1
|
McNulty S, Colaco CA, Blandford LE, Bailey CR, Baschieri S, Todryk S. Heat-shock proteins as dendritic cell-targeting vaccines--getting warmer. Immunology 2013; 139:407-15. [PMID: 23551234 PMCID: PMC3719058 DOI: 10.1111/imm.12104] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/08/2013] [Accepted: 02/15/2013] [Indexed: 12/22/2022] Open
Abstract
Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp-containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp-based vaccines, in the form of pathogen-derived hsp-antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical.
Collapse
Affiliation(s)
- Shaun McNulty
- ImmunoBiology Ltd., Babraham Research Campus, Babraham, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
2
|
Hernández AM, Rodríguez N, González JE, Reyes E, Rondón T, Griñán T, Macías A, Alfonso S, Vázquez AM, Pérez R. Anti-NeuGcGM3 antibodies, actively elicited by idiotypic vaccination in nonsmall cell lung cancer patients, induce tumor cell death by an oncosis-like mechanism. THE JOURNAL OF IMMUNOLOGY 2011; 186:3735-44. [PMID: 21300821 DOI: 10.4049/jimmunol.1000609] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1E10 is a murine anti-idiotypic mAb specific for an idiotypic mAb that reacts with NeuGc-containing gangliosides, sulfatides, and Ags expressed in some human tumors. In melanoma, breast, and lung cancer patients, this anti-idiotypic Ab was able to induce a specific Ab response against N-glycosylated gangliosides, attractive targets for cancer immunotherapy as these glycolipids are not naturally expressed in humans. A clinical study with nonsmall cell lung cancer patients showed encouraging clinical benefits. Immunological studies performed in 20 of these patients suggested a correlation between the induction of Abs against NeuGcGM3 and longer survival times. The induced anti-NeuGcGM3 Abs recognized and directly killed tumor cells expressing the Ag, by a mechanism independent of complement activation. In the present work, we show that this cytotoxicity differs from apoptosis because it is temperature independent, no chromatin condensation or caspase 3 induction are detected, and the DNA fragmentation induced has a different pattern than the one characteristic for apoptosis. It is a very quick process and involves cytosqeleton reorganization. The Abs induce cellular swelling and the formation of big membrane lesions that allow the leakage of cytoplasm and the loss of the cell membrane integrity. All of these characteristics resemble a process of oncotic necrosis. To our knowledge, this is the first report of the active induction in cancer patients of NeuGcGM3-specific Abs able to induce complement independent oncotic necrosis to tumor cells. These results contribute to reinforcing the therapeutic potential of anti-idiotypic vaccines and the importance of NeuGcGM3 ganglioside as antitumor target.
Collapse
Affiliation(s)
- Ana María Hernández
- Department of Antibody Engineering, Center of Molecular Immunology, Havana 11600, Cuba.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Ismail M, Morgan R, Harrington K, Davies J, Pandha H. Immunoregulatory effects of freeze injured whole tumour cells on human dendritic cells using an in vitro cryotherapy model. Cryobiology 2010; 61:268-74. [PMID: 20863822 DOI: 10.1016/j.cryobiol.2010.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/01/2010] [Accepted: 09/06/2010] [Indexed: 11/28/2022]
Abstract
Tumour cryotherapy has been described as both immunostimulatory and immunoinhibitory in previous studies. However, previous studies have not accurately reproduced the precise conditions of current clinical cryotherapy. The objective of this study is to assess the immunological effects of cryotreated whole tumour cells on dendritic cells (DC) maturation and function using an in vitro model. Prostate cancer cells were cooled using Endocare cryo-system to mimic temperatures achieved during clinical cryotherapy. Human DC were prepared from cluster of differentiation (CD) 14 monocytes and matured with lipopolysaccharide (LPS). Cryotreated cancer cells were added to DC on day 3. On day 7, DC were harvested and phenotyped. Cytokine gene expression was assessed using real time quantitative polymerase chain reaction (RT-PCR). Functional activity of DC was assessed in allogenic mixed lymphocyte reaction (MLR) and the molecular changes using gene microarray technology. There was statistically significant upregulation of costimulatory molecules and maturation markers (CD86, CD83, CD80 and CL II) in DC loaded with cryotreated whole tumour cells compared to both control DC and DC matured with LPS (P < 0.001). There was a significant increase in stimulatory cytokines gene expression (IL-2, IL-12, IL-15, IL-18 and IFN-γ). However, IL-10 and TGF-β expression reduced significantly. The effect of different freezing temperature was equal. cDNA microarray analysis showed upregulation of interleukin 1 (IL-1) and cycline dependent kinase inhibitor 1A (CDKN1A (p21) and downregulation of Caspase 8 and BCL2. Overall, our findings suggest that the effect of cryotherapy is generally stimulatory to DC which may enhance anti-tumour effects. Therefore, the combination of cryotherapy and DC vaccine may represent a novel method to increase the efficacy of cryotherapy especially at the peripheral zones of the prostate where cells are exposed to sub-lethal temperature.
Collapse
Affiliation(s)
- Mohamed Ismail
- Postgraduate Medical School, University of Surrey, Guildford, Surrey GU27WG, UK.
| | | | | | | | | |
Collapse
|
4
|
Brusa D, Migliore E, Garetto S, Simone M, Matera L. Immunogenicity of 56 degrees C and UVC-treated prostate cancer is associated with release of HSP70 and HMGB1 from necrotic cells. Prostate 2009; 69:1343-52. [PMID: 19496055 DOI: 10.1002/pros.20981] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostate hyperthermia and photodynamic therapy can be delivered by a variety of procedures which result in a wide range of temperatures and light energy and cause different kinds of cell death. METHODS We have addressed the immunogenic effect of heating and UVC irradiation on the prostate cancer (PCa) cell line LNCaP, by studying the release of Danger Associated Molecule Pattern (DAMP) molecules HSP70 and HMGB1 and the dendritic cell (DC) antigen-presenting efficiency. RESULTS Intracellular upmodulation and extracellular release of HSP70 were inversely correlated. Mild temperatures (43-47 degrees C) induced an early increase of intracellular HSP70, whereas the highest temperature (56 degrees C) induced its extrusion from the cell. Likewise, UVC caused an immediate migration of HSP70 into the cell medium in the absence of any intracellular modulation. 56 degrees C and UVC also induced a robust release of HMGB1. The release of DAMP molecules was closely associated with post-apoptotic membrane damage, as shown by double Annexin V/propidium iodide staining, whereas beta-tubulin, a structural component of cell membranes, was specifically induced by 56 degrees C heating. Tumor uptake strongly impaired the cytokine-driven maturation of DCs and 56 degrees C heating led to a significant recovery of CD83 and CCR7 DC maturation markers, but did not influence the antigen cross-presentation activity. On the contrary, UVC-treated LNCaP had negligible effects on DC maturation, but increased the cross-priming of tumor specific CTL. CONCLUSIONS These data may be of use in the design of effective non-surgical PCa ablations that combine tumor destruction with long lasting immunity.
Collapse
Affiliation(s)
- Davide Brusa
- Laboratory of Tumor Immunology, Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | | | | | |
Collapse
|
5
|
MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models. Cancer Lett 2008; 275:256-65. [PMID: 19036499 DOI: 10.1016/j.canlet.2008.10.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 10/08/2008] [Accepted: 10/17/2008] [Indexed: 01/12/2023]
Abstract
The ideal cancer vaccine should work regardless of MHC types but currently the barrier generated by MHC specificity hampers the development of human cancer vaccines, requesting to identify strong immunogenic molecules that can induce anti-cancer immune responses without being affected by MHC polymorphism. Tumor-derived exosomes are small membrane vesicles containing tumor antigens as well as other immunologically important molecules such as MHC molecules and heat shock proteins (HSPs). Because of their potential immunogenicity, the plausible utility of tumor-derived exosomes as an MHC independent cancer vaccine was proposed. Here, we investigated whether Hsp70-enriched tumor exosomes can induce stronger immunogenicity as compared to normal tumor-derived exosomes in autologous as well as allogeneic murine models in vitro and in vivo. Western blotting showed that the exosomes of heat-treated tumor cells (HS Exo) contained higher amounts of Hsp70 than the exosomes of untreated cells (CNTL Exo). In both MHC type-identical and -irrelevant antigen-presenting cell models in vitro, HS Exo triggered the increased expressions of MHC class II molecules. Crucially, HS Exo performed greater therapeutic capability in regressing pre-established MHC type-identical and -irrelevant tumors than CNTL Exo in vivo. The analyses of anti-tumor function in allogeneic mouse model demonstrated that HS Exo elicited Th1-polarized immune responses defined by the increased productions of IgG2a and IFN-gamma. In summary, the Hsp70-enriched exosomes extracted from heat-treated tumors induced strong Th1 immune responses, resulting in eliminating cancer cells in allogeneic hosts in vivo. These results indicate that HS Exo is a potent MHC independent cell-free cancer therapeutic agent that can be developed for clinical trials.
Collapse
|
6
|
Hashemi SM, Hassan ZM, Soudi S, Ghazanfari T, Kheirandish M, Shahabi S. Evaluation of anti-tumor effects of tumor cell lysate enriched by HSP-70 against fibrosarcoma tumor in BALB/c mice. Int Immunopharmacol 2007; 7:920-7. [PMID: 17499194 DOI: 10.1016/j.intimp.2007.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/27/2007] [Accepted: 02/27/2007] [Indexed: 11/30/2022]
Abstract
The cytosolic members of the heat shock protein 70 (HSP-70) family have been shown to elicit protective cell mediated immunity in animal tumor models. The aim of this study was to investigate the effect of the HSP-70 enriched lysate of heated tumor cells as vaccines in cancer immunotherapy in the mouse model for WEHI-164 fibrosarcoma. Three animal bearing tumor groups were investigated: test group; vaccinated with enriched HSP-70 tumor lysate, control group I; vaccinated with tumor lysate only and control group II; received PBS. The results indicated that vaccinated mice in the test group had resulted in a significant reduction in tumor size and longer survival. To find the mechanism of these results, we measured the splenocytes proliferation, tumor infiltrated lymphocytes and cytotoxic activity of the splenocytes. The results indicated a significant increase in the proliferation of mouse splenocytes, a significant increase in the CD8+ lymphocytes as well as significant increase in the cytotoxic activity of splenocytes against the target cells in the test group. In addition, we analyzed the shifting of Th1/Th2 in all the groups. The results indicated a significant increase in the IFN-gamma production in the test group. These findings provided a useful therapeutic model for development of approaches to cancer treatments.
Collapse
Affiliation(s)
- Seyed Mahmoud Hashemi
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
7
|
Chen W, Wang J, Shao C, Liu S, Yu Y, Wang Q, Cao X. Efficient induction of antitumor T cell immunity by exosomes derived from heat-shocked lymphoma cells. Eur J Immunol 2006; 36:1598-607. [PMID: 16708399 DOI: 10.1002/eji.200535501] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Exosomes secreted by tumor cells could serve as a promising immunotherapeutic tumor vaccine. Heat shock proteins (HSP) induced in tumor cells by heat shock are molecular chaperones with potent adjuvant activity in the induction of antigen-specific T cell responses. To improve exosome-based tumor vaccines, we have investigated the efficacy of exosomes derived from heat-shocked mouse B lymphoma cells (HS-Exo) in the induction of antitumor immune responses. We found that HS-Exo, compared with control exosomes derived from the same cells (Exo), contain more HSP60 and HSP90 and increased amounts of molecules involved in immunogenicity including MHC class I, MHC class II, CD40, CD86, RANTES and IL-1beta. Furthermore, HS-Exo induce both phenotypic and functional maturation of dendritic cells more efficiently. HS-Exo immunization activates T cell responses more potently. Importantly, HS-Exo induce dramatically increased antitumor immune responses compared to control exosomes from the same cells in prophylaxis and therapeutic in vivo lymphoma models. We further demonstrate that CD8(+) T cells are the predominant T cell subset responsible for the antitumor effect of HS-Exo and that CD4(+) T cells are necessary in the induction phase of tumor rejection in a prophylaxis model. These findings provide a novel strategy to improve the efficacy of exosome-based tumor vaccines.
Collapse
Affiliation(s)
- Weilin Chen
- The Institute of Immunology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The ability to duplicate the remarkable success of infectious disease vaccines in cancer, with durably robust and highly specific antitumor immune responses, has been long held as one of the keys in developing true "magic bullet" cancer therapies. This article attempts to explain why cancer vaccines have failed (so far), delineate the increasingly complex barriers that prevent the eliciting of effective antitumor immunity and examines the ability of heat shock protein-based vaccines to overcome these barriers. This article is not a definitive compendium of the huge body of relevant literature but rather focuses on the major concepts underlying active specific immunotherapy in general and heat shock protein vaccines in particular.
Collapse
Affiliation(s)
- Kelvin P Lee
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, FL, USA.
| | | | | |
Collapse
|
9
|
Pandha H, Eaton J, Greenhalgh R, Soars D, Dalgleish A. Immunotherapy of murine prostate cancer using whole tumor cells killed ex vivo by herpes simplex viral thymidine kinase/ganciclovir suicide gene therapy. Cancer Gene Ther 2005; 12:572-8. [PMID: 15803141 DOI: 10.1038/sj.cgt.7700836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whole cell cancer vaccines are currently under clinical evaluation. Their immunogenicity may depend on the mode of death of the vaccine cells prior to uptake by professional antigen-presenting cells and crosspriming of T cells. Destruction of tumor in vivo by genetic prodrug activation therapy leads to a marked local and systemic immune response, local T-cell infiltration and the establishment of T-cell memory. We postulated that this immunostimulation may be due to induction of danger signals and the inherent immunogenicity of products of HSVtk/ganciclovir kill. Using established models of murine prostate cancer, we have evaluated the efficacy of anti-tumor vaccines comprising irradiated allogeneic or autologous whole cells expressing HSVtK, which are first killed in vitro by prodrug activation using ganciclovir. HSVtk/ganciclovir-induced cell kill was through the induction of apoptosis. The vaccine was found to be effective in both models and superior to traditional irradiated whole tumor cells even after single doses. Protection against tumor challenge was associated with marked proliferative and Th1 cytokine responses. This approach would be applicable clinically in terms of ease of vaccine production, safety, storage and avoidance of potential toxicities of in vivo gene transfer.
Collapse
Affiliation(s)
- Hardev Pandha
- Department of Oncology, St George's Hospital Medical School, Cranmer Terrace, London SW17 ORE, UK.
| | | | | | | | | |
Collapse
|
10
|
Ito A, Fujioka M, Tanaka K, Kobayashi T, Honda H. Screening of cytokines to enhance vaccine effects of heat shock protein 70-rich tumor cell lysate. J Biosci Bioeng 2005; 100:36-42. [PMID: 16233848 DOI: 10.1263/jbb.100.36] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 03/05/2005] [Indexed: 11/17/2022]
Abstract
Heat shock proteins (HSPs) have been recognized as significant participants in immune reactions. We have previously reported that heat-treated cells expressing HSP70 can mediate potent antitumor immune responses. As successful immunotherapy is dependent on the host immune system, the present study evaluated whether systemic administration of immunocyte stimulatory and growth promoting cytokines could enhance heat-treated cell lysate vaccine (HCLV) immunization to further promote the antitumor immunity. After heating mouse melanoma B16 cells (43 degrees C, 30 min) to elicit increased HSP70 expression, cells were lysed by freeze thawing to prepare HCLV. In approaches using a poorly immunogenic melanoma B16, the effects of various cytokines (IL-1beta, -2, -4, -6 and -12, IFN-beta and -gamma, GM-CSF and TNF-alpha) were assessed in combination with HCLV. Syngenic C57BL/6 mice were immunized subcutaneously with HCLV twice, on days -14 and -7, while cytokines were injected intraperitoneally on day -7. Subcutaneous B16 cell challenge was performed on day 0. IL-12 significantly enhanced the efficacy of HCLV, compared to non-heated cell lysate vaccine (CLV) and non-vaccination. Systemic administration of recombinant IL-12 augmented the efficacy of HCLV, inducing protective immunity against tumor challenge and enhancing cytotoxicity assessed in primed splenocytes against B16 cells in treated mice. These results suggest that IL-12 represents an important modulator of antitumor immune responses induced by HCLV, and may facilitate further efforts to develop novel cancer immunotherapies based on HSP70-mediated vaccination.
Collapse
Affiliation(s)
- Akira Ito
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | | | | | | | | |
Collapse
|
11
|
Pandha HS, Cook D, Greenhalgh R, Dalgleish A. Immunotherapy of murine prostate cancer using whole tumour cells killed ex vivo by cytosine deaminase/5-fluorocytosine suicide-gene therapy. BJU Int 2005; 95:1336-43. [PMID: 15892827 DOI: 10.1111/j.1464-410x.2005.05528.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the efficacy of antitumour vaccines comprising irradiated allogeneic or autologous whole cells expressing cytosine deaminase (CD) which are first killed ex vivo by prodrug activation using 5-fluorocytosine (5-FC), as the immunogenicity of tumour cells used as irradiated vaccines depends both on antigen expression and on the mode of their death. MATERIALS AND METHODS The PA3 rat prostate cell line and MATLyLu, an androgen-insensitive subline, were grown and transfected with CD (designated PCD and MCD). In vitro drug-sensitivity was assessed in the cell lines using a viability assay, and the mode of cell death quantified by assessing apoptosis. Bax and bcl-2 expression were assessed by Western blot analysis. For in vivo experiments, male 8-10-week-old Lobund-Wistar rats were vaccinated (using vehicle in control groups) with 5 x 10(6) cells, all cells being irradiated before injection, to give groups with PA3, PCD, PCD killed with 5-FC, MatLyLu, MCD, and MCD killed with 5-FC. After 7 days all animals were given a subcutaneous tumour challenge of PA3 cells, and tumour volume measured subsequently. Immune responses were assessed in splenocytes. RESULTS The efficiency of cell kill varied between the cell lines assessed, but cell death was by induced apoptosis. Single doses of vaccine were most effective in the allogeneic setting, causing significantly slower growth of syngeneic tumour challenge (P < 0.01), and 25% better survival at 50 days (P < 0.02) than irradiated untransfected cells. This was consistent with the greater proliferative response after allogeneic than autologous vaccination. CONCLUSION The immunogenicity of irradiated tumour cells is enhanced when they are killed ex-vivo using suicide-gene therapy. This approach would be clinically applicable in terms of ease of vaccine production, safety, storage and avoidance of potential toxicities of in vivo gene transfer.
Collapse
Affiliation(s)
- Hardev S Pandha
- Department of Oncology, St George's Hospital Medical School, London, UK.
| | | | | | | |
Collapse
|