validation was 71%. For the prediction of the R2 subtype, the nomogram showed good discrimination and calibration. Decision curve analysis demonstrated that prediction with the R2 model was clinically useful. Conclusions Patients with the R2 subtype had the worst prognosis. We demonstrated that MRI features can identify distinct LGG mRNA-based molecular subtypes.
Collapse
Affiliation(s)
- Zhenyin Liu
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou City, 510623, PR China
| | - Jing Zhang
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 9 Jinsui Road, Guangzhou City, 510623, PR China.
| |
Collapse
|
31
|
Kocak B, Durmaz ES, Kaya OK, Kilickesmez O. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Acta Radiol 2020; 61:856-864. [PMID: 31635476 DOI: 10.1177/0284185119881742] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND BRCA1-associated protein 1 (BAP1) mutation is an unfavorable factor for overall survival in patients with clear cell renal cell carcinoma (ccRCC). Radiomics literature about BAP1 mutation lacks papers that consider the reliability of texture features in their workflow. PURPOSE Using texture features with a high inter-observer agreement, we aimed to develop and internally validate a machine learning-based radiomic model for predicting the BAP1 mutation status of ccRCCs. MATERIAL AND METHODS For this retrospective study, 65 ccRCCs were included from a public database. Texture features were extracted from unenhanced computed tomography (CT) images, using two-dimensional manual segmentation. Dimension reduction was done in three steps: (i) inter-observer agreement analysis; (ii) collinearity analysis; and (iii) feature selection. The machine learning classifier was random forest. The model was validated using 10-fold nested cross-validation. The reference standard was the BAP1 mutation status. RESULTS Out of 744 features, 468 had an excellent inter-observer agreement. After the collinearity analysis, the number of features decreased to 17. Finally, the wrapper-based algorithm selected six features. Using selected features, the random forest correctly classified 84.6% of the labelled slices regarding BAP1 mutation status with an area under the receiver operating characteristic curve of 0.897. For predicting ccRCCs with BAP1 mutation, the sensitivity, specificity, and precision were 90.4%, 78.8%, and 81%, respectively. For predicting ccRCCs without BAP1 mutation, the sensitivity, specificity, and precision were 78.8%, 90.4%, and 89.1%, respectively. CONCLUSION Machine learning-based unenhanced CT texture analysis might be a potential method for predicting the BAP1 mutation status of ccRCCs.
Collapse
Affiliation(s)
- Burak Kocak
- Department of Radiology, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Emine Sebnem Durmaz
- Department of Radiology, Buyukcekmece Mimar Sinan State Hospital, Istanbul, Turkey
| | - Ozlem Korkmaz Kaya
- Department of Radiology, Koc University School of Medicine, Koc University Hospital, Istanbul, Turkey
| | - Ozgur Kilickesmez
- Department of Radiology, Istanbul Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
32
|
Lee HW, Cho HH, Joung JG, Jeon HG, Jeong BC, Jeon SS, Lee HM, Nam DH, Park WY, Kim CK, Seo SI, Park H. Integrative Radiogenomics Approach for Risk Assessment of Post-Operative Metastasis in Pathological T1 Renal Cell Carcinoma: A Pilot Retrospective Cohort Study. Cancers (Basel) 2020; 12:866. [PMID: 32252440 PMCID: PMC7226068 DOI: 10.3390/cancers12040866] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
Despite the increasing incidence of pathological stage T1 renal cell carcinoma (pT1 RCC), postoperative distant metastases develop in many surgically treated patients, causing death in certain cases. Therefore, this study aimed to create a radiomics model using imaging features from multiphase computed tomography (CT) to more accurately predict the postoperative metastasis of pT1 RCC and further investigate the possible link between radiomics parameters and gene expression profiles generated by whole transcriptome sequencing (WTS). Four radiomic features, including the minimum value of a histogram feature from inner regions of interest (ROIs) (INNER_Min_hist), the histogram of the energy feature from outer ROIs (OUTER_Energy_Hist), the maximum probability of gray-level co-occurrence matrix (GLCM) feature from inner ROIs (INNER_MaxProb_GLCM), and the ratio of voxels under 80 Hounsfield units (Hus) in the nephrographic phase of postcontrast CT (Under80HURatio), were detected to predict the postsurgical metastasis of patients with pathological stage T1 RCC, and the clinical outcomes of patients could be successfully stratified based on their radiomic risk scores. Furthermore, we identified heterogenous-trait-associated gene signatures correlated with these four radiomic features, which captured clinically relevant molecular pathways, tumor immune microenvironment, and potential treatment strategies. Our results of accurate surrogates using radiogenomics could lead to additional benefit from adjuvant therapy or postsurgical metastases in pT1 RCC.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Hospital Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hwan-ho Cho
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon 16149, Korea;
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16149, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (J.-G.J.); (W.-Y.P.)
| | - Hwang Gyun Jeon
- Departments of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.G.J.); (B.C.J.); (S.S.J.); (H.M.L.)
| | - Byong Chang Jeong
- Departments of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.G.J.); (B.C.J.); (S.S.J.); (H.M.L.)
| | - Seong Soo Jeon
- Departments of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.G.J.); (B.C.J.); (S.S.J.); (H.M.L.)
| | - Hyun Moo Lee
- Departments of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.G.J.); (B.C.J.); (S.S.J.); (H.M.L.)
| | - Do-Hyun Nam
- Institute for Refractory Cancer Research, Samsung Medical Center, Seoul 06351, Korea;
- Departments of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 06531, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Korea; (J.-G.J.); (W.-Y.P.)
- Departments of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea
| | - Chan Kyo Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06531, Korea
| | - Seong Il Seo
- Departments of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.G.J.); (B.C.J.); (S.S.J.); (H.M.L.)
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon 16149, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16149, Korea
| |
Collapse
|
33
|
Feng Z, Zhang L, Qi Z, Shen Q, Hu Z, Chen F. Identifying BAP1 Mutations in Clear-Cell Renal Cell Carcinoma by CT Radiomics: Preliminary Findings. Front Oncol 2020; 10:279. [PMID: 32185138 PMCID: PMC7058626 DOI: 10.3389/fonc.2020.00279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/18/2020] [Indexed: 12/01/2022] Open
Abstract
To evaluate the potential application of computed tomography (CT) radiomics in the prediction of BRCA1-associated protein 1 (BAP1) mutation status in patients with clear-cell renal cell carcinoma (ccRCC). In this retrospective study, clinical and CT imaging data of 54 patients were retrieved from The Cancer Genome Atlas–Kidney Renal Clear Cell Carcinoma database. Among these, 45 patients had wild-type BAP1 and nine patients had BAP1 mutation. The texture features of tumor images were extracted using the Matlab-based IBEX package. To produce class-balanced data and improve the stability of prediction, we performed data augmentation for the BAP1 mutation group during cross validation. A model to predict BAP1 mutation status was constructed using Random Forest Classification algorithms, and was evaluated using leave-one-out-cross-validation. Random Forest model of predict BAP1 mutation status had an accuracy of 0.83, sensitivity of 0.72, specificity of 0.87, precision of 0.65, AUC of 0.77, F-score of 0.68. CT radiomics is a potential and feasible method for predicting BAP1 mutation status in patients with ccRCC.
Collapse
Affiliation(s)
- Zhan Feng
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lixia Zhang
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhong Qi
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qijun Shen
- Department of Radiology, Hangzhou First People's Hospital, Hangzhou, China
| | - Zhengyu Hu
- Department of Radiology, Second People's Hospital of Yuhang District, Hangzhou, China
| | - Feng Chen
- Department of Radiology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Lo Gullo R, Daimiel I, Morris EA, Pinker K. Combining molecular and imaging metrics in cancer: radiogenomics. Insights Imaging 2020; 11:1. [PMID: 31901171 PMCID: PMC6942081 DOI: 10.1186/s13244-019-0795-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Background Radiogenomics is the extension of radiomics through the combination of genetic and radiomic data. Because genetic testing remains expensive, invasive, and time-consuming, and thus unavailable for all patients, radiogenomics may play an important role in providing accurate imaging surrogates which are correlated with genetic expression, thereby serving as a substitute for genetic testing. Main body In this article, we define the meaning of radiogenomics and the difference between radiomics and radiogenomics. We provide an up-to-date review of the radiomics and radiogenomics literature in oncology, focusing on breast, brain, gynecological, liver, kidney, prostate and lung malignancies. We also discuss the current challenges to radiogenomics analysis. Conclusion Radiomics and radiogenomics are promising to increase precision in diagnosis, assessment of prognosis, and prediction of treatment response, providing valuable information for patient care throughout the course of the disease, given that this information is easily obtainable with imaging. Larger prospective studies and standardization will be needed to define relevant imaging biomarkers before they can be implemented into the clinical workflow.
Collapse
Affiliation(s)
- Roberto Lo Gullo
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA.
| | - Isaac Daimiel
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA
| | - Elizabeth A Morris
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th St, New York, NY, 10065, USA.,Department of Biomedical Imaging and Image-guided Therapy, Molecular and Gender Imaging Service, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Wien, Austria
| |
Collapse
|
35
|
TCGA-TCIA Impact on Radiogenomics Cancer Research: A Systematic Review. Int J Mol Sci 2019; 20:ijms20236033. [PMID: 31795520 PMCID: PMC6929079 DOI: 10.3390/ijms20236033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/11/2022] Open
Abstract
In the last decade, the development of radiogenomics research has produced a significant amount of papers describing relations between imaging features and several molecular 'omic signatures arising from next-generation sequencing technology and their potential role in the integrated diagnostic field. The most vulnerable point of many of these studies lies in the poor number of involved patients. In this scenario, a leading role is played by The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), which make available, respectively, molecular 'omic data and linked imaging data. In this review, we systematically collected and analyzed radiogenomic studies based on TCGA-TCIA data. We organized literature per tumor type and molecular 'omic data in order to discuss salient imaging genomic associations and limitations of each study. Finally, we outlined the potential clinical impact of radiogenomics to improve the accuracy of diagnosis and the prediction of patient outcomes in oncology.
Collapse
|