1
|
Kim HS, Chae H, Lim SY, Jeong H, Yoon SJ, Shin SH, Han IW, Heo JS, Kim H. Implications of portal vein/superior mesenteric vein involvement in pancreatic cancer: A comprehensive correlation from preoperative radiological assessment to resection, pathology, and long-term outcomes. A retrospective cohort study. Int J Surg 2025; 111:2962-2972. [PMID: 39998570 DOI: 10.1097/js9.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The incidence of portal vein/superior mesenteric vein (PV/SMV) resection during pancreatoduodenectomy is increasing in clinical practice. This study investigated the clinical significance of preoperative PV/SMV assessment and intraoperative resection and their correlation with pathological results and long-term survival outcomes. METHODS We analyzed 443 patients undergoing pancreatoduodenectomy at a tertiary center from 2012 to 2017 based on PV/SMV resection. Subgroup analyses were performed based on preoperative PV/SMV involvement, resection, and margin status. RESULTS Total of 441 patients were analyzed; 175 had PV/SMV involvement on preoperative radiological assessments and 128 underwent PV/SMV resection. True pathological invasion was observed in 78 patients (60.9%), with 34.3% showing no invasion and negative margins. The positive predictive value for preoperative PV/SMV involvement was 61.7%, with a false-negative value of 28.9%. Overall survival of patients who underwent PV/SMV resection was worse than those who did not (2-year survival rate, 38.1% vs 54.9%, P < 0.001). Patients without PV/SMV resection with an rR1/R1 margin showed no decrease in survival compared to those with PV/SMV resection and R0 margins (54.9% vs 40.3%, P = 0.029). Prognostic factors included hypertension, PV/SMV resection, PV/SMV R2 margin, T stage, N stage, cell differentiation, adjuvant treatment, and recurrence. CONCLUSION PV/SMV resection could ensure R0 resection but may lead to unnecessary resection. Careful consideration is essential in determining the need for PV/SMV resection. Poor survival in such patients highlights the need for tailored treatments, including neoadjuvant therapy, for those who are expected to undergo PV/SMV resections.
Collapse
Affiliation(s)
- Hyeong Seok Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hochang Chae
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Soo Yeun Lim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Surgery, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - HyeJeong Jeong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Surgery, Daejeon Eulji Medical Center, Eulji University School of Medicine, Daejeon, South Korea
| | - So Jeong Yoon
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Hyun Shin
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - In Woong Han
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jin Seok Heo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hongbeom Kim
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Barat M, Greffier J, Si-Mohamed S, Dohan A, Pellat A, Frandon J, Calame P, Soyer P. CT Imaging of the Pancreas: A Review of Current Developments and Applications. Can Assoc Radiol J 2025:8465371251319965. [PMID: 39985297 DOI: 10.1177/08465371251319965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Pancreatic cancer continues to pose daily challenges to clinicians, radiologists, and researchers. These challenges are encountered at each stage of pancreatic cancer management, including early detection, definite characterization, accurate assessment of tumour burden, preoperative planning when surgical resection is possible, prediction of tumour aggressiveness, response to treatment, and detection of recurrence. CT imaging of the pancreas has made major advances in recent years through innovations in research and clinical practice. Technical advances in CT imaging, often in combination with imaging biomarkers, hold considerable promise in addressing such challenges. Ongoing research in dual-energy and spectral photon-counting computed tomography, new applications of artificial intelligence and image rendering have led to innovative implementations that allow now a more precise diagnosis of pancreatic cancer and other diseases affecting this organ. This article aims to explore the major research initiatives and technological advances that are shaping the landscape of CT imaging of the pancreas. By highlighting key contributions in diagnostic imaging, artificial intelligence, and image rendering, this article provides a comprehensive overview of how these innovations are enhancing diagnostic precision and improving outcome in patients with pancreatic diseases.
Collapse
Affiliation(s)
- Maxime Barat
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Joël Greffier
- Department of Medical Imaging, PRIM Platform, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, IMAGINE UR UM 103, Nîmes, France
| | - Salim Si-Mohamed
- University of Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, Auvergne-Rhône-Alpes, France
| | - Anthony Dohan
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Gastroenterology, Endoscopy and Digestive Oncology Unit, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| | - Julien Frandon
- Department of Medical Imaging, PRIM Platform, Nîmes University Hospital, University of Montpellier, Medical Imaging Group Nîmes, IMAGINE UR UM 103, Nîmes, France
| | - Paul Calame
- Department of Radiology, University of Franche-Comté, CHRU Besançon, Besançon, France
- EA 4662 Nanomedicine Lab, Imagery and Therapeutics, University of Franche-Comté, Besançon, Bourgogne-Franche-Comté, France
| | - Philippe Soyer
- Université Paris Cité, Faculté de Médecine, Paris, Île-de-France, France
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, Paris, Île-de-France, France
| |
Collapse
|
3
|
Grewal M, Ahmed T, Javed AA. Current state of radiomics in hepatobiliary and pancreatic malignancies. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:217-32. [DOI: 10.20517/ais.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Rising in incidence, hepatobiliary and pancreatic (HPB) cancers continue to exhibit dismal long-term survival. The overall poor prognosis of HPB cancers is reflective of the advanced stage at which most patients are diagnosed. Late diagnosis is driven by the often-asymptomatic nature of these diseases, as well as a dearth of screening modalities. Additionally, standard imaging modalities fall short of providing accurate and detailed information regarding specific tumor characteristics, which can better inform surgical planning and sequencing of systemic therapy. Therefore, precise therapeutic planning must be delayed until histopathological examination is performed at the time of resection. Given the current shortcomings in the management of HPB cancers, investigations of numerous noninvasive biomarkers, including circulating tumor cells and DNA, proteomics, immunolomics, and radiomics, are underway. Radiomics encompasses the extraction and analysis of quantitative imaging features. Along with summarizing the general framework of radiomics, this review synthesizes the state of radiomics in HPB cancers, outlining its role in various aspects of management, present limitations, and future applications for clinical integration. Current literature underscores the utility of radiomics in early detection, tumor characterization, therapeutic selection, and prognostication for HPB cancers. Seeing as single-center, small studies constitute the majority of radiomics literature, there is considerable heterogeneity with respect to steps of the radiomics workflow such as segmentation, or delineation of the region of interest on a scan. Nonetheless, the introduction of the radiomics quality score (RQS) demonstrates a step towards greater standardization and reproducibility in the young field of radiomics. Altogether, in the setting of continually improving artificial intelligence algorithms, radiomics represents a promising biomarker avenue for promoting enhanced and tailored management of HPB cancers, with the potential to improve long-term outcomes for patients.
Collapse
|
4
|
Litjens G, Broekmans JPEA, Boers T, Caballo M, van den Hurk MHF, Ozdemir D, van Schaik CJ, Janse MHA, van Geenen EJM, van Laarhoven CJHM, Prokop M, de With PHN, van der Sommen F, Hermans JJ. Computed Tomography-Based Radiomics Using Tumor and Vessel Features to Assess Resectability in Cancer of the Pancreatic Head. Diagnostics (Basel) 2023; 13:3198. [PMID: 37892019 PMCID: PMC10606005 DOI: 10.3390/diagnostics13203198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor and adjacent arteries and veins were segmented in the portal-venous phase of contrast-enhanced CT scans, and radiomic features were extracted. Features were selected via stability and collinearity testing, and least absolute shrinkage and selection operator application (LASSO). Three models, using tumor features, vessel features, and a combination of both, were trained with the training set (N = 86) to predict resectability. The results were validated with the test set (N = 15) and compared to the multidisciplinary team's (MDT) performance. The vessel-features-only model performed best, with an AUC of 0.92 and sensitivity and specificity of 97% and 73%, respectively. Test set validation showed a sensitivity and specificity of 100% and 88%, respectively. The combined model was as good as the vessel model (AUC = 0.91), whereas the tumor model showed poor performance (AUC = 0.76). The MDT's prediction reached a sensitivity and specificity of 97% and 84% for the training set and 88% and 100% for the test set, respectively. Our clinician-independent vessel-based radiomics model can aid in predicting resectability and shows performance comparable to that of the MDT. With these encouraging results, improved, automated, and generalizable models can be developed that reduce workload and can be applied in non-expert hospitals.
Collapse
Affiliation(s)
- Geke Litjens
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Joris P. E. A. Broekmans
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Tim Boers
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Marco Caballo
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Maud H. F. van den Hurk
- Department of Plastic and Reconstructive Surgery, Saint Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Dilek Ozdemir
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Caroline J. van Schaik
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Markus H. A. Janse
- Image Sciences Institute, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Erwin J. M. van Geenen
- Department of Gastroenterology and Hepatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Cees J. H. M. van Laarhoven
- Department of Surgery, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter H. N. de With
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - Fons van der Sommen
- Department of Electrical Engineering, Eindhoven University of Technology, 5612 AZ Eindhoven, The Netherlands
| | - John J. Hermans
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Ahmed TM, Kawamoto S, Hruban RH, Fishman EK, Soyer P, Chu LC. A primer on artificial intelligence in pancreatic imaging. Diagn Interv Imaging 2023; 104:435-447. [PMID: 36967355 DOI: 10.1016/j.diii.2023.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Artificial Intelligence (AI) is set to transform medical imaging by leveraging the vast data contained in medical images. Deep learning and radiomics are the two main AI methods currently being applied within radiology. Deep learning uses a layered set of self-correcting algorithms to develop a mathematical model that best fits the data. Radiomics converts imaging data into mineable features such as signal intensity, shape, texture, and higher-order features. Both methods have the potential to improve disease detection, characterization, and prognostication. This article reviews the current status of artificial intelligence in pancreatic imaging and critically appraises the quality of existing evidence using the radiomics quality score.
Collapse
Affiliation(s)
- Taha M Ahmed
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ralph H Hruban
- Sol Goldman Pancreatic Research Center, Department of Pathology, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Philippe Soyer
- Université Paris Cité, Faculté de Médecine, Department of Radiology, Hôpital Cochin-APHP, 75014, 75006, Paris, France, 7501475006
| | - Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Hospital, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
6
|
Mao Q, Zhou MT, Zhao ZP, Liu N, Yang L, Zhang XM. Role of radiomics in the diagnosis and treatment of gastrointestinal cancer. World J Gastroenterol 2022; 28:6002-6016. [PMID: 36405385 PMCID: PMC9669820 DOI: 10.3748/wjg.v28.i42.6002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/24/2022] [Accepted: 10/27/2022] [Indexed: 11/10/2022] Open
Abstract
Gastrointestinal cancer (GIC) has high morbidity and mortality as one of the main causes of cancer death. Preoperative risk stratification is critical to guide patient management, but traditional imaging studies have difficulty predicting its biological behavior. The emerging field of radiomics allows the conversion of potential pathophysiological information in existing medical images that cannot be visually recognized into high-dimensional quantitative image features. Tumor lesion characterization, therapeutic response evaluation, and survival prediction can be achieved by analyzing the relationships between these features and clinical and genetic data. In recent years, the clinical application of radiomics to GIC has increased dramatically. In this editorial, we describe the latest progress in the application of radiomics to GIC and discuss the value of its potential clinical applications, as well as its limitations and future directions.
Collapse
Affiliation(s)
- Qi Mao
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Mao-Ting Zhou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Zhang-Ping Zhao
- Department of Radiology, Panzhihua Central Hospital, Panzhihua 617000, Sichuan Province, China
| | - Ning Liu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Yang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Ming Zhang
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
7
|
Barat M, Marchese U, Pellat A, Dohan A, Coriat R, Hoeffel C, Fishman EK, Cassinotto C, Chu L, Soyer P. Imaging of Pancreatic Ductal Adenocarcinoma: An Update on Recent Advances. Can Assoc Radiol J 2022; 74:351-361. [PMID: 36065572 DOI: 10.1177/08465371221124927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal carcinoma (PDAC) is one of the leading causes of cancer-related death worldwide. Computed tomography (CT) remains the primary imaging modality for diagnosis of PDAC. However, CT has limitations for early pancreatic tumor detection and tumor characterization so that it is currently challenged by magnetic resonance imaging. More recently, a particular attention has been given to radiomics for the characterization of pancreatic lesions using extraction and analysis of quantitative imaging features. In addition, radiomics has currently many applications that are developed in conjunction with artificial intelligence (AI) with the aim of better characterizing pancreatic lesions and providing a more precise assessment of tumor burden. This review article sums up recent advances in imaging of PDAC in the field of image/data acquisition, tumor detection, tumor characterization, treatment response evaluation, and preoperative planning. In addition, current applications of radiomics and AI in the field of PDAC are discussed.
Collapse
Affiliation(s)
- Maxime Barat
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Ugo Marchese
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Digestive, Hepatobiliary and Pancreatic Surgery, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anna Pellat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | - Anthony Dohan
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| | - Romain Coriat
- Université Paris Cité, Faculté de Médecine, 555089Paris, France.,Department of Gastroenterology, 26935Hopital Cochin, AP-HP, Paris, France
| | | | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, 27037University of Montpellier, Saint-Éloi Hospital, Montpellier, France
| | - Linda Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, School of Medicine, 1466Johns Hopkins University, Baltimore, MD, USA
| | - Philippe Soyer
- Department of Radiology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris543341, Paris, France.,Université Paris Cité, Faculté de Médecine, 555089Paris, France
| |
Collapse
|
8
|
Marti-Bonmati L, Cerdá-Alberich L, Pérez-Girbés A, Díaz Beveridge R, Montalvá Orón E, Pérez Rojas J, Alberich-Bayarri A. Pancreatic cancer, radiomics and artificial intelligence. Br J Radiol 2022; 95:20220072. [PMID: 35687700 PMCID: PMC10996946 DOI: 10.1259/bjr.20220072] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) are generally classified into four categories based on contrast-enhanced CT at diagnosis: resectable, borderline resectable, unresectable, and metastatic disease. In the initial grading and staging of PDAC, structured radiological templates are useful but limited, as there is a need to define the aggressiveness and microscopic disease stage of these tumours to ensure adequate treatment allocation. Quantitative imaging analysis allows radiomics and dynamic imaging features to provide information of clinical outcomes, and to construct clinical models based on radiomics signatures or imaging phenotypes. These quantitative features may be used as prognostic and predictive biomarkers in clinical decision-making, enabling personalised management of advanced PDAC. Deep learning and convolutional neural networks also provide high level bioinformatics tools that can help define features associated with a given aspect of PDAC biology and aggressiveness, paving the way to define outcomes based on these features. Thus, the prediction of tumour phenotype, treatment response and patient prognosis may be feasible by using such comprehensive and integrated radiomics models. Despite these promising results, quantitative imaging is not ready for clinical implementation in PDAC. Limitations include the instability of metrics and lack of external validation. Large properly annotated datasets, including relevant semantic features (demographics, blood markers, genomics), image harmonisation, robust radiomics analysis, clinically significant tasks as outputs, comparisons with gold-standards (such as TNM or pretreatment classifications) and fully independent validation cohorts, will be required for the development of trustworthy radiomics and artificial intelligence solutions to predict PDAC aggressiveness in a clinical setting.
Collapse
Affiliation(s)
- Luis Marti-Bonmati
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Department of Radiology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Leonor Cerdá-Alberich
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
| | | | | | - Eva Montalvá Orón
- Department of Surgery, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Judith Pérez Rojas
- Department of Pathology, Hospital Universitario y
Politécnico La Fe, Valencia,
Spain
| | - Angel Alberich-Bayarri
- GIBI230 Research Group on Biomedical Imaging, Instituto de
Investigación Sanitaria La Fe,
Valencia, Spain
- Quantitative Imaging Biomarkers in Medicine, Quibim
SL, Valencia,
Spain
| |
Collapse
|
9
|
Schuurmans M, Alves N, Vendittelli P, Huisman H, Hermans J. Setting the Research Agenda for Clinical Artificial Intelligence in Pancreatic Adenocarcinoma Imaging. Cancers (Basel) 2022; 14:cancers14143498. [PMID: 35884559 PMCID: PMC9316850 DOI: 10.3390/cancers14143498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers worldwide, associated with a 98% loss of life expectancy and a 30% increase in disability-adjusted life years. Image-based artificial intelligence (AI) can help improve outcomes for PDAC given that current clinical guidelines are non-uniform and lack evidence-based consensus. However, research on image-based AI for PDAC is too scattered and lacking in sufficient quality to be incorporated into clinical workflows. In this review, an international, multi-disciplinary team of the world’s leading experts in pancreatic cancer breaks down the patient pathway and pinpoints the current clinical touchpoints in each stage. The available PDAC imaging AI literature addressing each pathway stage is then rigorously analyzed, and current performance and pitfalls are identified in a comprehensive overview. Finally, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed. Abstract Pancreatic ductal adenocarcinoma (PDAC), estimated to become the second leading cause of cancer deaths in western societies by 2030, was flagged as a neglected cancer by the European Commission and the United States Congress. Due to lack of investment in research and development, combined with a complex and aggressive tumour biology, PDAC overall survival has not significantly improved the past decades. Cross-sectional imaging and histopathology play a crucial role throughout the patient pathway. However, current clinical guidelines for diagnostic workup, patient stratification, treatment response assessment, and follow-up are non-uniform and lack evidence-based consensus. Artificial Intelligence (AI) can leverage multimodal data to improve patient outcomes, but PDAC AI research is too scattered and lacking in quality to be incorporated into clinical workflows. This review describes the patient pathway and derives touchpoints for image-based AI research in collaboration with a multi-disciplinary, multi-institutional expert panel. The literature exploring AI to address these touchpoints is thoroughly retrieved and analysed to identify the existing trends and knowledge gaps. The results show absence of multi-institutional, well-curated datasets, an essential building block for robust AI applications. Furthermore, most research is unimodal, does not use state-of-the-art AI techniques, and lacks reliable ground truth. Based on this, the future research agenda for clinically relevant, image-driven AI in PDAC is proposed.
Collapse
Affiliation(s)
- Megan Schuurmans
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Natália Alves
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
- Correspondence: (M.S.); (N.A.)
| | - Pierpaolo Vendittelli
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (P.V.); (H.H.)
| | - John Hermans
- Department of Medical Imaging, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| |
Collapse
|
10
|
Preuss K, Thach N, Liang X, Baine M, Chen J, Zhang C, Du H, Yu H, Lin C, Hollingsworth MA, Zheng D. Using Quantitative Imaging for Personalized Medicine in Pancreatic Cancer: A Review of Radiomics and Deep Learning Applications. Cancers (Basel) 2022; 14:cancers14071654. [PMID: 35406426 PMCID: PMC8997008 DOI: 10.3390/cancers14071654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary With a five-year survival rate of only 3% for the majority of patients, pancreatic cancer is a global healthcare challenge. Radiomics and deep learning, two novel quantitative imaging methods that treat medical images as minable data instead of just pictures, have shown promise in advancing personalized management of pancreatic cancer through diagnosing precursor diseases, early detection, accurate diagnosis, and treatment personalization. Radiomics and deep learning methods aim to collect hidden information in medical images that is missed by conventional radiology practices through expanding the data search and comparing information across different patients. Both methods have been studied and applied in pancreatic cancer. In this review, we focus on the current progress of these two methods in pancreatic cancer and provide a comprehensive narrative review on the topic. With better regulation, enhanced workflow, and larger prospective patient datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through personalized precision medicine. Abstract As the most lethal major cancer, pancreatic cancer is a global healthcare challenge. Personalized medicine utilizing cutting-edge multi-omics data holds potential for major breakthroughs in tackling this critical problem. Radiomics and deep learning, two trendy quantitative imaging methods that take advantage of data science and modern medical imaging, have shown increasing promise in advancing the precision management of pancreatic cancer via diagnosing of precursor diseases, early detection, accurate diagnosis, and treatment personalization and optimization. Radiomics employs manually-crafted features, while deep learning applies computer-generated automatic features. These two methods aim to mine hidden information in medical images that is missed by conventional radiology and gain insights by systematically comparing the quantitative image information across different patients in order to characterize unique imaging phenotypes. Both methods have been studied and applied in various pancreatic cancer clinical applications. In this review, we begin with an introduction to the clinical problems and the technology. After providing technical overviews of the two methods, this review focuses on the current progress of clinical applications in precancerous lesion diagnosis, pancreatic cancer detection and diagnosis, prognosis prediction, treatment stratification, and radiogenomics. The limitations of current studies and methods are discussed, along with future directions. With better standardization and optimization of the workflow from image acquisition to analysis and with larger and especially prospective high-quality datasets, radiomics and deep learning methods could show real hope in the battle against pancreatic cancer through big data-based high-precision personalization.
Collapse
Affiliation(s)
- Kiersten Preuss
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Nutrition and Health Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| | - Nate Thach
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Michael Baine
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Justin Chen
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Naperville North High School, Naperville, IL 60563, USA
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Huijing Du
- Department of Mathematics, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Hongfeng Yu
- Department of Computer Science, University of Nebraska Lincoln, Lincoln, NE 68588, USA;
| | - Chi Lin
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.P.); (N.T.); (M.B.); (J.C.); (C.L.)
- Department of Radiation Oncology, University of Rochester, Rochester, NY 14626, USA
- Correspondence: ; Tel.: +1-(585)-276-3255
| |
Collapse
|
11
|
Janssen BV, Verhoef S, Wesdorp NJ, Huiskens J, de Boer OJ, Marquering H, Stoker J, Kazemier G, Besselink MG. Imaging-based Machine-learning Models to Predict Clinical Outcomes and Identify Biomarkers in Pancreatic Cancer: A Scoping Review. Ann Surg 2022; 275:560-567. [PMID: 34954758 DOI: 10.1097/sla.0000000000005349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To perform a scoping review of imaging-based machine-learning models to predict clinical outcomes and identify biomarkers in patients with PDAC. SUMMARY OF BACKGROUND DATA Patients with PDAC could benefit from better selection for systemic and surgical therapy. Imaging-based machine-learning models may improve treatment selection. METHODS A scoping review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses-scoping review guidelines in the PubMed and Embase databases (inception-October 2020). The review protocol was prospectively registered (open science framework registration: m4cyx). Included were studies on imaging-based machine-learning models for predicting clinical outcomes and identifying biomarkers for PDAC. The primary outcome was model performance. An area under the curve (AUC) of ≥0.75, or a P-value of ≤0.05, was considered adequate model performance. Methodological study quality was assessed using the modified radiomics quality score. RESULTS After screening 1619 studies, 25 studies with 2305 patients fulfilled the eligibility criteria. All but 1 study was published in 2019 and 2020. Overall, 23/25 studies created models using radiomics features, 1 study quantified vascular invasion on computed tomography, and one used histopathological data. Nine models predicted clinical outcomes with AUC measures of 0.78-0.95, and C-indices of 0.65-0.76. Seventeen models identified biomarkers with AUC measures of 0.68-0.95. Adequate model performance was reported in 23/25 studies. The methodological quality of the included studies was suboptimal, with a median modified radiomics quality score score of 7/36. CONCLUSIONS The use of imaging-based machine-learning models to predict clinical outcomes and identify biomarkers in patients with PDAC is increasingly rapidly. Although these models mostly have good performance scores, their methodological quality should be improved.
Collapse
Affiliation(s)
- Boris V Janssen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Severano Verhoef
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nina J Wesdorp
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | - Onno J de Boer
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Henk Marquering
- Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Geert Kazemier
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Li X, Wan Y, Lou J, Xu L, Shi A, Yang L, Fan Y, Yang J, Huang J, Wu Y, Niu T. Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using radiomics of diagnostic computed tomography. EClinicalMedicine 2022; 43:101215. [PMID: 34927034 PMCID: PMC8649647 DOI: 10.1016/j.eclinm.2021.101215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The high recurrence rate after radical resection of pancreatic ductal adenocarcinoma (PDAC) leads to its poor prognosis. We aimed to develop a model to preoperatively predict the risk of recurrence based on computed tomography (CT) radiomics and multiple clinical parameters. METHODS Datasets were retrospectively collected and analysed of 220 PDAC patients who underwent contrast-enhanced computed tomography (CE-CT) and received radical resection at 3 institutions in China between 2013 and 2017, with 153 from one institution as a training set, the remaining 67 as a validation set. For each patient, CT radiomics features were extracted from intratumoral and peritumoral regions to establish intratumoral, peritumoral and combined radiomics models using artificial neural network (ANN) algorithm. By incorporating clinical factors, radiomics-clinical nomograms were finally built by multivariable logistic regression analysis to predict 1- and 2-year recurrence risk. FINDINGS The developed radiomics model integrating intratumoral and peritumoral radiomics features was superior to the conventionally constructed model merely using intratumoral radiomics features. Further, radiomics-clinical nomograms outperformed other models in predicting 1-year recurrence with an area under the receiver operating characteristic curve (AUROC) of 0.916 (95%CI, 0.860-0.955) in the training set and 0.764 (95%CI, 0.644-0.859) in the validation set, and 2-year recurrence with an AUROC of 0.872 (95%CI: 0.809-0.921) in the training set and 0.773 (95%CI, 0.654-0.866) in the validation set. INTERPRETATION This study has developed and externally validated a radiomics-clinical nomogram integrating intra- and peritumoral CT radiomics signature as well as clinical factors to predict the recurrence risk of PDAC after radical resection, which will facilitate optimized and individualized treatment strategies. FUNDING This work was supported by the National Key R&D Program of China [grant number: 2018YFE0114800], the General Program of National Natural Science Foundation of China [grant number: 81772562, 2017; 81871351, 2018], the Fundamental Research Funds for the Central Universities [grant number: 2021FZZX005-08], and Zhejiang Provincial Key Projects of Technology Research [grant number: WKJ-ZJ-2033].
Collapse
Affiliation(s)
- Xiawei Li
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidong Wan
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aiguang Shi
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Litao Yang
- Department of Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yiqun Fan
- Department of Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jing Yang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Huang
- Department of Surgery, Changxing People's Hospital, Huzhou, Zhejiang, China
| | - Yulian Wu
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianye Niu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Casà C, Piras A, D’Aviero A, Preziosi F, Mariani S, Cusumano D, Romano A, Boskoski I, Lenkowicz J, Dinapoli N, Cellini F, Gambacorta MA, Valentini V, Mattiucci GC, Boldrini L. The impact of radiomics in diagnosis and staging of pancreatic cancer. Ther Adv Gastrointest Endosc 2022; 15:26317745221081596. [PMID: 35342883 PMCID: PMC8943316 DOI: 10.1177/26317745221081596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 02/02/2022] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) is one of the most aggressive tumours, and better risk stratification among patients is required to provide tailored treatment. The meaning of radiomics and texture analysis as predictive techniques are not already systematically assessed. The aim of this study is to assess the role of radiomics in PC. METHODS A PubMed/MEDLINE and Embase systematic review was conducted to assess the role of radiomics in PC. The search strategy was 'radiomics [All Fields] AND ("pancreas" [MeSH Terms] OR "pancreas" [All Fields] OR "pancreatic" [All Fields])' and only original articles referred to PC in humans in the English language were considered. RESULTS A total of 123 studies and 183 studies were obtained using the mentioned search strategy on PubMed and Embase, respectively. After the complete selection process, a total of 56 papers were considered eligible for the analysis of the results. Radiomics methods were applied in PC for assessment technical feasibility and reproducibility aspects analysis, risk stratification, biologic or genomic status prediction and treatment response prediction. DISCUSSION Radiomics seems to be a promising approach to evaluate PC from diagnosis to treatment response prediction. Further and larger studies are required to confirm the role and allowed to include radiomics parameter in a comprehensive decision support system.
Collapse
Affiliation(s)
- Calogero Casà
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Andrea D’Aviero
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Preziosi
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Mariani
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Cusumano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Angela Romano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ivo Boskoski
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCSS, Rome, Italy
| | - Jacopo Lenkowicz
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Nicola Dinapoli
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Cellini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Carlo Mattiucci
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Dipartimento Universitario di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Bartoli M, Barat M, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassinotto C, Chassagnon G, Soyer P. CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol 2020; 38:1111-1124. [PMID: 33085029 DOI: 10.1007/s11604-020-01057-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
Radiomics is a relatively new approach for image analysis. As a part of radiomics, texture analysis, which consists in extracting a great amount of quantitative data from original images, can be used to identify specific features that can help determining the actual nature of a pancreatic lesion and providing other information such as resectability, tumor grade, tumor response to neoadjuvant therapy or survival after surgery. In this review, the basic of radiomics, recent developments and the results of texture analysis using computed tomography and magnetic resonance imaging in the field of pancreatic tumors are presented. Future applications of radiomics, such as artificial intelligence, are discussed.
Collapse
Affiliation(s)
- Marion Bartoli
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Maxime Barat
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Anthony Dohan
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Sébastien Gaujoux
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
- Department of Abdominal Surgery, Cochin Hospital, AP-HP, 75014, Paris, France
| | - Romain Coriat
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
- Department of Gastroenterology, Cochin Hospital, AP-HP, 75014, Paris, France
| | - Christine Hoeffel
- Department of Radiology, Robert Debré Hospital, 51092, Reims, France
| | - Christophe Cassinotto
- Department of Radiology, CHU Montpellier, University of Montpellier, Saint-Éloi Hospital, 34000, Montpellier, France
| | - Guillaume Chassagnon
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France
| | - Philippe Soyer
- Department of Radiology, Cochin Hospital, AP-HP, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France.
- Université de Paris, Descartes-Paris 5, F-75006, Paris, France.
| |
Collapse
|
15
|
Salinas-Miranda E, Khalvati F, Namdar K, Deniffel D, Dong X, Abbas E, Wilson JM, O'Kane GM, Knox J, Gallinger S, Haider MA. Validation of Prognostic Radiomic Features From Resectable Pancreatic Ductal Adenocarcinoma in Patients With Advanced Disease Undergoing Chemotherapy. Can Assoc Radiol J 2020; 72:605-613. [PMID: 33151087 DOI: 10.1177/0846537120968782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Radiomic features in pancreatic ductal adenocarcinoma (PDAC) often lack validation in independent test sets or are limited to early or late stage disease. Given the lethal nature of PDAC it is possible that there are similarities in radiomic features of both early and advanced disease reflective of aggressive biology. PURPOSE To assess the performance of prognostic radiomic features previously published in patients with resectable PDAC in a test set of patients with unresectable PDAC undergoing chemotherapy. METHODS The pre-treatment CT of 108 patients enrolled in a prospective chemotherapy trial were used as a test cohort for 2 previously published prognostic radiomic features in resectable PDAC (Sum Entropy and Cluster Tendency with square-root filter[Sqrt]). We assessed the performance of these 2 radiomic features for the prediction of overall survival (OS) and time to progression (TTP) using Cox proportional-hazard models. RESULTS Sqrt Cluster Tendency was significantly associated with outcome with a hazard ratio (HR) of 1.27(for primary pancreatic tumor plus local nodes), (Confidence Interval(CI):1.01 -1.6, P-value = 0.039) for OS and a HR of 1.25(CI:1.00 -1.55, P-value = 0.047) for TTP. Sum entropy was not associated with outcomes. Sqrt Cluster Tendency remained significant in multivariate analysis. CONCLUSION The CT radiomic feature Sqrt Cluster Tendency, previously demonstrated to be prognostic in resectable PDAC, remained a significant prognostic factor for OS and TTP in a test set of unresectable PDAC patients. This radiomic feature warrants further investigation to understand its biologic correlates and CT applicability in PDAC patients.
Collapse
Affiliation(s)
- Emmanuel Salinas-Miranda
- 90755Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, Ontario, Canada.,PanCuRx Translational Research Initiative, 90755Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Farzad Khalvati
- 90755Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University Health Network/Sinai Health System, Toronto, Ontario, Canada
| | - Kashayar Namdar
- 90755Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Dominik Deniffel
- 90755Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Xin Dong
- 90755Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, Ontario, Canada
| | - Engy Abbas
- Joint Department of Medical Imaging, University Health Network/Sinai Health System, Toronto, Ontario, Canada
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, 90755Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, 90755Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jennifer Knox
- PanCuRx Translational Research Initiative, 90755Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, 90755Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Hepatobiliary Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Masoom A Haider
- 90755Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Mount Sinai Hospital, Joseph & Wolf Lebovic Health Complex, Toronto, Ontario, Canada.,PanCuRx Translational Research Initiative, 90755Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Joint Department of Medical Imaging, University Health Network/Sinai Health System, Toronto, Ontario, Canada
| |
Collapse
|
16
|
CT in the prediction of margin-negative resection in pancreatic cancer following neoadjuvant treatment: a systematic review and meta-analysis. Eur Radiol 2020; 31:3383-3393. [PMID: 33123793 DOI: 10.1007/s00330-020-07433-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVES We aimed to systematically evaluate the diagnostic accuracy of CT-determined resectability following neoadjuvant treatment for predicting margin-negative resection (R0 resection) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS Original studies with sufficient details to obtain the sensitivity and specificity of CT-determined resectability following neoadjuvant treatment, with a reference on the pathological margin status, were identified in PubMed, EMBASE, and Cochrane databases until February 24, 2020. The identified studies were divided into two groups based on the criteria of R0 resectable tumor (ordinary criterion: resectable PDAC alone; extended criterion: resectable and borderline resectable PDAC). The meta-analytic summary of the sensitivity and specificity for each criterion was estimated separately using a bivariate random-effect model. Summary results of the two criteria were compared using a joint-model bivariate meta-regression. RESULTS Of 739 studies initially searched, 6 studies (6 with ordinary criterion and 5 with extended criterion) were included for analysis. The meta-analytic summary of sensitivity and specificity was 45% (95% confidence interval [CI], 19-73%; I2 = 88.3%) and 85% (95% CI, 65-94%; I2 = 60.5%) for the ordinary criterion, and 81% (95% CI, 71-87%; I2 = 0.0%) and 42% (95% CI, 28-57%; I2 = 6.2%) for the extended criterion, respectively. The diagnostic accuracy significantly differed between the two criteria (p = 0.02). CONCLUSIONS For determining resectability on CT, the ordinary criterion might be highly specific but insensitive for predicting R0 resection, whereas the extended criterion increased sensitivity but would decrease specificity. Further investigations using quantitative parameters may improve the identification of R0 resection. KEY POINTS • CT-determined resectability of PDAC after neoadjuvant treatment using the ordinary criterion shows low sensitivity and high specificity in predicting R0 resection. • With the extended criterion, CT-determined resectability shows higher sensitivity but lower specificity than with the ordinary criterion. • CT-determined resectability with both criteria achieved suboptimal diagnostic performances, suggesting that care should be taken while selecting surgical candidates and when determining the surgical extent after neoadjuvant treatment in patients with PDAC.
Collapse
|
17
|
Chu LC, Park S, Kawamoto S, Yuille AL, Hruban RH, Fishman EK. Pancreatic Cancer Imaging: A New Look at an Old Problem. Curr Probl Diagn Radiol 2020; 50:540-550. [PMID: 32988674 DOI: 10.1067/j.cpradiol.2020.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Computed tomography is the most commonly used imaging modality to detect and stage pancreatic cancer. Previous advances in pancreatic cancer imaging have focused on optimizing image acquisition parameters and reporting standards. However, current state-of-the-art imaging approaches still misdiagnose some potentially curable pancreatic cancers and do not provide prognostic information or inform optimal management strategies beyond stage. Several recent developments in pancreatic cancer imaging, including artificial intelligence and advanced visualization techniques, are rapidly changing the field. The purpose of this article is to review how these recent advances have the potential to revolutionize pancreatic cancer imaging.
Collapse
Affiliation(s)
- Linda C Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD.
| | - Seyoun Park
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Satomi Kawamoto
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alan L Yuille
- Department of Computer Science, Johns Hopkins University, Baltimore, MD
| | - Ralph H Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elliot K Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Chen BB. Artificial intelligence in pancreatic disease. Artif Intell Med Imaging 2020; 1:19-30. [DOI: 10.35711/aimi.v1.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Bang-Bin Chen
- Department of Medical Imaging, National Taiwan University Hospital, Taipei 10016, Taiwan
- Department of Radiology, College of Medicine, National Taiwan University, Taipei 10016, Taiwan
| |
Collapse
|