1
|
Rai J, Mai DVC, Drami I, Pring ET, Gould LE, Lung PFC, Glover T, Shur JD, Whitcher B, Athanasiou T, Jenkins JT. MRI radiomics prediction modelling for pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis. Abdom Radiol (NY) 2025:10.1007/s00261-025-04953-5. [PMID: 40293520 DOI: 10.1007/s00261-025-04953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/30/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
PURPOSE Predicting response to neoadjuvant therapy in locally advanced rectal cancer (LARC) is challenging. Organ preservation strategies can be offered to patients with complete clinical response. We aim to evaluate MRI-derived radiomics models in predicting complete pathological response (pCR). METHODS Search included MEDLINE, Embase and Cochrane Central Register of Controlled Trials (CENTRAL) and Cochrane Database of Systematic Reviews (CDSR) for studies published before 1st February 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools were used to assess quality of included study. The research protocol was registered in PROSPERO (CRD42024512865). We calculated pooled area under the receiver operating characteristic curve (AUC) using a random-effects model. To compare AUC between subgroups the Hanley & McNeil test was performed. RESULTS Forty-four eligible studies (12,714 patients) were identified for inclusion in the systematic review. We selected thirty-five studies including 10,543 patients for meta-analysis. The pooled AUC for MRI radiomics predicted pCR in LARC was 0.87 (95% CI 0.84-0.89). In the subgroup analysis 3 T MRI field intensity had higher pooled AUC 0.9 (95% CI 0.87-0.94) than 1.5 T pooled AUC 0.82 (95% CI 0.80-0.83) p < 0.001. Asian ethnicity had higher pooled AUC 0.9 (95% CI 0.87-0.93) than non-Asian pooled AUC 0.8 (95% CI 0.75-0.84) p < 0.001. CONCLUSION We have demonstrated that 3 T MRI field intensity provides a superior predictive performance. The role of ethnicity on radiomics features needs to be explored in future studies. Further research in the field of MRI radiomics is important as accurate prediction for pCR can lead to organ preservation strategy in LARC.
Collapse
Affiliation(s)
- Jason Rai
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Dinh V C Mai
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ioanna Drami
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Edward T Pring
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Laura E Gould
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Phillip F C Lung
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Radiology, St Mark's the National Bowel Hospital, London, UK
| | - Thomas Glover
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Radiology, St Mark's the National Bowel Hospital, London, UK
| | - Joshua D Shur
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Brandon Whitcher
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, UK
- Research Centre for Optimal Health, University of Westminster, London, UK
| | - Thanos Athanasiou
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - John T Jenkins
- BiCyCLE Research Group, St Mark's the National Bowel Hospital, London, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
2
|
Zada T, Tam N, Barnard F, Van Sittert M, Bhat V, Rambhatla S. Medical Misinformation in AI-Assisted Self-Diagnosis: Development of a Method (EvalPrompt) for Analyzing Large Language Models. JMIR Form Res 2025; 9:e66207. [PMID: 40063849 PMCID: PMC11913316 DOI: 10.2196/66207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/29/2025] [Accepted: 01/29/2025] [Indexed: 03/19/2025] Open
Abstract
Background Rapid integration of large language models (LLMs) in health care is sparking global discussion about their potential to revolutionize health care quality and accessibility. At a time when improving health care quality and access remains a critical concern for countries worldwide, the ability of these models to pass medical examinations is often cited as a reason to use them for medical training and diagnosis. However, the impact of their inevitable use as a self-diagnostic tool and their role in spreading health care misinformation has not been evaluated. Objective This study aims to assess the effectiveness of LLMs, particularly ChatGPT, from the perspective of an individual self-diagnosing to better understand the clarity, correctness, and robustness of the models. Methods We propose the comprehensive testing methodology evaluation of LLM prompts (EvalPrompt). This evaluation methodology uses multiple-choice medical licensing examination questions to evaluate LLM responses. Experiment 1 prompts ChatGPT with open-ended questions to mimic real-world self-diagnosis use cases, and experiment 2 performs sentence dropout on the correct responses from experiment 1 to mimic self-diagnosis with missing information. Humans then assess the responses returned by ChatGPT for both experiments to evaluate the clarity, correctness, and robustness of ChatGPT. Results In experiment 1, we found that ChatGPT-4.0 was deemed correct for 31% (29/94) of the questions by both nonexperts and experts, with only 34% (32/94) agreement between the 2 groups. Similarly, in experiment 2, which assessed robustness, 61% (92/152) of the responses continued to be categorized as correct by all assessors. As a result, in comparison to a passing threshold of 60%, ChatGPT-4.0 is considered incorrect and unclear, though robust. This indicates that sole reliance on ChatGPT-4.0 for self-diagnosis could increase the risk of individuals being misinformed. Conclusions The results highlight the modest capabilities of LLMs, as their responses are often unclear and inaccurate. Any medical advice provided by LLMs should be cautiously approached due to the significant risk of misinformation. However, evidence suggests that LLMs are steadily improving and could potentially play a role in health care systems in the future. To address the issue of medical misinformation, there is a pressing need for the development of a comprehensive self-diagnosis dataset. This dataset could enhance the reliability of LLMs in medical applications by featuring more realistic prompt styles with minimal information across a broader range of medical fields.
Collapse
Affiliation(s)
- Troy Zada
- Department of Management Sciences and Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada, 1 5198884567 ext 33279
| | - Natalie Tam
- Department of Management Sciences and Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada, 1 5198884567 ext 33279
| | - Francois Barnard
- Department of Management Sciences and Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada, 1 5198884567 ext 33279
| | | | - Venkat Bhat
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Interventional Psychiatry Program, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Sirisha Rambhatla
- Department of Management Sciences and Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada, 1 5198884567 ext 33279
| |
Collapse
|
3
|
Liao Z, Luo D, Tang X, Huang F, Zhang X. MRI-based radiomics for predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis. Front Oncol 2025; 15:1550838. [PMID: 40129922 PMCID: PMC11930822 DOI: 10.3389/fonc.2025.1550838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose To evaluate the value of MRI-based radiomics for predicting pathological complete response (pCR) after neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced rectal cancer (LARC) through a systematic review and meta-analysis. Methods A systematic literature search was conducted in PubMed, Embase, Proquest, Cochrane Library, and Web of Science databases, covering studies up to July 1st, 2024, on the diagnostic accuracy of MRI radiomics for predicting pCR in LARC patients following NCRT. Two researchers independently evaluated and selected studies using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool and the Radiomics Quality Score (RQS) tool. A random-effects model was employed to calculate the pooled sensitivity, specificity, and diagnostic odds ratio (DOR) for MRI radiomics in predicting pCR. Meta-regression and subgroup analyses were performed to explore potential sources of heterogeneity. Statistical analyses were performed using RevMan 5.4, Stata 17.0, and Meta-Disc 1.4. Results A total of 35 studies involving 9,696 LARC patients were included in this meta-analysis. The average RQS score of the included studies was 13.91 (range 9.00-24.00), accounting for 38.64% of the total score. According to QUADAS-2, there were risks of bias in patient selection and flow and timing domain, though the overall quality of the studies was acceptable. MRI-based radiomics showed no significant threshold effect in predicting pCR (Spearman correlation coefficient=0.119, P=0.498) but exhibited high heterogeneity (I2≥50%). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and DOR were 0.83, 0.82, 5.1, 0.23 and 27.22 respectively, with an area under the summary receiver operating characteristic (sROC) curve of 0.91. According to joint model analysis, publication year, country, multi-magnetic field strength, multi-MRI sequence, ROI structure, contour consistency, feature extraction software, and feature quantity after feature dimensionality reduction were potential sources of heterogeneity. Deeks' funnel plot suggested no significant publication bias (P=0.69). Conclusions MRI-based radiomics demonstrates high efficacy for predicting pCR in LARC patients following NCRT, holding significant promise for informing clinical decision-making processes and advancing individualized treatment in rectal cancer patients. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024611733.
Collapse
Affiliation(s)
| | | | | | | | - Xuhui Zhang
- Department of Oncology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Boldrini L, Charles-Davies D, Romano A, Mancino M, Nacci I, Tran HE, Bono F, Boccia E, Gambacorta MA, Chiloiro G. Response prediction for neoadjuvant treatment in locally advanced rectal cancer patients-improvement in decision-making: A systematic review. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:109463. [PMID: 39562260 DOI: 10.1016/j.ejso.2024.109463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/26/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making. METHOD An extensive search for eligible articles was performed on PubMed, Cochrane, and Scopus between 2018 and 2023, using the keywords: (Response OR outcome) prediction AND (neoadjuvant OR chemoradiotherapy) treatment in 'locally advanced Rectal Cancer'. INCLUSION CRITERIA (i) Studies including patients diagnosed with LARC (T3/4 and N- or any T and N+) by pre-medical imaging and pathological examination or as stated by the author (ii) Standardized nCRT completed. (iii) Treatment with long or short course radiotherapy. (iv) Studies reporting on the prediction of response to nCRT with pathological complete response (pCR) as the primary outcome. (v) Studies reporting external validation results for response prediction. (vi) Regarding language restrictions, only articles in English were accepted. EXCLUSION CRITERIA (i) We excluded case report studies, conference abstracts, reviews, studies reporting patients with distant metastases at diagnosis. (ii) Studies reporting response prediction with only internally validated approaches. DATA COLLECTION AND QUALITY ASSESSMENT Three researchers (DC-D, FB, HT) independently reviewed and screened titles and abstracts of all articles retrieved after de-duplication. Possible disagreements were resolved through discussion among the three researchers. If necessary, three other researchers (LB, GC, MG) were consulted to make the final decision. The extraction of data was performed using the CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies (CHARMS) template and quality assessment was done using the Prediction model Risk Of Bias Assessment Tool (PROBAST). RESULTS A total of 4547 records were identified from the three databases. After excluding 392 duplicate results, 4155 records underwent title and abstract screening. Three thousand and eight hundred articles were excluded after title and abstract screening and 355 articles were retrieved. Out of the 355 retrieved articles, 51 studies were assessed for eligibility. Nineteen reports were then excluded due to lack of reports on external validation, while 4 were excluded due to lack of evaluation of pCR as the primary outcome. Only Twenty-eight articles were eligible and included in this systematic review. In terms of quality assessment, 89 % of the models had low concerns in the participants domain, while 11 % had an unclear rating. 96 % of the models were of low concern in both the predictors and outcome domains. The overall rating showed high applicability potential of the models with 82 % showing low concern, while 18 % were deemed unclear. CONCLUSION Most of the external validated techniques showed promising performances and the potential to be applied in clinical settings, which is a crucial step towards evidence-based medicine. However, more studies focused on the external validations of these models in larger cohorts is necessary to ensure that they can reliably predict outcomes in diverse populations.
Collapse
Affiliation(s)
- Luca Boldrini
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Diepriye Charles-Davies
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy.
| | - Angela Romano
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Mancino
- Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Ilaria Nacci
- Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy; Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Sant'Andrea University Hospital, Rome, Italy
| | - Huong Elena Tran
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesco Bono
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Edda Boccia
- Radiomics Core Research Facility, Gemelli Science and Technology Park, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Maria Antonietta Gambacorta
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Istituto di Radiologia, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuditta Chiloiro
- UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
5
|
Mariani I, Maino C, Giandola TP, Franco PN, Drago SG, Corso R, Talei Franzesi C, Ippolito D. Texture Analysis and Prediction of Response to Neoadjuvant Treatment in Patients with Locally Advanced Rectal Cancer. GASTROINTESTINAL DISORDERS 2024; 6:858-870. [DOI: 10.3390/gidisord6040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
Background: The purpose of this study is to determine the relationship between the texture analysis extracted from preoperative rectal magnetic resonance (MR) studies and the response to neoadjuvant treatment. Materials and Methods: In total, 88 patients with rectal adenocarcinoma who underwent staging MR between 2017 and 2022 were retrospectively enrolled. After the completion of neoadjuvant treatment, they underwent surgical resection. The tumour regression grade (TRG) was collected. Patients with TRG 1–2 were classified as responders, while patients with TRG 3 to 5 were classified as non-responders. A texture analysis was conducted using LIFEx software (v 7.6.0), where T2-weighted MR sequences on oriented axial planes were uploaded, and a region of interest (ROI) was manually drawn on a single slice. Features with a Spearman correlation index > 0.5 have been discarded, and a LASSO feature selection has been applied. Selected features were trained using bootstrapping. Results: According to the TRG classes, 49 patients (55.8%) were considered responders, while 39 (44.2) were non-responders. Two features were associated with the responder class: GLCM_Homogeneity and Discretized Histo Entropy log 2. Regarding GLCM_Homogeneity, the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity were 0.779 (95% CIs = 0.771–0.816), 86% (80–90), and 67% (60–71). Regarding Discretized Histo Entropy log 2, we found 0.775 AUC (0.700–0.801), 80% sensitivity (74–83), and 63% specificity (58–69). Combining both radiomics features the radiomics signature diagnostic accuracy increased (AUC = 0.844). Finally, the AUC of 1000 bootstraps were 0.810. Conclusions: Texture analysis can be considered an advanced tool for determining a possible correlation between pre-surgical MR data and the response to neoadjuvant therapy.
Collapse
Affiliation(s)
- Ilaria Mariani
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Cesare Maino
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Teresa Paola Giandola
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Paolo Niccolò Franco
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Silvia Girolama Drago
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Rocco Corso
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Cammillo Talei Franzesi
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, IRCCS Fondazione San Gerardo dei Tintori, Via Pergolesi 33, 20900 Monza, Italy
- School of Medicine, University of Milano Bicocca, Via Cadore 33, 20090 Monza, Italy
| |
Collapse
|
6
|
Xie J, He Y, Che S, Zhao W, Niu Y, Qin D, Li Z. Differential diagnosis of benign and lung adenocarcinoma presenting as larger solid nodules and masses based on multiscale CT radiomics. PLoS One 2024; 19:e0309033. [PMID: 39365772 PMCID: PMC11451992 DOI: 10.1371/journal.pone.0309033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/04/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE To develop a better radiomic model for the differential diagnosis of benign and lung adenocarcinoma lesions presenting as larger solid nodules and masses based on multiscale computed tomography (CT) radiomics. MATERIALS AND METHODS This retrospective study enrolled 205 patients with solid nodules and masses from Center 1 between January 2010 and February 2022 and Center 2 between January 2019 and February 2022. After applying the inclusion and exclusion criteria, we retrospectively enrolled 165 patients from two centers and assigned them to the training dataset (n = 115) or the test dataset (n = 50). Radiomics features were extracted from volumes of interest on CT images. A gradient boosting decision tree (GBDT) was used for data dimensionality reduction to perform the final feature selection. Four models were developed using clinical data, conventional imaging features and radiomics features, namely, the clinical and image model (CIM), the plain CT radiomics model (PRM), the enhanced CT radiomics model (ERM) and the combined model (CM). Model performance was evaluated to determine the best model for identifying benign and lung adenocarcinoma presenting as larger solid nodules and masses. RESULTS In the training dataset, the areas under the curve (AUCs) for the CIM, PRM, ERM, and CM were 0.718, 0.806, 0.819, and 0.917, respectively. The differential diagnostic capability of the ERM was better than that of the PRM and the CIM. The CM was optimal. Intermediate and junior radiologists and respiratory physicians achieved improved obviously diagnostic results with the radiomics model. The senior radiologists showed slight improved diagnostic results after using the radiomics model. CONCLUSION Radiomics may have the potential to be used as a noninvasive tool for the differential diagnosis of benign and lung adenocarcinoma lesions presenting as larger solid nodules and masses.
Collapse
Affiliation(s)
- Jiayue Xie
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yifan He
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Siyu Che
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Wenjing Zhao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuxin Niu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Dongxue Qin
- Department of Radiology, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhiyong Li
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
7
|
Tsuboyama T, Yanagawa M, Fujioka T, Fujita S, Ueda D, Ito R, Yamada A, Fushimi Y, Tatsugami F, Nakaura T, Nozaki T, Kamagata K, Matsui Y, Hirata K, Fujima N, Kawamura M, Naganawa S. Recent trends in AI applications for pelvic MRI: a comprehensive review. LA RADIOLOGIA MEDICA 2024; 129:1275-1287. [PMID: 39096356 DOI: 10.1007/s11547-024-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Magnetic resonance imaging (MRI) is an essential tool for evaluating pelvic disorders affecting the prostate, bladder, uterus, ovaries, and/or rectum. Since the diagnostic pathway of pelvic MRI can involve various complex procedures depending on the affected organ, the Reporting and Data System (RADS) is used to standardize image acquisition and interpretation. Artificial intelligence (AI), which encompasses machine learning and deep learning algorithms, has been integrated into both pelvic MRI and the RADS, particularly for prostate MRI. This review outlines recent developments in the use of AI in various stages of the pelvic MRI diagnostic pathway, including image acquisition, image reconstruction, organ and lesion segmentation, lesion detection and classification, and risk stratification, with special emphasis on recent trends in multi-center studies, which can help to improve the generalizability of AI.
Collapse
Affiliation(s)
- Takahiro Tsuboyama
- Department of Radiology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe-City, Hyogo, 650-0017, Japan.
| | - Masahiro Yanagawa
- Department of Radiology, Osaka University Graduate School of Medicine, Suita-City, Osaka, 565-0871, Japan
| | - Tomoyuki Fujioka
- Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Shohei Fujita
- Department of Radiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Daiju Ueda
- Department of Artificial Intelligence, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Rintaro Ito
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akira Yamada
- Medical Data Science Course, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawaharacho, Sakyoku, Kyoto, 606-8507, Japan
| | - Fuminari Tatsugami
- Department of Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Kumamoto University Graduate School of Medicine, 1-1-1 Honjo Chuo-ku, Kumamoto, 860-8556, Japan
| | - Taiki Nozaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-0016, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yusuke Matsui
- Department of Radiology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kenji Hirata
- Department of Diagnostic Imaging, Graduate School of Medicine, Hokkaido University, Kita 15 Nishi 7, Kita-ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Noriyuki Fujima
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, N15, W5, Kita-ku, Sapporo, 060-8638, Japan
| | - Mariko Kawamura
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
8
|
Su Z, Tang G, Huang R, Qiao Y, Zhang Z, Dai X. Based on Medicine, The Now and Future of Large Language Models. Cell Mol Bioeng 2024; 17:263-277. [PMID: 39372551 PMCID: PMC11450117 DOI: 10.1007/s12195-024-00820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
OBJECTIVES This review explores the potential applications of large language models (LLMs) such as ChatGPT, GPT-3.5, and GPT-4 in the medical field, aiming to encourage their prudent use, provide professional support, and develop accessible medical AI tools that adhere to healthcare standards. METHODS This paper examines the impact of technologies such as OpenAI's Generative Pre-trained Transformers (GPT) series, including GPT-3.5 and GPT-4, and other large language models (LLMs) in medical education, scientific research, clinical practice, and nursing. Specifically, it includes supporting curriculum design, acting as personalized learning assistants, creating standardized simulated patient scenarios in education; assisting with writing papers, data analysis, and optimizing experimental designs in scientific research; aiding in medical imaging analysis, decision-making, patient education, and communication in clinical practice; and reducing repetitive tasks, promoting personalized care and self-care, providing psychological support, and enhancing management efficiency in nursing. RESULTS LLMs, including ChatGPT, have demonstrated significant potential and effectiveness in the aforementioned areas, yet their deployment in healthcare settings is fraught with ethical complexities, potential lack of empathy, and risks of biased responses. CONCLUSION Despite these challenges, significant medical advancements can be expected through the proper use of LLMs and appropriate policy guidance. Future research should focus on overcoming these barriers to ensure the effective and ethical application of LLMs in the medical field.
Collapse
Affiliation(s)
- Ziqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 P.R. China
- Department of Clinical Medicine, The First Clinical College of Anhui Medical University, Hefei, 230022 P.R. China
| | - Guozhang Tang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 P.R. China
- Department of Clinical Medicine, The Second Clinical College of Anhui Medical University, Hefei, 230032 Anhui P.R. China
| | - Rui Huang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 P.R. China
- Department of Clinical Medicine, The First Clinical College of Anhui Medical University, Hefei, 230022 P.R. China
| | - Yang Qiao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 P.R. China
| | - Zheng Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 P.R. China
- Department of Clinical Medicine, The First Clinical College of Anhui Medical University, Hefei, 230022 P.R. China
| | - Xingliang Dai
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022 P.R. China
- Department of Research & Development, East China Institute of Digital Medical Engineering, Shangrao, 334000 P.R. China
| |
Collapse
|
9
|
Szymaszek P, Tyszka-Czochara M, Ortyl J. Application of Photoactive Compounds in Cancer Theranostics: Review on Recent Trends from Photoactive Chemistry to Artificial Intelligence. Molecules 2024; 29:3164. [PMID: 38999115 PMCID: PMC11243723 DOI: 10.3390/molecules29133164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/14/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.
Collapse
Affiliation(s)
- Patryk Szymaszek
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
| | | | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Kraków, Poland
- Photo4Chem Ltd., Juliusza Lea 114/416A-B, 31-133 Cracow, Poland
| |
Collapse
|
10
|
Horvat N, Papanikolaou N, Koh DM. Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use. Radiol Artif Intell 2024; 6:e230437. [PMID: 38717290 PMCID: PMC11294952 DOI: 10.1148/ryai.230437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Radiomics is a promising and fast-developing field within oncology that involves the mining of quantitative high-dimensional data from medical images. Radiomics has the potential to transform cancer management, whereby radiomics data can be used to aid early tumor characterization, prognosis, risk stratification, treatment planning, treatment response assessment, and surveillance. Nevertheless, certain challenges have delayed the clinical adoption and acceptability of radiomics in routine clinical practice. The objectives of this report are to (a) provide a perspective on the translational potential and potential impact of radiomics in oncology; (b) explore frequent challenges and mistakes in its derivation, encompassing study design, technical requirements, standardization, model reproducibility, transparency, data sharing, privacy concerns, quality control, as well as the complexity of multistep processes resulting in less radiologist-friendly interfaces; (c) discuss strategies to overcome these challenges and mistakes; and (d) propose measures to increase the clinical use and acceptability of radiomics, taking into account the different perspectives of patients, health care workers, and health care systems. Keywords: Radiomics, Oncology, Cancer Management, Artificial Intelligence © RSNA, 2024.
Collapse
Affiliation(s)
- Natally Horvat
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| | - Nikolaos Papanikolaou
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| | - Dow-Mu Koh
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY (N.H.); Department of Radiology, University of São Paulo, São Paulo, Brazil (N.H.); Computational Clinical Imaging Group, Champalimaud Foundation, Portugal (N.P.); and Department of Radiology, Royal Marsden Hospital, Downs Rd, Sutton SM2 5PT, United Kingdom (N.P., D.M.K.)
| |
Collapse
|
11
|
He J, Wang SX, Liu P. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis. Br J Radiol 2024; 97:1243-1254. [PMID: 38730550 PMCID: PMC11186567 DOI: 10.1093/bjr/tqae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES To evaluate the performance of machine learning models in predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer using magnetic resonance imaging. METHODS We searched PubMed, Embase, Cochrane Library, and Web of Science for studies published before March 2024. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to assess the methodological quality of the included studies, random-effects models were used to calculate sensitivity and specificity, I2 values were used for heterogeneity measurements, and subgroup analyses were carried out to detect potential sources of heterogeneity. RESULTS A total of 1699 patients from 24 studies were included. For machine learning models in predicting pCR to nCRT, the meta-analysis calculated a pooled area under the curve (AUC) of 0.91 (95% CI, 0.88-0.93), pooled sensitivity of 0.83 (95% CI, 0.74-0.89), and pooled specificity of 0.86 (95% CI, 0.80-0.91). We investigated 6 studies that mainly contributed to heterogeneity. After performing meta-analysis again excluding these 6 studies, the heterogeneity was significantly reduced. In subgroup analysis, the pooled AUC of the deep-learning model was 0.93 and 0.89 for the traditional statistical model; the pooled AUC of studies that used diffusion-weighted imaging (DWI) was 0.90 and 0.92 in studies that did not use DWI; the pooled AUC of studies conducted in China was 0.93, and was 0.83 in studies conducted in other countries. CONCLUSIONS This systematic study showed that machine learning has promising potential in predicting pCR to nCRT in patients with locally advanced rectal cancer. Compared to traditional machine learning models, although deep-learning-based studies are less predominant and more heterogeneous, they are able to obtain higher AUC. ADVANCES IN KNOWLEDGE Compared to traditional machine learning models, deep-learning-based studies are able to obtain higher AUC, although they are less predominant and more heterogeneous. Together with clinical information, machine learning-based models may bring us closer towards precision medicine.
Collapse
Affiliation(s)
- Jia He
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha 410002, China
| | | | - Peng Liu
- Department of Radiology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People’s Hospital, Changsha 410002, China
| |
Collapse
|
12
|
Shen H, Jin Z, Chen Q, Zhang L, You J, Zhang S, Zhang B. Image-based artificial intelligence for the prediction of pathological complete response to neoadjuvant chemoradiotherapy in patients with rectal cancer: a systematic review and meta-analysis. LA RADIOLOGIA MEDICA 2024; 129:598-614. [PMID: 38512622 DOI: 10.1007/s11547-024-01796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
OBJECTIVE Artificial intelligence (AI) holds enormous potential for noninvasively identifying patients with rectal cancer who could achieve pathological complete response (pCR) following neoadjuvant chemoradiotherapy (nCRT). We aimed to conduct a meta-analysis to summarize the diagnostic performance of image-based AI models for predicting pCR to nCRT in patients with rectal cancer. METHODS This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A literature search of PubMed, Embase, Cochrane Library, and Web of Science was performed from inception to July 29, 2023. Studies that developed or utilized AI models for predicting pCR to nCRT in rectal cancer from medical images were included. The Quality Assessment of Diagnostic Accuracy Studies-AI was used to appraise the methodological quality of the studies. The bivariate random-effects model was used to summarize the individual sensitivities, specificities, and areas-under-the-curve (AUCs). Subgroup and meta-regression analyses were conducted to identify potential sources of heterogeneity. Protocol for this study was registered with PROSPERO (CRD42022382374). RESULTS Thirty-four studies (9933 patients) were identified. Pooled estimates of sensitivity, specificity, and AUC of AI models for pCR prediction were 82% (95% CI: 76-87%), 84% (95% CI: 79-88%), and 90% (95% CI: 87-92%), respectively. Higher specificity was seen for the Asian population, low risk of bias, and deep-learning, compared with the non-Asian population, high risk of bias, and radiomics (all P < 0.05). Single-center had a higher sensitivity than multi-center (P = 0.001). The retrospective design had lower sensitivity (P = 0.012) but higher specificity (P < 0.001) than the prospective design. MRI showed higher sensitivity (P = 0.001) but lower specificity (P = 0.044) than non-MRI. The sensitivity and specificity of internal validation were higher than those of external validation (both P = 0.005). CONCLUSIONS Image-based AI models exhibited favorable performance for predicting pCR to nCRT in rectal cancer. However, further clinical trials are warranted to verify the findings.
Collapse
Affiliation(s)
- Hui Shen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Zhe Jin
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Jingjing You
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|
13
|
Zampatti S, Peconi C, Megalizzi D, Calvino G, Trastulli G, Cascella R, Strafella C, Caltagirone C, Giardina E. Innovations in Medicine: Exploring ChatGPT's Impact on Rare Disorder Management. Genes (Basel) 2024; 15:421. [PMID: 38674356 PMCID: PMC11050022 DOI: 10.3390/genes15040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Artificial intelligence (AI) is rapidly transforming the field of medicine, announcing a new era of innovation and efficiency. Among AI programs designed for general use, ChatGPT holds a prominent position, using an innovative language model developed by OpenAI. Thanks to the use of deep learning techniques, ChatGPT stands out as an exceptionally viable tool, renowned for generating human-like responses to queries. Various medical specialties, including rheumatology, oncology, psychiatry, internal medicine, and ophthalmology, have been explored for ChatGPT integration, with pilot studies and trials revealing each field's potential benefits and challenges. However, the field of genetics and genetic counseling, as well as that of rare disorders, represents an area suitable for exploration, with its complex datasets and the need for personalized patient care. In this review, we synthesize the wide range of potential applications for ChatGPT in the medical field, highlighting its benefits and limitations. We pay special attention to rare and genetic disorders, aiming to shed light on the future roles of AI-driven chatbots in healthcare. Our goal is to pave the way for a healthcare system that is more knowledgeable, efficient, and centered around patient needs.
Collapse
Affiliation(s)
- Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
- Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
- Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
- Department of System Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
- Department of Chemical-Toxicological and Pharmacological Evaluation of Drugs, Catholic University Our Lady of Good Counsel, 1000 Tirana, Albania
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy;
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy; (S.Z.)
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
14
|
Wen L, Liu J, Hu P, Bi F, Liu S, Jian L, Zhu S, Nie S, Cao F, Lu Q, Yu X, Liu K. MRI-Based Radiomic Models Outperform Radiologists in Predicting Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer. Acad Radiol 2023; 30 Suppl 1:S176-S184. [PMID: 36739228 DOI: 10.1016/j.acra.2022.12.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023]
Abstract
RATIONALE AND OBJECTIVES The 15%-27% of patients with locally advanced rectal cancer (LARC) achieved pathologic complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) and could avoid proctectomy. We aimed to investigate the effectiveness of treatment response prediction using MRI-based pre-, post-, and delta-radiomic features for LARC patients treated with nCRT and to compare these radiomic models with radiologists' visual assessment. MATERIALS AND METHODS A total of 126 patients with LARC who received nCRT before surgery were included and randomly divided into a training set (n = 84) and a validation set (n = 42). 250 radiomic features were extracted from T2-weighted images from pre- and post-nCRT MRI. Pearson correlation analysis and AONVA or Relief were used to identify radiomic descriptors associated with pCR. Five machine-learning classifiers were compared to construct radiomic models. The radiomic nomogram was built via multivariate logistic regression analysis. Two senior radiologists independently rated tumor regression grades and compared with radiomic models. Area under the curve (AUC) of the models and pooled observers were compared by using the DeLong test. RESULTS The optimal pre-, post-, and delta-radiomic models yielded an AUC of 0.717 (95% CI: 0.639-0.795), 0.805 (95%CI: 0.736-0.874), and 0.724 (95%CI: 0.648-0.800), respectively. The radiomic nomogram based on pre-nCRT cN stage, pre-nCRT radscore, and post-nCRT radscore achieved an AUC of 0.852 (95%CI: 0.774-0.930), which was higher than the single radiomic models and pooled readers (all p < 0.05). CONCLUSIONS The radiomic nomogram is an effective and invasive tool to predict pCR in LARC patients after nCRT, which outperforms radiologists.
Collapse
Affiliation(s)
- Lu Wen
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Jun Liu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China.
| | - Pingsheng Hu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Feng Bi
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China.
| | - Siye Liu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Lian Jian
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Suyu Zhu
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
| | - Shaolin Nie
- Department of Colorectal Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Fang Cao
- Department of Pathology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Qiang Lu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Xiaoping Yu
- Department of Diagnostic Radiology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, P.R. China
| | - Ke Liu
- Department of Radiotherapy, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China.
| |
Collapse
|
15
|
Xu M, Chen Z, Zheng J, Zhao Q, Yuan Z. Artificial Intelligence-Aided Optical Imaging for Cancer Theranostics. Semin Cancer Biol 2023:S1044-579X(23)00094-9. [PMID: 37302519 DOI: 10.1016/j.semcancer.2023.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Zhiyi Chen
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxiao Zheng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China
| | - Qi Zhao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Zhen Yuan
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; Centre for Cognitive and Brain Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
16
|
Miranda J, Horvat N, Assuncao AN, de M Machado FA, Chakraborty J, Pandini RV, Saraiva S, Nahas CSR, Nahas SC, Nomura CH. MRI-based radiomic score increased mrTRG accuracy in predicting rectal cancer response to neoadjuvant therapy. Abdom Radiol (NY) 2023; 48:1911-1920. [PMID: 37004557 PMCID: PMC10942660 DOI: 10.1007/s00261-023-03898-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
PURPOSE To develop a magnetic resonance imaging (MRI)-based radiomics score, i.e., "rad-score," and to investigate the performance of rad-score alone and combined with mrTRG in predicting pathologic complete response (pCR) in patients with locally advanced rectal cancer following neoadjuvant chemoradiation therapy. METHODS This retrospective study included consecutive patients with LARC who underwent neoadjuvant chemoradiotherapy followed by surgery from between July 2011 to November 2015. Volumes of interest of the entire tumor on baseline rectal MRI and of the tumor bed on restaging rectal MRI were manually segmented on T2-weighted images. The radiologist also provided the ymrTRG score on the restaging MRI. Radiomic score (rad-score) was calculated and optimal cut-off points for both mrTRG and rad-score to predict pCR were selected using Youden's J statistic. RESULTS Of 180 patients (mean age = 63 years; 60% men), 33/180 (18%) achieved pCR. High rad-score (> - 1.49) yielded an area under the curve (AUC) of 0.758, comparable to ymrTRG 1-2 which yielded an AUC of 0.759. The combination of high rad-score and ymrTRG 1-2 yielded a significantly higher AUC of 0.836 compared with ymrTRG 1-2 and high rad-score alone (p < 0.001). A logistic regression model incorporating both high rad-score and mrTRG 1-2 was built to calculate adjusted odds ratios for pCR, which was 4.85 (p < 0.001). CONCLUSION Our study demonstrates that a rectal restaging MRI-based rad-score had comparable diagnostic performance to ymrTRG. Moreover, the combined rad-score and ymrTRG model yielded a significant better diagnostic performance for predicting pCR.
Collapse
Affiliation(s)
- Joao Miranda
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, Box 29, New York, NY, 10065, USA.
| | - Antonildes N Assuncao
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
- Research and Education Institute, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | | | - Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Samya Saraiva
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | | | | | - Cesar Higa Nomura
- Department of Radiology, University of Sao Paulo, Sao Paulo, SP, Brazil
- Department of Radiology, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| |
Collapse
|
17
|
Inchingolo R, Maino C, Cannella R, Vernuccio F, Cortese F, Dezio M, Pisani AR, Giandola T, Gatti M, Giannini V, Ippolito D, Faletti R. Radiomics in colorectal cancer patients. World J Gastroenterol 2023; 29:2888-2904. [PMID: 37274803 PMCID: PMC10237092 DOI: 10.3748/wjg.v29.i19.2888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
The main therapeutic options for colorectal cancer are surgical resection and adjuvant chemotherapy in non-metastatic disease. However, the evaluation of the overall adjuvant chemotherapy benefit in patients with a high risk of recurrence is challenging. Radiological images can represent a source of data that can be analyzed by using automated computer-based techniques, working on numerical information coded within Digital Imaging and Communications in Medicine files: This image numerical analysis has been named "radiomics". Radiomics allows the extraction of quantitative features from radiological images, mainly invisible to the naked eye, that can be further analyzed by artificial intelligence algorithms. Radiomics is expanding in oncology to either understand tumor biology or for the development of imaging biomarkers for diagnosis, staging, and prognosis, prediction of treatment response and diseases monitoring and surveillance. Several efforts have been made to develop radiomics signatures for colorectal cancer patient using computed tomography (CT) images with different aims: The preoperative prediction of lymph node metastasis, detecting BRAF and RAS gene mutations. Moreover, the use of delta-radiomics allows the analysis of variations of the radiomics parameters extracted from CT scans performed at different timepoints. Most published studies concerning radiomics and magnetic resonance imaging (MRI) mainly focused on the response of advanced tumors that underwent neoadjuvant therapy. Nodes status is the main determinant of adjuvant chemotherapy. Therefore, several radiomics model based on MRI, especially on T2-weighted images and ADC maps, for the preoperative prediction of nodes metastasis in rectal cancer has been developed. Current studies mostly focused on the applications of radiomics in positron emission tomography/CT for the prediction of survival after curative surgical resection and assessment of response following neoadjuvant chemoradiotherapy. Since colorectal liver metastases develop in about 25% of patients with colorectal carcinoma, the main diagnostic tasks of radiomics should be the detection of synchronous and metachronous lesions. Radiomics could be an additional tool in clinical setting, especially in identifying patients with high-risk disease. Nevertheless, radiomics has numerous shortcomings that make daily use extremely difficult. Further studies are needed to assess performance of radiomics in stratifying patients with high-risk disease.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Francesco Cortese
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Michele Dezio
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| | - Antonio Rosario Pisani
- Interdisciplinary Department of Medicine, Section of Nuclear Medicine, University of Bari “Aldo Moro”, Bari 70121, Italy
| | - Teresa Giandola
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| |
Collapse
|
18
|
Yin Z, Yao C, Zhang L, Qi S. Application of artificial intelligence in diagnosis and treatment of colorectal cancer: A novel Prospect. Front Med (Lausanne) 2023; 10:1128084. [PMID: 36968824 PMCID: PMC10030915 DOI: 10.3389/fmed.2023.1128084] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
In the past few decades, according to the rapid development of information technology, artificial intelligence (AI) has also made significant progress in the medical field. Colorectal cancer (CRC) is the third most diagnosed cancer worldwide, and its incidence and mortality rates are increasing yearly, especially in developing countries. This article reviews the latest progress in AI in diagnosing and treating CRC based on a systematic collection of previous literature. Most CRCs transform from polyp mutations. The computer-aided detection systems can significantly improve the polyp and adenoma detection rate by early colonoscopy screening, thereby lowering the possibility of mutating into CRC. Machine learning and bioinformatics analysis can help screen and identify more CRC biomarkers to provide the basis for non-invasive screening. The Convolutional neural networks can assist in reading histopathologic tissue images, reducing the experience difference among doctors. Various studies have shown that AI-based high-level auxiliary diagnostic systems can significantly improve the readability of medical images and help clinicians make more accurate diagnostic and therapeutic decisions. Moreover, Robotic surgery systems such as da Vinci have been more and more commonly used to treat CRC patients, according to their precise operating performance. The application of AI in neoadjuvant chemoradiotherapy has further improved the treatment and efficacy evaluation of CRC. In addition, AI represented by deep learning in gene sequencing research offers a new treatment option. All of these things have seen that AI has a promising prospect in the era of precision medicine.
Collapse
Affiliation(s)
- Zugang Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chenhui Yao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Limin Zhang
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shaohua Qi
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Radiomics Approaches for the Prediction of Pathological Complete Response after Neoadjuvant Treatment in Locally Advanced Rectal Cancer: Ready for Prime Time? Cancers (Basel) 2023; 15:cancers15020432. [PMID: 36672381 PMCID: PMC9857080 DOI: 10.3390/cancers15020432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
In recent years, neoadjuvant therapy of locally advanced rectal cancer has seen tremendous modifications. Adding neoadjuvant chemotherapy before or after chemoradiotherapy significantly increases loco-regional disease-free survival, negative surgical margin rates, and complete response rates. The higher complete rate is particularly clinically meaningful given the possibility of organ preservation in this specific sub-population, without compromising overall survival. However, all locally advanced rectal cancer most likely does not benefit from total neoadjuvant therapy (TNT), but experiences higher toxicity rates. Diagnosis of complete response after neoadjuvant therapy is a real challenge, with a risk of false negatives and possible under-treatment. These new therapeutic approaches thus raise the need for better selection tools, enabling a personalized therapeutic approach for each patient. These tools mostly focus on the prediction of the pathological complete response given the clinical impact. In this article, we review the place of different biomarkers (clinical, biological, genomics, transcriptomics, proteomics, and radiomics) as well as their clinical implementation and discuss the most recent trends for future steps in prediction modeling in patients with locally advanced rectal cancer.
Collapse
|
20
|
Jia LL, Zheng QY, Tian JH, He DL, Zhao JX, Zhao LP, Huang G. Artificial intelligence with magnetic resonance imaging for prediction of pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1026216. [PMID: 36313696 PMCID: PMC9597310 DOI: 10.3389/fonc.2022.1026216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this study was to evaluate the diagnostic accuracy of artificial intelligence (AI) models with magnetic resonance imaging(MRI) in predicting pathological complete response(pCR) to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Furthermore, assessed the methodological quality of the models. Methods We searched PubMed, Embase, Cochrane Library, and Web of science for studies published before 21 June 2022, without any language restrictions. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) and Radiomics Quality Score (RQS) tools were used to assess the methodological quality of the included studies. We calculated pooled sensitivity and specificity using random-effects models, I2 values were used to measure heterogeneity, and subgroup analyses to explore potential sources of heterogeneity. Results We selected 21 papers for inclusion in the meta-analysis from 1562 retrieved publications, with a total of 1873 people in the validation groups. The meta-analysis showed that AI models based on MRI predicted pCR to nCRT in patients with rectal cancer: a pooled area under the curve (AUC) 0.91 (95% CI, 0.88-0.93), sensitivity of 0.82(95% CI,0.71-0.90), pooled specificity 0.86(95% CI,0.80-0.91). In the subgroup analysis, the pooled AUC of the deep learning(DL) model was 0.97, the pooled AUC of the radiomics model was 0.85; the pooled AUC of the combined model with clinical factors was 0.92, and the pooled AUC of the radiomics model alone was 0.87. The mean RQS score of the included studies was 10.95, accounting for 30.4% of the total score. Conclusions Radiomics is a promising noninvasive method with high value in predicting pathological response to nCRT in patients with rectal cancer. DL models have higher predictive accuracy than radiomics models, and combined models incorporating clinical factors have higher diagnostic accuracy than radiomics models alone. In the future, prospective, large-scale, multicenter investigations using radiomics approaches will strengthen the diagnostic power of pCR. Systematic Review Registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021285630.
Collapse
Affiliation(s)
- Lu-Lu Jia
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Qing-Yong Zheng
- Evidence-Based Nursing Center, School of Nursing, Lanzhou University, Lanzhou, China
| | - Jin-Hui Tian
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Di-Liang He
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Jian-Xin Zhao
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Lian-Ping Zhao
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| | - Gang Huang
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
- *Correspondence: Gang Huang,
| |
Collapse
|