1
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
2
|
Lobo N, Martini A, Kamat AM. Evolution of immunotherapy in the treatment of non-muscle-invasive bladder cancer. Expert Rev Anticancer Ther 2022; 22:361-370. [PMID: 35212590 DOI: 10.1080/14737140.2022.2046466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Immunotherapy with intravesical bacillus Calmette-Guérin (BCG) has been the gold standard treatment for intermediate- and high-risk non-muscle-invasive bladder cancer (NMIBC) for nearly half a century. Yet, many patients with high-risk disease will experience recurrence, including those who progress and eventually become unresponsive to BCG. For decades, apart from radical cystectomy, few therapeutic options existed for this at-risk population. However, the advent of novel immunotherapeutic agents has transformed treatment in a range of tumour types, including urothelial carcinoma. These immunotherapies have yielded promising results in the treatment of metastatic urothelial carcinoma and, as such, are also being investigated for use in NIMIBC. AREAS COVERED This article provides an overview of the evolution of immunotherapy for NMIBC, beginning from the original immunotherapy- BCG - to current agents including checkpoint inhibitors, IL-15 agonists, viral gene therapies and therapeutic cancer vaccines. EXPERT OPINION The KEYNOTE-057 trial represented a pivotal moment for immunotherapy in NMIBC, but patient selection and the development of biomarkers to guide the identification of patients who will benefit most from a particular immunotherapy remains critical. As research efforts come to fruition, novel immunotherapies may become integrated into the standard treatment paradigm for intermediate- and high-risk NMBIC.
Collapse
Affiliation(s)
- Niyati Lobo
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alberto Martini
- Department of Urology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ashish M Kamat
- Department of Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Moussa M, Papatsoris AG, Dellis A, Abou Chakra M, Saad W. Novel anticancer therapy in BCG unresponsive non-muscle-invasive bladder cancer. Expert Rev Anticancer Ther 2020; 20:965-983. [PMID: 32915676 DOI: 10.1080/14737140.2020.1822743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Many patients with non-muscle-invasive bladder cancer (NMIBC) failed intravesical BCG therapy. Currently, radical cystectomy is the recommended standard of care for those patients. There is unfortunately no effective other second-line therapy recommended. AREAS COVERED In this review, we present the topics of BCG unresponsive NMIBC; definition, prognosis, and further treatment options: immunotherapy, intravesical chemotherapy, gene therapy, and targeted individualized therapy. EXPERT OPINION There are major challenges of the management of NMIBC who failed BCG therapy as many patients refuse or are unfit for radical cystectomy. Multiple new modalities currently under investigation in ongoing clinical trials to better treat this category of patients. Immunotherapy, especially PD-1/PD-L1 inhibitors, offers exciting and potentially effective strategies for the treatment of BCG unresponsive NMIBC. As the data expands, it is sure that soon there will be established new guidelines for NMIBC.
Collapse
Affiliation(s)
- Mohamad Moussa
- Head of Urology Department, Zahraa Hospital, University Medical Center, Lebanese University , Beirut, Lebanon
| | - Athanasios G Papatsoris
- 2nd Department of Urology, School of Medicine, Sismanoglio Hospital, National and Kapodistrian University of Athens , Athens, Greece
| | - Athanasios Dellis
- Department of Surgery, School of Medicine, Aretaieion Hospital, National and Kapodistrian University of Athens , Athens, Greece
| | - Mohamed Abou Chakra
- Faculty of Medical Sciences, Department of Urology, Lebanese University , Beirut,Lebanon
| | - Wajih Saad
- Head of Oncology Department, Zahraa Hospital, University Medical Center, Lebanese University , Beirut, Lebanon
| |
Collapse
|
4
|
He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol 2019; 12:139. [PMID: 31852498 PMCID: PMC6921533 DOI: 10.1186/s13045-019-0812-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy has achieved dramatic success in a clinic, and the Food and Drug Administration approved two chimeric antigen receptor-engineered T cell (CAR-T) therapies that target hematological cancers in 2018. A significant issue faced by CAR-T therapies is the lack of tumor-specific biomarkers on the surfaces of solid tumor cells, which hampers the application of CAR-T therapies to solid tumors. Intracellular tumor-related antigens can be presented as peptides in the major histocompatibility complex (MHC) on the cell surface, which interact with the T cell receptors (TCR) on antigen-specific T cells to stimulate an anti-tumor response. Multiple immunotherapy strategies have been developed to eradicate tumor cells through targeting the TCR-peptide/MHC interactions. Here, we summarize the current status of TCR-based immunotherapy strategies, with particular focus on the TCR structure, activated signaling pathways, the effects and toxicity associated with TCR-based therapies in clinical trials, preclinical studies examining immune-mobilizing monoclonal TCRs against cancer (ImmTACs), and TCR-fusion molecules. We propose several TCR-based therapeutic strategies to achieve optimal clinical responses without the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China
| | - Xianhan Jiang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China. .,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Siddiqui MR, Grant C, Sanford T, Agarwal PK. Current clinical trials in non-muscle invasive bladder cancer. Urol Oncol 2018; 35:516-527. [PMID: 28778250 DOI: 10.1016/j.urolonc.2017.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/03/2017] [Accepted: 06/08/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The treatment options for non-muscle invasive bladder cancer (NMIBC) remain limited. Bacillus Calmette-Guerin (BCG) was the last major breakthrough in bladder cancer therapy almost 4 decades ago. There have been improvements in the understanding of immune therapies and cancer biology, leading to the development of novel agents. This has led to many clinical trials that are currently underway to find the next generation of therapies for NMIBC. METHOD We reviewed clinicaltrials.org and pubmed.gov to find the recently completed and ongoing clinical trials in NIMBC. Included in this review are clinical trials that are currently active and trials that were completed in and after 2014. RESULT Many trials with BCG-naive and BCG-unresponsive/recurrent/refractory/failure patients with NMIBC are either currently underway or have been recently completed. A wide variety of novel therapeutic agents are being investigated that range from cytotoxic agents to immunomodulatory agents to targeted molecular therapies. Other approaches include cancer vaccines, gene therapies, and chemoradiation potentiation agents. Novel drug-delivery methods are also being tested. CONCLUSION This comprehensive update of current trials provides researchers an overview of the current clinical trial landscape for patients with NMIBC.
Collapse
Affiliation(s)
| | - Campbell Grant
- Department of Urology, George Washington University Medical Center, Washington, D.C
| | - Thomas Sanford
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD
| | - Piyush K Agarwal
- Bladder Cancer Section, Urologic Oncology Branch, National Cancer Institute, NIH, Bathesda, MD.
| |
Collapse
|
6
|
Massari F, Di Nunno V, Cubelli M, Santoni M, Fiorentino M, Montironi R, Cheng L, Lopez-Beltran A, Battelli N, Ardizzoni A. Immune checkpoint inhibitors for metastatic bladder cancer. Cancer Treat Rev 2018; 64:11-20. [PMID: 29407369 DOI: 10.1016/j.ctrv.2017.12.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/09/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022]
Abstract
Chemotherapy has represented the standard therapy for unresectable or metastatic urothelial carcinoma for more than 20 years. The growing knowledge of the interaction between tumour and immune system has led to the advent of new classes of drugs, the immune-checkpoints inhibitors, which are intended to change the current scenario. To date, immunotherapy is able to improve the overall responses and survival. Moreover, thanks to its safety profile immune-checkpoint inhibitors could be proposed also to patients unfit for standard chemotherapy. No doubts that these agents have started a revolution expected for years, but despite this encouraging results it appears clear that not all subjects respond to these agents and requiring the development of reliable predictive response factors able to isolate patients who can more benefit from these treatments as well as new strategies aimed to improve immunotherapy clinical outcome. In this review we describe the active or ongoing clinical trials involving Programmed Death Ligand 1 (PD-L1), Programmed Death receptor 1 (PD-1) and Cytotoxic-T Lymphocyte Antigen 4 (CTLA 4) inhibitors in urothelial carcinoma focusing our attention on the developing new immune-agents and combination strategies with immune-checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | - Marta Cubelli
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | | - Michelangelo Fiorentino
- Pathology Service, Addarii Institute of Oncology, S-Orsola-Malpighi Hospital, Bologna, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Anto Lopez-Beltran
- Unit of Anatomical Pathology, Faculty of Medicine, Cordoba University, Cordoba, Spain
| | | | - Andrea Ardizzoni
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| |
Collapse
|
7
|
Şanlı Ö, Lotan Y. Alternative therapies in patients with non-muscle invasive bladder cancer. Turk J Urol 2017; 43:414-424. [PMID: 29201501 DOI: 10.5152/tud.2017.64624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022]
Abstract
Bladder cancer (BC) is one of the leading causes of cancer-related deaths worldwide. Despite, the majority of the cases were diagnosed as non-muscle invasive bladder cancer (NMIBC) with favorable prognosis, it has tendency to recur or progress to a higher grade or stage. The first line treatment of patients with NMIBC is transurethral resection with adjuvant therapies primarily intravesical Bacillus Calmette-Guérin (BCG) immunotherapy. However, in a portion of patients whose BCG treatment failed, alternative treatments may be required. Furthermore, intravesical BCG may be contraindicated in or untolerated by a group of patients. For these patients, some treatment options are readily available and a variety of them are currently under clinical investigation. In this review, these alternative therapies have been summarized.
Collapse
Affiliation(s)
- Öner Şanlı
- Department of Urology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Abstract
The excitement around the entry into the clinic of the first generation of p53-specific drugs has become muted as the hoped-for dramatic clinical responses have not yet been seen. However, these pioneer molecules have become exceptionally powerful tools in the analysis of the p53 pathway and, as a result, a whole spectrum of new interventions are being explored. These include entirely novel and innovative approaches to drug discovery, such as the use of exon-skipping antisense oligonucleotides and T-cell-receptor-based molecules. The extraordinary resources available to the p53 community in terms of reagents, models, and collaborative networks are generating breakthrough approaches to medicines for oncology and also for other diseases in which aberrant p53 signaling plays a role.
Collapse
|
9
|
Systemic Immunotherapy for Urothelial Cancer: Current Trends and Future Directions. Cancers (Basel) 2017; 9:cancers9020015. [PMID: 28134806 PMCID: PMC5332938 DOI: 10.3390/cancers9020015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/18/2017] [Indexed: 11/17/2022] Open
Abstract
Urothelial cancer of the bladder, renal pelvis, ureter, and other urinary organs is the fifth most common cancer in the United States, and systemic platinum-based chemotherapy remains the standard of care for first-line treatment of advanced/metastatic urothelial carcinoma (UC). Until recently, there were very limited options for patients who are refractory to chemotherapy, or do not tolerate chemotherapy due to toxicities and overall outcomes have remained very poor. While the role of immunotherapy was first established in non-muscle invasive bladder cancer in the 1970s, no systemic immunotherapy was approved for advanced disease until the recent approval of a programmed death ligand-1 (PD-L1) inhibitor, atezolizumab, in patients with advanced/metastatic UC who have progressed on platinum-containing regimens. This represents a significant milestone in this disease after a void of over 30 years. In addition to atezolizumab, a variety of checkpoint inhibitors have shown a significant activity in advanced/metastatic urothelial carcinoma and are expected to gain Food and Drug Administration (FDA) approval in the near future. The introduction of novel immunotherapy agents has led to rapid changes in the field of urothelial carcinoma. Numerous checkpoint inhibitors are being tested alone or in combination in the first and subsequent-line therapies of metastatic disease, as well as neoadjuvant and adjuvant settings. They are also being studied in combination with radiation therapy and for non-muscle invasive bladder cancer refractory to BCG. Furthermore, immunotherapy is being utilized for those ineligible for firstline platinum-based chemotherapy. This review outlines the novel immunotherapy agents which have either been approved, or are currently being investigated in clinical trials in UC.
Collapse
|
10
|
Morales-Barrera R, Suárez C, de Castro AM, Racca F, Valverde C, Maldonado X, Bastaros JM, Morote J, Carles J. Targeting fibroblast growth factor receptors and immune checkpoint inhibitors for the treatment of advanced bladder cancer: New direction and New Hope. Cancer Treat Rev 2016; 50:208-216. [PMID: 27743530 DOI: 10.1016/j.ctrv.2016.09.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 02/09/2023]
Abstract
Bladder cancer is one of the leading causes of death in Europe and the United States. About 25% of patients with bladder cancer have advanced disease (muscle-invasive or metastatic disease) at presentation and are candidates for systemic chemotherapy. In the setting of metastatic disease, use of cisplatin-based regimens improves survival. However, despite initial high response rates, the responses are typically not durable leading to recurrence and death in the vast majority of these patients with median overall survival of 15months and a 5-year survival rate of ⩽10%. Furthermore, unfit patients for cisplatin have no standard of care for first line therapy in advance disease Most second-line chemotherapeutic agents tested have been disappointing. Newer targeted drugs and immunotherapies are being studied in the metastatic setting, their usefulness in the neoadjuvant and adjuvant settings is also an intriguing area of ongoing research. Thus, new treatment strategies are clearly needed. The comprehensive evaluation of multiple molecular pathways characterized by The Cancer Genome Atlas project has shed light on potential therapeutic targets for bladder urothelial carcinomas. We have focused especially on emerging therapies in locally advanced and metastatic urothelial carcinoma with an emphasis on immune checkpoints inhibitors and FGFR targeted therapies, which have shown great promise in early clinical studies.
Collapse
Affiliation(s)
- Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Suárez
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Martínez de Castro
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Fabricio Racca
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Claudia Valverde
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Maldonado
- Department of Radiation Oncology, Vall d' Hebron University Hospital, Barcelona, Spain
| | | | - Juan Morote
- Department of Urology, Vall d' Hebron University Hospital, Barcelona, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology, Vall d' Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
11
|
Rhode PR, Egan JO, Xu W, Hong H, Webb GM, Chen X, Liu B, Zhu X, Wen J, You L, Kong L, Edwards AC, Han K, Shi S, Alter S, Sacha JB, Jeng EK, Cai W, Wong HC. Comparison of the Superagonist Complex, ALT-803, to IL15 as Cancer Immunotherapeutics in Animal Models. Cancer Immunol Res 2015; 4:49-60. [PMID: 26511282 DOI: 10.1158/2326-6066.cir-15-0093-t] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/03/2015] [Indexed: 02/03/2023]
Abstract
IL15, a potent stimulant of CD8(+) T cells and natural killer (NK) cells, is a promising cancer immunotherapeutic. ALT-803 is a complex of an IL15 superagonist mutant and a dimeric IL15 receptor αSu/Fc fusion protein that was found to exhibit enhanced biologic activity in vivo, with a substantially longer serum half-life than recombinant IL15. A single intravenous dose of ALT-803, but not IL15, eliminated well-established tumors and prolonged survival of mice bearing multiple myeloma. In this study, we extended these findings to demonstrate the superior antitumor activity of ALT-803 over IL15 in mice bearing subcutaneous B16F10 melanoma tumors and CT26 colon carcinoma metastases. Tissue biodistribution studies in mice also showed much greater retention of ALT-803 in the lymphoid organs compared with IL15, consistent with its highly potent immunostimulatory and antitumor activities in vivo. Weekly dosing with 1 mg/kg ALT-803 in C57BL/6 mice was well tolerated, yet capable of increasing peripheral blood lymphocyte, neutrophil, and monocyte counts by >8-fold. ALT-803 dose-dependent stimulation of immune cell infiltration into the lymphoid organs was also observed. Similarly, cynomolgus monkeys treated weekly with ALT-803 showed dose-dependent increases of peripheral blood lymphocyte counts, including NK, CD4(+), and CD8(+) memory T-cell subsets. In vitro studies demonstrated ALT-803-mediated stimulation of mouse and human immune cell proliferation and IFNγ production without inducing a broad-based release of other proinflammatory cytokines (i.e., cytokine storm). Based on these results, a weekly dosing regimen of ALT-803 has been implemented in multiple clinical studies to evaluate the dose required for effective immune cell stimulation in humans.
Collapse
Affiliation(s)
| | - Jack O Egan
- Altor BioScience Corporation, Miramar, Florida
| | - Wenxin Xu
- Altor BioScience Corporation, Miramar, Florida
| | - Hao Hong
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Gabriela M Webb
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | - Bai Liu
- Altor BioScience Corporation, Miramar, Florida
| | - Xiaoyun Zhu
- Altor BioScience Corporation, Miramar, Florida
| | - Jinghai Wen
- Altor BioScience Corporation, Miramar, Florida
| | - Lijing You
- Altor BioScience Corporation, Miramar, Florida
| | - Lin Kong
- Altor BioScience Corporation, Miramar, Florida
| | | | - Kaiping Han
- Altor BioScience Corporation, Miramar, Florida
| | - Sixiang Shi
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Sarah Alter
- Altor BioScience Corporation, Miramar, Florida
| | - Jonah B Sacha
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.,Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | | | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Hing C Wong
- Altor BioScience Corporation, Miramar, Florida
| |
Collapse
|
12
|
Seront E, Machiels JP. Molecular biology and targeted therapies for urothelial carcinoma. Cancer Treat Rev 2015; 41:341-53. [PMID: 25828962 DOI: 10.1016/j.ctrv.2015.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/08/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Metastatic urothelial cancer (UC) is associated with poor prognosis. In the first-line setting, platinum-based chemotherapy is the standard of care but resistance rapidly occurs. With no validated treatment proven to increase survival after platinum failure, there is an urgent unmet medical need to develop new and efficacious cytotoxic agents. A better understanding of the molecular signaling pathways regulating UC has led to the development of new and innovative therapeutic strategies. Despite this, many recent drugs show only modest activity as single agents, and combining them with standard chemotherapy does not seem to enhance efficacy. Ongoing research is producing, however, a generation of new drugs that are showing promising results in clinical trials. This paper aims to review the most important mechanisms in bladder cancer tumorigenesis and describe the new therapeutic options currently undergoing evaluation in clinical trials.
Collapse
Affiliation(s)
- Emmanuel Seront
- Department of Medical Oncology, Hôpital de Jolimont, Rue Ferrer 159, 7100 La Louvière, Belgium; Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| | - Jean-Pascal Machiels
- Institut Roi Albert II, Service d'Oncologie Médicale, Cliniques Universitaires Saint-Luc and Institut de Recherche Clinique et Expérimentale (Pole MIRO), Université Catholique de Louvain, Avenue Hippocrate 10, 1200 Brussels, Belgium.
| |
Collapse
|
13
|
Zheng J, Guo Y, Ji X, Cui L, He W. A novel antibody-like TCRγδ-Ig fusion protein exhibits antitumor activity against human ovarian carcinoma. Cancer Lett 2013; 341:150-8. [PMID: 23920126 DOI: 10.1016/j.canlet.2013.07.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/09/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
TCRγ9δ2(OT3) is a tumor-specific TCR with an unique complementarity-determining region 3 (CDR3) sequence, referred to as OT3, in its δ2 chain. This region was identified in tumor-infiltrating lymphocytes (TILs) from human ovarian epithelial carcinoma. We demonstrated that TCRγ9δ2(OT3)-Fc, a fusion protein composed of the complete extracellular domains of the γ9 and δ2 chains linked to the Fc domains of human IgG1, exhibited successful binding to multiple human carcinoma cell lines. In vitro, TCRγ9δ2(OT3)-Fc mediated cell killing via antibody-dependent cellular cytotoxicity (ADCC) in a dose-dependent manner. In vivo, TCRγ9δ2(OT3)-Fc significantly inhibited tumor growth and enhanced survival in human ovarian carcinoma xenograft models. Our findings suggest that the TCRγ9δ2(OT3)-Fc fusion protein possesses both the antigen-recognition properties of TCR γδ and the Fc-mediated effector functions of the antibody.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, National Key Laboratory of Medical Molecular Biology, Beijing, China.
| | | | | | | | | |
Collapse
|
14
|
Yun SJ, Moon SK, Kim WJ. Investigational cell cycle inhibitors in clinical trials for bladder cancer. Expert Opin Investig Drugs 2012; 22:369-77. [PMID: 23256895 DOI: 10.1517/13543784.2013.751097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cancer-related cell cycle defects are often mediated by alterations in activity of diverse cell cycle regulators. The development of cell cycle inhibitors has undergone a gradual evolution, and new investigational drugs have been extensively tested as a single agent or combination with conventional chemotherapeutic drugs. AREAS COVERED This review covers a broad perspective of how the cell cycle is deregulated in bladder cancer and discusses the clinical trials of cell cycle inhibitors. EXPERT OPINION Although diverse cell cycle inhibitors have been considered as relevant drug candidates for cancer therapy owing to their potential role in restoring control of the cell cycle, these inhibitors have not been yet widely tested in human bladder cancer. Numerous studies already reported that deregulation of cell cycle controls has been commonly observed in bladder cancer cells, thus warranting clinical trials of these inhibitors in advanced bladder cancer patients. In addition, nonmuscle invasive bladder cancer (NMIBC) and muscle invasive bladder cancer (MIBC) show different clinical and molecular biological characteristics, although ∼ 10 - 20% of NMIBC will progress to MIBC. Therefore, adequate cell cycle inhibitors have to be chosen for bladder cancer treatment based on the different genetic features between NMIBC and MIBC related to cell cycle regulators.
Collapse
Affiliation(s)
- Seok Joong Yun
- Chungbuk National University, College of Medicine, Department of Urology, 62, Kaeshin-dong, Heungduk-ku, Cheongju, Chungbuk, 361-711, South Korea
| | | | | |
Collapse
|
15
|
Narimatsu S, Yoshioka Y, Morishige T, Yao X, Tsunoda SI, Tsutsumi Y, Nishimura MI, Mukai Y, Okada N, Nakagawa S. Structure-activity relationship of T-cell receptors based on alanine scanning. Biochem Biophys Res Commun 2011; 415:558-62. [PMID: 22079637 DOI: 10.1016/j.bbrc.2011.10.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 11/25/2022]
Abstract
T-cell receptors (TCR) recognize complexes between human leukocyte antigens (HLA) and peptides derived from intracellular proteins. Their therapeutic use for antigen targeting, however, has been hindered by the very low binding affinity of TCRs, typically in the 1- to 100-μM range. Therefore, to construct mutant TCRs with high binding affinity, we need to understand the relationship between the structure and activity of these molecules. Here, we attempted to identify the amino acids of the TCR that are important for binding to the peptide/HLA complex. We used a TCR that recognizes complexes between HLA-A(∗)0201 and the peptide from tyrosinase, antigen overexpressed in melanoma. We changed 16 amino acids in the third complementarity-determining region within the TCR to alanine and examined the effect on binding affinity. Five alanine substitutions decreased the binding affinity to below 10% compared with that of wild-type TCR. In contrast, one alanine substitution caused a faster on-rate and slower off-rate, and increased the binding affinity to three times that of the wild-type TCR. Our results provide fundamental information for constructing mutant TCRs with high binding affinity.
Collapse
Affiliation(s)
- Shogo Narimatsu
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fishman MN, Thompson JA, Pennock GK, Gonzalez R, Diez LM, Daud AI, Weber JS, Huang BY, Tang S, Rhode PR, Wong HC. Phase I trial of ALT-801, an interleukin-2/T-cell receptor fusion protein targeting p53 (aa264-272)/HLA-A*0201 complex, in patients with advanced malignancies. Clin Cancer Res 2011; 17:7765-75. [PMID: 21994418 DOI: 10.1158/1078-0432.ccr-11-1817] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE ALT-801 is a bifunctional fusion protein comprising interleukin-2 (IL-2) linked to a soluble, single-chain T-cell receptor domain that recognizes a peptide epitope (aa264-272) of the human p53 antigen displayed on cancer cells in the context of HLA-A*0201 (p53+/HLA-A*0201). We evaluated the safety, pharmacokinetics, and pharmacodynamics of ALT-801 in p53+/HLA-A*0201 patients with metastatic malignancies. EXPERIMENTAL DESIGN p53+/HLA-A*0201 patients were treated with ALT-801 on a schedule of four daily 15-minute intravenous infusions, then 10 days rest and four more daily infusions. Cohorts of patients were treated at 0.015, 0.040, and 0.080 mg/kg/dose. RESULTS Four, 16, and 6 patients were treated at the 0.015, 0.04, and 0.08 mg/kg cohorts, respectively. Two dose-limiting toxicities (a grade 4 transient thrombocytopenia and a myocardial infarction) in the 0.08 mg/kg cohort established the maximum tolerated dose (MTD) at 0.04 mg/kg. Patients treated at the MTD experienced toxicities similar to those associated with high-dose IL-2 but of lesser severity. The serum half-life of ALT-801 was 4 hours and ALT-801 serum recovery was as expected based on the dose administered. ALT-801 treatment induced an increase of serum IFN-γ but not TNF-α. Response assessment showed 10 subjects with stable disease at at least 11 weeks, and in one who had melanoma metastasis, there is an ongoing complete absence of identifiable disease after resection of radiographically identified lesions. CONCLUSION This first-in-man study defines an ALT-801 regimen that can be administered safely and is associated with immunologic changes of potential antitumor relevance.
Collapse
Affiliation(s)
- Mayer N Fishman
- Departments of Genitourinary Oncology and Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wong RL, Liu B, Zhu X, You L, Kong L, Han KP, Lee HI, Chavaillaz PA, Jin M, Wang Y, Rhode PR, Wong HC. Interleukin-15:Interleukin-15 receptor α scaffold for creation of multivalent targeted immune molecules. Protein Eng Des Sel 2011; 24:373-83. [PMID: 21177283 PMCID: PMC3049345 DOI: 10.1093/protein/gzq116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Revised: 10/27/2010] [Accepted: 11/23/2010] [Indexed: 12/22/2022] Open
Abstract
Human interleukin-15 (hIL-15) and its receptor α (hIL-15Rα) are co-expressed in antigen presenting cells allowing trans-presentation of the cytokine to immune effector cells. We exploited the high-affinity interactions between hIL-15 and the extracellular hIL-15Rα sushi domain (hIL-15RαSu) to create a functional scaffold for the design of multispecific fusion protein complexes. Using single-chain T cell receptors (scTCRs) as recognition domains linked to the IL-15:IL-15Rα scaffold, we generated both bivalent and bispecific complexes. In these fusions, the scTCR domains retain the antigen-binding activity and the hIL-15 domain exhibits receptor binding and biological activity. As expected, bivalent scTCR fusions exhibited improved antigen binding due to increased avidity, whereas fusions comprising two different scTCR domains were capable of binding two cognate peptide/MHC complexes. Bispecific molecules containing scTCR and scCD8αβ domains also exhibit enhanced binding to peptide/MHC complexes, demonstrating that the IL-15:IL-15Rα scaffold displays flexibility necessary to support multi-domain interactions with a given target. Surprisingly, functional heterodimeric molecules could be formed by co-expressing the TCR α and β chains separately as fusions to the hIL-15 and hIL-15RαSu domains. Together, these properties indicate that the hIL-15 and hIL-15RαSu domains can be used as versatile, functional scaffold for generating novel targeted immune molecules.
Collapse
Affiliation(s)
- Richard L. Wong
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Bai Liu
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Xiaoyun Zhu
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Lijing You
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Lin Kong
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Kai-Ping Han
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | - Hyung-il Lee
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | | | - Moonsoo Jin
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Yi Wang
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | | | - Hing C. Wong
- Altor BioScience Corporation, Miramar, FL 33025, USA
| |
Collapse
|
18
|
Abstract
Altor BioScience Corporation is a privately held, development-stage company engaged in the discovery and development of targeted immunotherapeutic agents for the treatment of cancer, viral infection and inflammatory diseases. Altor currently has three targeted immunotherapeutic products in clinical development. Two of these products are monoclonal antibodies, but the third is a novel molecule that utilizes targeting based on Altor’s single-chain T-cell receptor (scTCR) STAR™ technology. In addition to therapeutic applications, this scTCR STAR technology has enabled Altor to develop novel reagents for research use to identify disease-associated antigens derived from intracellular proteins as biomarkers.
Collapse
Affiliation(s)
- Hing C Wong
- Altor BioScience Corp., 2810 North Commerce Parkway, Miramar, FL 33025, USA
| |
Collapse
|
19
|
Zhu X, Marcus WD, Xu W, Lee HI, Han K, Egan JO, Yovandich JL, Rhode PR, Wong HC. Novel human interleukin-15 agonists. THE JOURNAL OF IMMUNOLOGY 2009; 183:3598-607. [PMID: 19710453 DOI: 10.4049/jimmunol.0901244] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-15 is an immunostimulatory cytokine trans-presented with the IL-15 receptor alpha-chain to the shared IL-2/IL-15Rbeta and common gamma-chains displayed on the surface of T cells and NK cells. To further define the functionally important regions of this cytokine, activity and binding studies were conducted on human IL-15 muteins generated by site-directed mutagenesis. Amino acid substitutions of the asparagine residue at position 72, which is located at the end of helix C, were found to provide both partial agonist and superagonist activity, with various nonconservative substitutions providing enhanced activity. Particularly, the N72D substitution provided a 4-5-fold increase in biological activity of the IL-15 mutein compared with the native molecule based on proliferation assays with cells bearing human IL-15Rbeta and common gamma-chains. The IL-15N72D mutein exhibited superagonist activity through improved binding ability to the human IL-15Rbeta-chain. However, the enhanced potency of IL-15N72D was not observed with cells expressing the mouse IL-15Ralpha-IL-15Rbeta-gamma(c) complex, suggesting that this effect is specific to the human IL-15 receptor. The enhanced biological activity of IL-15N72D was associated with more intense phosphorylation of Jak1 and Stat5 and better anti-apoptotic activity compared with the wild-type IL-15. IL-15N72D superagonist activity was also preserved when linked to a single-chain TCR domain to generate a tumor-specific fusion protein. Thus, the human IL-15 superagonist muteins and fusions may create opportunities to construct more efficacious immunotherapeutic agents with clinical utility.
Collapse
Affiliation(s)
- Xiaoyun Zhu
- Altor BioScience Corporation, Miramar, FL 33025, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The development of effective immunotherapy strategies for glioma requires adequate understanding of the unique immunological microenvironment in the central nervous system (CNS) and CNS tumors. Although the CNS is often considered to be an immunologically privileged site and poses unique challenges for the delivery of effector cells and molecules, recent advances in technology and discoveries in CNS immunology suggest novel mechanisms that may significantly improve the efficacy of immunotherapy against gliomas. In this review, we first summarize recent advances in the CNS and CNS tumor immunology. We address factors that may promote immune escape of gliomas. We also review advances in passive and active immunotherapy strategies for glioma, with an emphasis on lessons learned from recent early-phase clinical trials. We also discuss novel immunotherapy strategies that have been recently tested in non-CNS tumors and show great potential for application to gliomas. Finally, we discuss how each of these promising strategies can be combined to achieve clinical benefit for patients with gliomas.
Collapse
Affiliation(s)
- Hideho Okada
- Brain Tumor Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|