1
|
Shen J, Li Q, Li L, Lu T, Han J, Xie Z, Wang P, Cao Z, Zeng M, Zhou J, Yu T, Xu Y, Sun H. Contrast-enhanced MRI-based intratumoral heterogeneity assessment for predicting lymph node metastasis in resectable pancreatic ductal adenocarcinoma. Insights Imaging 2025; 16:76. [PMID: 40159327 PMCID: PMC11955437 DOI: 10.1186/s13244-025-01956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
OBJECTIVES To develop and validate a contrast-enhanced MRI-based intratumoral heterogeneity (ITH) model for predicting lymph node (LN) metastasis in resectable pancreatic ductal adenocarcinoma (PDAC). METHODS Lesions were encoded into different habitats based on enhancement ratios at arterial, venous, and delayed phases of contrast-enhanced MRI. Habitat models on enhanced ratio mapping and single sequences, radiomic models, and clinical models were developed for evaluating LN metastasis. The performance of the models was evaluated via different metrics. Additionally, patients were stratified into high-risk and low-risk groups based on an ensembled model to assess prognosis after adjuvant therapy. RESULTS We developed an ensembled radiomics-habitat-clinical (RHC) model that integrates radiomics, habitat, and clinical data for precise prediction of LN metastasis in PDAC. The RHC model showed strong predictive performance, with area under the curve (AUC) values of 0.805, 0.779, and 0.615 in the derivation, internal validation, and external validation cohorts, respectively. Using an optimal threshold of 0.46, the model effectively stratified patients, revealing significant differences in recurrence-free survival and overall survival (OS) (p = 0.004 and p < 0.001). Adjuvant therapy improved OS in the high-risk group (p = 0.004), but no significant benefit was observed in the low-risk group (p = 0.069). CONCLUSION We developed an MRI-based ITH model that provides reliable estimates of LN metastasis for resectable PDAC and may offer additional value in guiding clinical decision-making. CRITICAL RELEVANCE STATEMENT This ensemble RHC model facilitates preoperative prediction of LN metastasis in resectable PDAC using contrast-enhanced MRI. This offers a foundation for enhanced prognostic assessment and supports the management of personalized adjuvant treatment strategies. KEY POINTS MRI-based habitat models can predict LN metastasis in PDAC. Both the radiomics model and clinical characteristics were useful for predicting LN metastasis in PDAC. The RHC models have the potential to enhance predictive accuracy and inform personalized therapeutic decisions.
Collapse
Affiliation(s)
- Junjian Shen
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Qing Li
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lei Li
- Department of Radiology, Fengyang County People's Hospital, Chuzhou, China
| | - Tianyu Lu
- Department of Radiology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jun Han
- Department of Radiology, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Zongyu Xie
- Department of Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Peng Wang
- Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi, P.R. China
| | - Zirui Cao
- Department of Research Center, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen Municipal Clinical Research Center for Medical Imaging, Fujian Province Key Clinical Specialty for Medical Imaging, Xiamen Key Laboratory of Clinical Transformation of Imaging Big Data and Artificial Intelligence, Xiamen, China
| | - Tianzhu Yu
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai, China
| | - Yaolin Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haitao Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, China.
| |
Collapse
|
2
|
Tang Y, Su YX, Zheng JM, Zhuo ML, Qian QF, Shen QL, Lin P, Chen ZK. Radiogenomic analysis for predicting lymph node metastasis and molecular annotation of radiomic features in pancreatic cancer. J Transl Med 2024; 22:690. [PMID: 39075486 PMCID: PMC11288107 DOI: 10.1186/s12967-024-05479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND To provide a preoperative prediction model for lymph node metastasis in pancreatic cancer patients and provide molecular information of key radiomic features. METHODS Two cohorts comprising 151 and 54 pancreatic cancer patients were included in the analysis. Radiomic features from the tumor region of interests were extracted by using PyRadiomics software. We used a framework that incorporated 10 machine learning algorithms and generated 77 combinations to construct radiomics-based models for lymph node metastasis prediction. Weighted gene coexpression network analysis (WGCNA) was subsequently performed to determine the relationships between gene expression levels and radiomic features. Molecular pathways enrichment analysis was performed to uncover the underlying molecular features. RESULTS Patients in the in-house cohort (mean age, 61.3 years ± 9.6 [SD]; 91 men [60%]) were separated into training (n = 105, 70%) and validation (n = 46, 30%) cohorts. A total of 1,239 features were extracted and subjected to machine learning algorithms. The 77 radiomic models showed moderate performance for predicting lymph node metastasis, and the combination of the StepGBM and Enet algorithms had the best performance in the training (AUC = 0.84, 95% CI = 0.77-0.91) and validation (AUC = 0.85, 95% CI = 0.73-0.98) cohorts. We determined that 15 features were core variables for lymph node metastasis. Proliferation-related processes may respond to the main molecular alterations underlying these features. CONCLUSIONS Machine learning-based radiomics could predict the status of lymph node metastasis in pancreatic cancer, which is associated with proliferation-related alterations.
Collapse
Affiliation(s)
- Yi Tang
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Yi-Xi Su
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Jin-Mei Zheng
- Department of Radiology, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Min-Ling Zhuo
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Qing-Fu Qian
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Qing-Ling Shen
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China
| | - Peng Lin
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China.
| | - Zhi-Kui Chen
- Department of Medical Ultrasound, Fujian Medical University Union Hospital, 29 Xinquan road, Fuzhou, China.
| |
Collapse
|
3
|
Castellana R, Fanni SC, Roncella C, Romei C, Natrella M, Neri E. Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis. Eur J Radiol 2024; 176:111510. [PMID: 38781919 DOI: 10.1016/j.ejrad.2024.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. RESULTS Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77-0.88), 0.76 (95 %CI = 0.62-0.86), 15.70 (95 %CI = 8.12-27.50) and 0.85 (95 %CI = 0.77-0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). CONCLUSION Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
Collapse
Affiliation(s)
- Roberto Castellana
- Diagnostic and Interventional Radiology, "Parini" Regional Hospital, Azienda USL della Valle d'Aosta, Viale Ginevra 3 11100, Aosta, Italy.
| | - Salvatore Claudio Fanni
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Claudia Roncella
- Radiology Unit, Apuane Hospital, Azienda USL Toscana Nord Ovest, Via Mattei 21, 54100, Massa, Italy
| | - Chiara Romei
- Department of Diagnostic Imaging, Diagnostic Radiology 2, Pisa University Hospital, Via Paradisa 2, 56124, Pisa, Italy
| | - Massimiliano Natrella
- Diagnostic and Interventional Radiology, "Parini" Regional Hospital, Azienda USL della Valle d'Aosta, Viale Ginevra 3 11100, Aosta, Italy
| | - Emanuele Neri
- Department of Translational Research, Academic Radiology, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| |
Collapse
|
4
|
Ma D, Zhou T, Chen J, Chen J. Radiomics diagnostic performance for predicting lymph node metastasis in esophageal cancer: a systematic review and meta-analysis. BMC Med Imaging 2024; 24:144. [PMID: 38867143 PMCID: PMC11170881 DOI: 10.1186/s12880-024-01278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Esophageal cancer, a global health concern, impacts predominantly men, particularly in Eastern Asia. Lymph node metastasis (LNM) significantly influences prognosis, and current imaging methods exhibit limitations in accurate detection. The integration of radiomics, an artificial intelligence (AI) driven approach in medical imaging, offers a transformative potential. This meta-analysis evaluates existing evidence on the accuracy of radiomics models for predicting LNM in esophageal cancer. METHODS We conducted a systematic review following PRISMA 2020 guidelines, searching Embase, PubMed, and Web of Science for English-language studies up to November 16, 2023. Inclusion criteria focused on preoperatively diagnosed esophageal cancer patients with radiomics predicting LNM before treatment. Exclusion criteria were applied, including non-English studies and those lacking sufficient data or separate validation cohorts. Data extraction encompassed study characteristics and radiomics technical details. Quality assessment employed modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS) tools. Statistical analysis involved random-effects models for pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC). Heterogeneity and publication bias were assessed using Deek's test and funnel plots. Analysis was performed using Stata version 17.0 and meta-DiSc. RESULTS Out of 426 initially identified citations, nine studies met inclusion criteria, encompassing 719 patients. These retrospective studies utilized CT, PET, and MRI imaging modalities, predominantly conducted in China. Two studies employed deep learning-based radiomics. Quality assessment revealed acceptable QUADAS-2 scores. RQS scores ranged from 9 to 14, averaging 12.78. The diagnostic meta-analysis yielded a pooled sensitivity, specificity, and AUC of 0.72, 0.76, and 0.74, respectively, representing fair diagnostic performance. Meta-regression identified the use of combined models as a significant contributor to heterogeneity (p-value = 0.05). Other factors, such as sample size (> 75) and least absolute shrinkage and selection operator (LASSO) usage for feature extraction, showed potential influence but lacked statistical significance (0.05 < p-value < 0.10). Publication bias was not statistically significant. CONCLUSION Radiomics shows potential for predicting LNM in esophageal cancer, with a moderate diagnostic performance. Standardized approaches, ongoing research, and prospective validation studies are crucial for realizing its clinical applicability.
Collapse
Affiliation(s)
- Dong Ma
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, China
| | - Teli Zhou
- Guangzhou Shiyuan Clinics Co., Ltd, Guangzhou, Guangdong, 510530, China
| | - Jing Chen
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, 510900, China
| | - Jun Chen
- Dingxi People's Hospital, Dingxi, Gansu, 743000, China.
| |
Collapse
|
5
|
Abbaspour E, Karimzadhagh S, Monsef A, Joukar F, Mansour-Ghanaei F, Hassanipour S. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:3795-3813. [PMID: 38935817 PMCID: PMC11175807 DOI: 10.1097/js9.0000000000001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) stands as the third most prevalent cancer globally, projecting 3.2 million new cases and 1.6 million deaths by 2040. Accurate lymph node metastasis (LNM) detection is critical for determining optimal surgical approaches, including preoperative neoadjuvant chemoradiotherapy and surgery, which significantly influence CRC prognosis. However, conventional imaging lacks adequate precision, prompting exploration into radiomics, which addresses this shortfall by converting medical images into reproducible, quantitative data. METHODS Following PRISMA, Supplemental Digital Content 1 (http://links.lww.com/JS9/C77) and Supplemental Digital Content 2 (http://links.lww.com/JS9/C78), and AMSTAR-2 guidelines, Supplemental Digital Content 3 (http://links.lww.com/JS9/C79), we systematically searched PubMed, Web of Science, Embase, Cochrane Library, and Google Scholar databases until 11 January 2024, to evaluate radiomics models' diagnostic precision in predicting preoperative LNM in CRC patients. The quality and bias risk of the included studies were assessed using the Radiomics Quality Score (RQS) and the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Subsequently, statistical analyses were conducted. RESULTS Thirty-six studies encompassing 8039 patients were included, with a significant concentration in 2022-2023 (20/36). Radiomics models predicting LNM demonstrated a pooled area under the curve (AUC) of 0.814 (95% CI: 0.78-0.85), featuring sensitivity and specificity of 0.77 (95% CI: 0.69, 0.84) and 0.73 (95% CI: 0.67, 0.78), respectively. Subgroup analyses revealed similar AUCs for CT and MRI-based models, and rectal cancer models outperformed colon and colorectal cancers. Additionally, studies utilizing cross-validation, 2D segmentation, internal validation, manual segmentation, prospective design, and single-center populations tended to have higher AUCs. However, these differences were not statistically significant. Radiologists collectively achieved a pooled AUC of 0.659 (95% CI: 0.627, 0.691), significantly differing from the performance of radiomics models (P<0.001). CONCLUSION Artificial intelligence-based radiomics shows promise in preoperative lymph node staging for CRC, exhibiting significant predictive performance. These findings support the integration of radiomics into clinical practice to enhance preoperative strategies in CRC management.
Collapse
Affiliation(s)
- Elahe Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzadhagh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Monsef
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Anghel C, Grasu MC, Anghel DA, Rusu-Munteanu GI, Dumitru RL, Lupescu IG. Pancreatic Adenocarcinoma: Imaging Modalities and the Role of Artificial Intelligence in Analyzing CT and MRI Images. Diagnostics (Basel) 2024; 14:438. [PMID: 38396476 PMCID: PMC10887967 DOI: 10.3390/diagnostics14040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as the predominant malignant neoplasm affecting the pancreas, characterized by a poor prognosis, in most cases patients being diagnosed in a nonresectable stage. Image-based artificial intelligence (AI) models implemented in tumor detection, segmentation, and classification could improve diagnosis with better treatment options and increased survival. This review included papers published in the last five years and describes the current trends in AI algorithms used in PDAC. We analyzed the applications of AI in the detection of PDAC, segmentation of the lesion, and classification algorithms used in differential diagnosis, prognosis, and histopathological and genomic prediction. The results show a lack of multi-institutional collaboration and stresses the need for bigger datasets in order for AI models to be implemented in a clinically relevant manner.
Collapse
Affiliation(s)
- Cristian Anghel
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Mugur Cristian Grasu
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Denisa Andreea Anghel
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Gina-Ionela Rusu-Munteanu
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Radu Lucian Dumitru
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| | - Ioana Gabriela Lupescu
- Faculty of Medicine, Department of Medical Imaging and Interventional Radiology, Carol Davila University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania; (C.A.); (R.L.D.); (I.G.L.)
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania; (D.A.A.); (G.-I.R.-M.)
| |
Collapse
|