1
|
Bresch J, König J, Konrad M, Kollmann S, Dahmer-Heath M, Heinzow HS, Praktiknjo M, Trebicka J, Bergmann C, Schmidt HHJ, Schlevogt B. Non-invasive screening for liver fibrosis by acoustic radiation force impulse in patients with ciliopathies. Sci Rep 2025; 15:13345. [PMID: 40247009 PMCID: PMC12006320 DOI: 10.1038/s41598-025-96246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/26/2025] [Indexed: 04/19/2025] Open
Abstract
Primary cilia are antenna-like structures on the surface of epithelial cells involved in multiple signaling pathways. Their malfunction can cause a heterogenous group of diseases called ciliopathies with a broad spectrum of organ involvements, including liver fibrosis. The aim of this exploratory study was to evaluate elastography measurement via ultrasound based acoustic radiation force impulse imaging (ARFI) as a screening tool for liver fibrosis in ciliopathies. In a prospective cohort of 51 patients with ciliopathies (aged between 2 months and 66 years) from the NEOCYST registry stiffness of the right liver lobe and spleen was measured via ARFI and results were then compared with laboratory parameters, endoscopic, ultrasonographic and histological findings. ARFI screening of the liver identified 27 patients without increased liver stiffness suggesting no or insignificant fibrosis, 11 with intermediate fibrosis, and 12 with liver fibrosis F4. Four patients showed increased spleen stiffness in ARFI. In all 10 patients with histologically confirmed fibrosis, ARFI results perfectly matched fibrosis stages. In the ARFI-based overall fibrosis subgroup, ALT, AST, GGT and spleen size were significantly increased, whereas platelets were significantly decreased compared to the no fibrosis subgroup. Normal GGT excluded ARFI-defined F4 fibrosis (negative predictive value 100%). Gene variants in PKHD1, TMEM67, and TULP3 were primarily detected in our patients with liver fibrosis whereas NPHP1 and HNF1B were not associated with increased liver stiffness. ARFI is a valuable screening tool for the detection of liver involvement in ciliopathies and may be useful in addition to laboratory and clinical parameters alone.Trial registration: NEOCYST registry DRKS00011003, registered 06.09.2016, https://drks.de/search/en/trial/DRKS00011003 .
Collapse
Affiliation(s)
- Johanna Bresch
- Department of Medicine B, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building A14, 48149, Muenster, Germany.
| | - Jens König
- Department of General Pediatrics, Muenster University Hospital, Muenster, Germany
| | - Martin Konrad
- Department of General Pediatrics, Muenster University Hospital, Muenster, Germany
| | - Sabine Kollmann
- Department of General Pediatrics, Muenster University Hospital, Muenster, Germany
| | - Mareike Dahmer-Heath
- Department of General Pediatrics, Muenster University Hospital, Muenster, Germany
| | - Hauke Sebastian Heinzow
- Department of Medicine B, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building A14, 48149, Muenster, Germany
- Brüderkrankenhaus Trier, Trier, Germany
| | - Michael Praktiknjo
- Department of Medicine B, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building A14, 48149, Muenster, Germany
| | - Jonel Trebicka
- Department of Medicine B, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building A14, 48149, Muenster, Germany
| | - Carsten Bergmann
- Medizinische Genetik Mainz, Limbach Genetics, Mainz, Germany
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Hartmut H-J Schmidt
- Department of Medicine B, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building A14, 48149, Muenster, Germany
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, Essen, Germany
| | - Bernhard Schlevogt
- Department of Medicine B, Muenster University Hospital, Albert-Schweitzer-Campus 1, Building A14, 48149, Muenster, Germany
- Department of Gastroenterology and Endoscopy, Medical Center Osnabrueck, Osnabrueck, Germany
| |
Collapse
|
2
|
Serai SD, Franchi-Abella S, Syed AB, Tkach JA, Toso S, Ferraioli G. MR and Ultrasound Elastography for Fibrosis Assessment in Children: Practical Implementation and Supporting Evidence- AJR Expert Panel Narrative Review. AJR Am J Roentgenol 2024; 223:e2330506. [PMID: 38170833 DOI: 10.2214/ajr.23.30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Quantitative MRI and ultrasound biomarkers of liver fibrosis have become important tools in the diagnosis and clinical management of children with chronic liver disease (CLD). In particular, MR elastography is now routinely performed in clinical practice to evaluate the liver for fibrosis. Ultrasound shear-wave elastography has also become widely performed for this purpose, especially in young children. These noninvasive methods are increasingly used to replace liver biopsy for the diagnosis, quantitative staging, and treatment monitoring of patients with CLD. Although ultrasound has the advantages of portability and lower equipment cost than MRI, available evidence indicates that MRI may have greater reliability and accuracy in liver fibrosis evaluation. In this AJR Expert Panel Narrative Review, we describe how, why, and when to use MRI- and ultrasound-based elastography methods for liver fibrosis assessment in children. Practical approaches are discussed for adapting and optimizing these methods in children, with consideration of clinical indications, patient preparation, equipment requirements, and acquisition technique, as well as pitfalls and confounding factors. Guidance is provided for interpretation and reporting, and representative case examples are presented.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stéphanie Franchi-Abella
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service de Radiologie Pédiatrique Diagnostique et Interventionnelle, Centre de Référence des Maladies Rares du Foie de L'enfant, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
- BIOMAPS, University Paris-Saclay, Orsay, France
| | - Ali B Syed
- Department of Radiology, Stanford University School of Medicine, Stanford, CA
| | - Jean A Tkach
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Seema Toso
- Department of Pediatric Radiology, University Children's Hospital Geneva, Geneva, Switzerland
| | - Giovanna Ferraioli
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Medical School University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Burgmaier K, Broekaert IJ, Liebau MC. Autosomal Recessive Polycystic Kidney Disease: Diagnosis, Prognosis, and Management. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:468-476. [PMID: 38097335 DOI: 10.1053/j.akdh.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 12/18/2023]
Abstract
Autosomal recessive polycystic kidney disease (ARPKD) is the rare and usually early-onset form of polycystic kidney disease with a typical clinical presentation of enlarged cystic kidneys and liver involvement with congenital hepatic fibrosis or Caroli syndrome. ARPKD remains a clinical challenge in pediatrics, frequently requiring continuous and long-term multidisciplinary treatment. In this review, we aim to give an overview over clinical aspects of ARPKD and recent developments in our understanding of disease progression, risk patterns, and treatment of ARPKD.
Collapse
Affiliation(s)
- Kathrin Burgmaier
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany; Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, Deggendorf, Germany
| | - Ilse J Broekaert
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Family Health, Center for Rare Diseases and Center for Molecular Medicine Cologne, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Fleischer LT, Ballester L, Dutt M, Howarth K, Poznick L, Darge K, Furth SL, Hartung EA. Evaluation of galectin-3 and intestinal fatty acid binding protein as serum biomarkers in autosomal recessive polycystic kidney disease. J Nephrol 2023; 36:133-145. [PMID: 35980535 PMCID: PMC11904866 DOI: 10.1007/s40620-022-01416-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 07/27/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease (ARPKD) causes fibrocystic kidney disease, congenital hepatic fibrosis, and portal hypertension. Serum galectin-3 (Gal-3) and intestinal fatty acid binding protein (I-FABP) are potential biomarkers of kidney fibrosis and portal hypertension, respectively. We examined whether serum Gal-3 associates with kidney disease severity and serum I-FABP associates with liver disease severity in ARPKD. METHODS Cross-sectional study of 29 participants with ARPKD (0.2-21 years old) and presence of native kidneys (Gal-3 analyses, n = 18) and/or native livers (I-FABP analyses, n = 21). Serum Gal-3 and I-FABP were analyzed using enzyme linked immunosorbent assay. Kidney disease severity variables included estimated glomerular filtration rate (eGFR) and height-adjusted total kidney volume (htTKV). Liver disease severity was characterized using ultrasound elastography to measure liver fibrosis, and spleen length and platelet count as markers of portal hypertension. Simple and multivariable linear regression examined associations between Gal-3 and kidney disease severity (adjusted for liver disease severity) and between I-FABP and liver disease severity (adjusted for eGFR). RESULTS Serum Gal-3 was negatively associated with eGFR; 1 standard deviation (SD) lower eGFR was associated with 0.795 SD higher Gal-3 level (95% CI - 1.116, - 0.473; p < 0.001). This association remained significant when adjusted for liver disease severity. Serum Gal-3 was not associated with htTKV in adjusted analyses. Overall I-FABP levels were elevated, but there were no linear associations between I-FABP and liver disease severity in unadjusted or adjusted models. CONCLUSIONS Serum Gal-3 is associated with eGFR in ARPKD, suggesting its value as a possible novel biomarker of kidney disease severity. We found no associations between serum I-FABP and ARPKD liver disease severity despite overall elevated I-FABP levels.
Collapse
Affiliation(s)
| | - Lance Ballester
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mohini Dutt
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Kathryn Howarth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
| | - Laura Poznick
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kassa Darge
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan L Furth
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Liebau MC, Hartung EA, Perrone RD. Perspectives on Drug Development in Autosomal Recessive Polycystic Kidney Disease. Clin J Am Soc Nephrol 2022; 17:1551-1554. [PMID: 35998973 PMCID: PMC9528277 DOI: 10.2215/cjn.04870422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Max C. Liebau
- Department of Pediatrics, Center for Family Health, Center for Rare Diseases, and Center for Molecular Medicine, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Erum A. Hartung
- Division of Nephrology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronald D. Perrone
- Division of Nephrology, Department of Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
6
|
Serai SD, Elsingergy MM, Hartung EA, Otero HJ. Liver and spleen volume and stiffness in patients post-Fontan procedure and patients with ARPKD compared to normal controls. Clin Imaging 2022; 89:147-154. [PMID: 35835018 DOI: 10.1016/j.clinimag.2022.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE Both congestive (patients post-Fontan hepatopathy) and congenital (patients with ARPKD) disease can lead to hepatic fibrosis and portal hypertension with eventual development of splenomegaly. We investigated liver and spleen stiffness as measured by MRE between post-Fontan, ARPKD patients and controls independent of organ volume. METHODS Our study included 122 subjects (70 Fontan patients, 14 ARPKD patients, and 38 controls). The mean MRE liver and spleen stiffness values of Fontan patients and patients with ARPKD were compared to controls. Similarly, the liver and spleen volumes of the Fontan patients and patients with ARPKD were then compared to the volumes of controls. RESULTS Post-Fontan and ARPKD patients, mean liver stiffness, mean liver volume as well as mean spleen stiffness and mean spleen volume were higher than mean liver stiffness, mean liver volume, mean spleen stiffness, and mean spleen volume of controls. While liver stiffness correlated to liver volume in controls, we found no correlation between stiffness and volume in either Fontan or ARPKD patients, which indicates MRE's ability to act as an independent biomarker. However, these findings are not true in the spleen, where there is significant association between volume and stiffness in patients with ARPKD, but not in Fontan patients or controls. CONCLUSION Liver and spleen stiffness and volumes are significantly different among Fontan patients, ARPKD patients, and controls. Our findings suggest that beyond diagnosing fibrosis, MRE cut-off values could be disease-specific since not only the severity but the underlying pathology causing organ congestion or fibrosis influences MRE results.
Collapse
Affiliation(s)
- Suraj D Serai
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Mohamed M Elsingergy
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Erum A Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Hansel J Otero
- Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Sharbidre K, Zahid M, Venkatesh SK, Bhati C, Lalwani N. Imaging of fibropolycystic liver disease. Abdom Radiol (NY) 2022; 47:2356-2370. [PMID: 35670875 DOI: 10.1007/s00261-022-03565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 11/01/2022]
Abstract
Fibropolycystic liver diseases (FLDs) make up a rare spectrum of heritable hepatobiliary diseases resulting from congenital ductal plate malformations (DPMs) due to the dysfunction of proteins expressed on the primary cilia of cholangiocytes. The embryonic development of the ductal plate is key to understanding this spectrum of diseases. In particular, DPMs can result in various degrees of intrahepatic duct involvement and a wide spectrum of cholangiopathies, including congenital hepatic fibrosis, Caroli disease, polycystic liver disease, and Von Meyenberg complexes. The most common clinical manifestations of FLDs are portal hypertension, cholestasis, cholangitis, and (in rare cases) cholangiocarcinoma. This article reviews recent updates in the pathophysiology, imaging, and clinical management of FLDs.
Collapse
Affiliation(s)
- Kedar Sharbidre
- Department of Abdominal Imaging, University of Alabama at Birmingham, Birmingham, AB, USA.
| | - Mohd Zahid
- Department of Abdominal Imaging, University of Alabama at Birmingham, Birmingham, AB, USA
| | | | - Chandra Bhati
- Department of Transplant Surgery, University of Maryland Medical Center, Baltimore, ML, USA
| | - Neeraj Lalwani
- Department of Abdominal Imaging, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
8
|
Ghosh A, Serai SD, Venkatakrishna SSB, Dutt M, Hartung EA. Two-dimensional (2D) morphologic measurements can quantify the severity of liver disease in children with autosomal recessive polycystic kidney disease (ARPKD). Abdom Radiol (NY) 2021; 46:4709-4719. [PMID: 34173844 DOI: 10.1007/s00261-021-03189-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE To evaluate the correlation of 2D shape-based features with magnetic resonance elastography (MRE)-derived liver stiffness and portal hypertension (pHTN) in children with ARPKD-associated congenital hepatic fibrosis. METHODS In a prospective IRB-approved study, 14 children with ARPKD (mean age ± SD = 13.8 ± 5.8 years) and 14 healthy controls (mean age ± SD = 13.7 ± 3.9 years) underwent liver MRE. A 2D region of interest (ROI) outlining the left liver lobe at the level of the abdominal aorta was drawn on sagittal T2-weighted images. Eight shape features (perimeter, major axis length, maximum diameter, perimeter to surface ratio (PSR), elongation, sphericity, minor axis length, and mesh surface) describing the 2D-ROI were calculated. Spearman's correlation was calculated between shape features and MRE-derived liver stiffness (kPa) (n = 28). Shape features were compared between participants with ARPKD with pHTN (splenomegaly and thrombocytopenia), (n = 4) and without pHTN (n = 8) using the Mann Whitney U test. Receiver operating characteristic (ROC) curves were generated to examine the diagnostic accuracy of shape features in identifying cases with liver stiffness > 2.9 kPa. RESULTS In ARPKD participants and healthy controls, all eight shape features, except elongation, showed moderate to strong correlation with liver stiffness (kPa); the perimeter surface ratio had the strongest correlation (rho = - 0.75, p < 0.001). In ROC analysis, a cut-off of PSR ≤ 0.057 mm-1 gave 100% (95% CI: 59.0-100.0) sensitivity and 100% (95% CI: 83.9-100.0) specificity in identifying ARPKD participants with liver stiffness > 2.9 kPa, with an area under the ROC curve (AUC) of 1.0 (95% CI: 0.88-1.00). Individuals with pHTN had a lower median PSR (mean ± SD = 0.05 ± 0.01) than those without (0.07 ± 0.01; p = 0.027) with an AUC of 0.91 (95% CI: 0.60-0.99) in differentiating the participants with and without pHTN. CONCLUSION Shape-based features of the left liver lobe show potential as non-invasive biomarkers of liver fibrosis and portal hypertension in children with ARPKD.
Collapse
|
9
|
Predictors of progression in autosomal dominant and autosomal recessive polycystic kidney disease. Pediatr Nephrol 2021; 36:2639-2658. [PMID: 33474686 PMCID: PMC8292447 DOI: 10.1007/s00467-020-04869-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD) are characterized by bilateral cystic kidney disease leading to progressive kidney function decline. These diseases also have distinct liver manifestations. The range of clinical presentation and severity of both ADPKD and ARPKD is much wider than was once recognized. Pediatric and adult nephrologists are likely to care for individuals with both diseases in their lifetimes. This article will review genetic, clinical, and imaging predictors of kidney and liver disease progression in ADPKD and ARPKD and will briefly summarize pharmacologic therapies to prevent progression.
Collapse
|
10
|
Yao X, Ao W, Fang J, Mao G, Chen C, Yu L, Cai H, Xu C. Imaging manifestations of Caroli disease with autosomal recessive polycystic kidney disease: a case report and literature review. BMC Pregnancy Childbirth 2021; 21:294. [PMID: 33845788 PMCID: PMC8042699 DOI: 10.1186/s12884-021-03768-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Background Both Caroli disease (CD) and autosomal recessive polycystic kidney disease (ARPKD) are autosomal recessive disorders, which are more commonly found in infants and children, for whom surviving to adulthood is rare. Early diagnosis and intervention can improve the survival rate to some extent. This study adopted the case of a 26-year-old pregnant woman to explore the clinical and imaging manifestations and progress of CD concomitant with ARPKD to enable a better understanding of the disease. Case presentation A 26-year-old pregnant woman was admitted to our hospital for more than 2 months following the discovery of pancytopenia and increased creatinine. Ultrasonography detected an enlarged left liver lobe, widened hepatic portal vein, splenomegaly, and dilated splenic vein. In addition, both kidneys were obviously enlarged and sonolucent areas of varying sizes were visible, but color Doppler flow imaging revealed no abnormal blood flow signals. The gestational age was approximately 25 weeks, which was consistent with the actual fetal age. Polyhydramnios was detected but no other abnormalities were identified. Magnetic resonance imaging revealed that the liver was plump, and polycystic liver disease was observed near the top of the diaphragm. The T1 and T2 weighted images were the low and high signals, respectively. The bile duct was slightly dilated; the portal vein was widened; and the spleen volume was enlarged. Moreover, the volume of both kidneys had increased to an abnormal shape, with multiple, long, roundish T1 and T2 abnormal signals being observed. Magnetic resonance cholangiopancreatography revealed that intrahepatic cystic lesions were connected with intrahepatic bile ducts. The patient underwent a genetic testing, the result showed she carried two heterozygous mutations in PKHD1. The patient was finally diagnosed with CD with concomitant ARPKD. The baby underwent a genetic test three months after birth, the result showed that the patient carried one heterozygous mutations in PKHD1, which indicated the baby was a PKHD1 carrier. Conclusions This case demonstrates that imaging examinations are of great significance for the diagnosis and evaluation of CD with concomitant ARPKD.
Collapse
Affiliation(s)
- Xiuzhen Yao
- Department of Ultrasound, Shanghai Putuo District People's Hospital, Shanghai, China
| | - Weiqun Ao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianhua Fang
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqun Mao
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chuanghua Chen
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifang Yu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huaijie Cai
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenke Xu
- Department of Ultrasound, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|