1
|
Yagawa Y, Kobayashi Y, Fujita I, Watanabe M, Koido S, Sugiyama H, Tanigawa K. Peritoneal Dissemination and Malignant Ascites in Duodenal Cancer Successfully Treated With Adoptive Cell Therapy Using WT1- and MUC1-Pulsed Dendritic Cells and Activated T Cells With No Adverse Effects: A Case Report. Cureus 2024; 16:e74834. [PMID: 39737308 PMCID: PMC11684412 DOI: 10.7759/cureus.74834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 01/01/2025] Open
Abstract
A satisfactory treatment for the dissemination of duodenal cancer has not yet been established. We describe a case of peritoneal dissemination and malignant ascites in duodenal cancer that was successfully treated with adoptive cell therapy with no adverse effects. A 72-year-old Japanese male patient with primary duodenal cancer with distal lymph node metastases received chemotherapy with S-1, an oral pyrimidine fluoride-derived agent, and oxaliplatin after gastrojejunal bypass, which resulted in tumor shrinkage; however, peritoneal dissemination developed. Despite the administration of a second-line chemotherapy regimen comprising irinotecan, peritoneal dissemination, malignant ascites, and cachexia continued to progress, ultimately resulting in the failure of chemotherapy. He then received adoptive cell therapy with Wilms' tumor 1 (WT1)- and mucin 1 (MUC1) peptide-pulsed dendritic cells (WT1/MUC1-DC) and CD3-activated T lymphocytes (CAT). Following the administration of this treatment eight times per week, the patient's symptoms and malignant ascites surrounding his cancer disappeared. He developed no adverse effects from this treatment and was able to resume his usual activities without any symptoms. He has continued this treatment every few months as maintenance therapy and has been free of relapse for 54 months. This case suggests a possible beneficial effect of adoptive cell therapy with WT1/MUC1-DC and CAT for peritoneal dissemination and malignant ascites in duodenal cancer.
Collapse
Affiliation(s)
- Yohsuke Yagawa
- Department of Immunotherapy, Bio-Thera Clinic, Tokyo, JPN
| | | | - Izumi Fujita
- Department of Surgery, Ebara Hospital, Tokyo, JPN
| | - Manabu Watanabe
- Department of Surgery, Toho University Ohashi Medical Center, Tokyo, JPN
| | - Shigeo Koido
- Internal Medicine, The Jikei University School of Medicine, Tokyo, JPN
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medcine, Osaka, JPN
| | | |
Collapse
|
2
|
Einloth KR, Gayfield S, McMaster T, Didier A, Dworkin L, Creeden JF. The application, safety, and future of ex vivo immune cell therapies and prognosis in different malignancies. BIOIMPACTS : BI 2023; 13:439-455. [PMID: 38022382 PMCID: PMC10676524 DOI: 10.34172/bi.2023.27521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 12/01/2023]
Abstract
Introduction Immunotherapy has revolutionized how cancer is treated. Many of these immunotherapies rely on ex vivo expansion of immune cells, classically T cells. Still, several immunological obstacles remain, including tumor impermeability by immune cells and the immunosuppressive nature of the tumor microenvironment (TME). Logistically, high costs of treatment and variable clinical responses have also plagued traditional T cell-based immunotherapies. Methods To review the existing literature on cellular immunotherapy, the PubMed database was searched for publications using variations of the phrases "cancer immunotherapy", "ex vivo expansion", and "adoptive cell therapy". The Clinicaltrials.gov database was searched for clinical trials related to ex vivo cellular therapies using the same phrases. The National Comprehensive Cancer Network guidelines for cancer treatment were also referenced. Results To circumvent the challenges of traditional T cell-based immunotherapies, researchers have developed newer therapies including tumor infiltrating lymphocyte (TIL), chimeric antigen receptor (CAR), T cell receptor (TCR) modified T cell, and antibody-armed T cell therapies. Additionally, newer immunotherapeutic strategies have used other immune cells, including natural killer (NK) and dendritic cells (DC), to modulate the T cell immune response to cancers. From a prognostic perspective, circulating tumor cells (CTC) have been used to predict cancer morbidity and mortality. Conclusion This review highlights the mechanism and clinical utility of various types of ex vivo cellular therapies in the treatment of cancer. Comparing these therapies or using them in combination may lead to more individualized and less toxic chemotherapeutics.
Collapse
Affiliation(s)
- Katelyn R. Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Scott Gayfield
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Thomas McMaster
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Alexander Didier
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Lance Dworkin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Justin Fortune Creeden
- Department of Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
3
|
Huang L, Liu Z, Wu C, Lin J, Liu N. Magnetic nanoparticles enhance the cellular immune response of dendritic cell tumor vaccines by realizing the cytoplasmic delivery of tumor antigens. Bioeng Transl Med 2023; 8:e10400. [PMID: 36925683 PMCID: PMC10013825 DOI: 10.1002/btm2.10400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/02/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
Dendritic cells (DCs)-based tumor vaccines have the advantages of high safety and rapid activation of T cells, and have been approved for clinical tumor treatment. However, the conventional DC vaccines have some severe problems, such as poor activation of DCs in vitro, low level of antigen presentation, reduced cell viability, and difficulty in targeting lymph nodes in vivo, resulting in poor clinical therapeutic effects. In this research, magnetic nanoparticles Fe3O4@Ca/MnCO3 were prepared and used to actively and efficiently deliver antigens to the cytoplasm of DCs, promote antigen cross-presentation and DC activation, and finally enhance the cellular immune response of DC vaccines. The results show that the magnetic nanoparticles can actively and quickly deliver antigens to the cytoplasm of DCs by regulating the magnetic field, and achieve cross-presentation of antigens. At the same time, the nanoparticles degradation product Mn2+ enhanced immune stimulation through the interferon gene stimulating protein (STING) pathway, and another degradation product Ca2+ ultimately promoted cellular immune response by increasing autophagy. The DC vaccine constructed with the magnetic nanoparticles can more effectively migrate to the lymph nodes, promote the proliferation of CD8+ T cells, prolong the time of immune memory, and produce higher antibody levels. Compared with traditional DC vaccines, cytoplasmic antigen delivery with the magnetic nanoparticles provides a new idea for the construction of novel DC vaccines.
Collapse
Affiliation(s)
- Linghong Huang
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Zonghua Liu
- Department of Biomedical EngineeringJinan UniversityGuangzhouChina
| | - Chongjie Wu
- Department of Bone and Joint SurgeryThe First Affiliated Hospital of Jinan University, Jinan UniversityGuangzhouChina
| | - Jiansheng Lin
- Department of AnatomyHunan University of Chinese MedicineChangshaChina
| | - Ning Liu
- Department of Bone and Joint SurgeryThe First Affiliated Hospital of Jinan University, Jinan UniversityGuangzhouChina
| |
Collapse
|
4
|
Itoh M, Kawagoe S, Nakagawa H, Asahina A, Okano HJ. Generation of induced pluripotent stem cell (iPSC) from NY-ESO-I-specific cytotoxic T cells isolated from the melanoma patient with minor HLAs: The practical pilot study for the adoptive immunotherapy for melanoma using iPSC technology. Exp Dermatol 2023; 32:126-134. [PMID: 36222007 DOI: 10.1111/exd.14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022]
Abstract
Melanoma is one of the most severe skin cancers, derived from melanocytes. Among various therapies for melanoma, adoptive immunotherapy using tumor-infiltrating lymphocytes/chimeric antigen receptor-T cells (TCs) is advanced in recent years; however, the efficacy is still limited, and major challenges remain in terms of safety and cell supply. To solve the issues of adoptive immunotherapy, we utilized induced pluripotent stem cells (iPSCs), which have an unlimited proliferative ability and various differentiation capability. First, we monoclonally isolated CD8+ TCs specifically reactive with NY-ESO-1, one of tumor antigens, from the melanoma patient's monocytes after stimulated with NY-ESO-1 peptide by manual procedure, and cultured NY-ESO-1-specific TCs until proliferated and formed colonies. iPSCs were consequently generated from colony-forming TCs by exogenous expression of reprogramming factors using Sendai virus vector. After the RAG2 gene in TC-derived iPSCs (T-iPSCs) was knocked out for preventing T-cell receptor (TCR) rearrangement, T-iPSCs were re-differentiated into rejuvenated cytotoxic TCs. We confirmed that TCR of T-iPSC-derived TC was maintained as the same of original TCs. In conclusion, T-iPSCs have a potential to be an unlimited cell source for providing cytotoxic TCs. Our study could be a "touchstone" to develop iPSC-based adoptive immunotherapy for the treatment of melanoma for the future clinical use.
Collapse
Affiliation(s)
- Munenari Itoh
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Shiho Kawagoe
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Hidemi Nakagawa
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Akihiko Asahina
- The Jikei University School of Medicine, Department of Dermatology, Tokyo, Japan
| | - Hirotaka James Okano
- The Jikei University School of Medicine, Division of Regenerative Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Wang H, Xu Y, Zuo F, Liu J, Yang J. Immune-based combination therapy for esophageal cancer. Front Immunol 2022; 13:1020290. [PMID: 36591219 PMCID: PMC9797857 DOI: 10.3389/fimmu.2022.1020290] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive malignancy raising a healthcare concern worldwide. Standard treatment options include surgical resection, chemotherapy, radiation therapy, and targeted molecular therapy. The five-year survival rate for all stages of EC is approximately 20%, ranging from 5% to 47%, with a high recurrence rate and poor prognosis after treatment. Immunotherapy has shown better efficacy and tolerance than conventional therapies for several malignancies. Immunotherapy of EC, including immune checkpoint inhibitors, cancer vaccines, and adoptive cell therapy, has shown clinical advantages. In particular, monoclonal antibodies against PD-1 have a satisfactory role in combination therapy and are recommended for first- or second-line treatments. Here, we present a systematic summary and analysis of immunotherapy-based combination therapies for EC.
Collapse
Affiliation(s)
- Huiling Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yufei Xu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Fengli Zuo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Junzhi Liu
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiqiao Yang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,Breast Center, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Jiqiao Yang,
| |
Collapse
|
6
|
Thongchot S, Jirapongwattana N, Luangwattananun P, Chiraphapphaiboon W, Chuangchot N, Sa-nguanraksa D, O-Charoenrat P, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Adoptive Transfer of Anti-Nucleolin T Cells Combined with PD-L1 Inhibition against Triple-Negative Breast Cancer. Mol Cancer Ther 2022; 21:727-739. [PMID: 35313339 PMCID: PMC9377762 DOI: 10.1158/1535-7163.mct-21-0823] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/21/2021] [Accepted: 03/02/2022] [Indexed: 01/18/2023]
Abstract
Dendritic cell (DC)-based T-cell activation is an alternative immunotherapy in breast cancer. The anti-programmed death ligand 1 (PD-L1) can enhance T-cell function. Nucleolin (NCL) is overexpressed in triple-negative breast cancer (TNBC). The regulation of PD-L1 expression through autophagy and the anti-PD-L1 peptide to help sensitize T cells for NCL-positive TNBC cell killing has not been evaluated. Results showed the worst clinical outcome in patients with high NCL and PD-L1. Self-differentiated myeloid-derived antigen-presenting cells reactive against tumors presenting NCL or SmartDCs-NCL producing GM-CSF and IL-4, could activate NCL-specific T cells. SmartDCs-NCL plus recombinant human ribosomal protein substrate 3 (RPS3) successfully induced maturation and activation of DCs characterized by the reduction of CD14 and the induction of CD11c, CD40, CD80, CD83, CD86, and HLA-DR. Interestingly, SmartDCs-NCL plus RPS3 in combination with anti-PD-L1 peptide revealed significant killing activity of the effector NCL-specific T cells against NCLHigh/PD-L1High MDA-MB-231 and NCLHigh/PD-L1High HCC70 TNBC cells at the effector: a target ratio of 5:1 in 2-D and 10:1 in the 3-D culture system; and increments of IFNγ by the ELISpot assay. No killing effect was revealed in MCF-10A normal mammary cells. Mechanistically, NCL-specific T-cell-mediated TNBC cell killing was through both apoptotic and autophagic pathways. Induction of autophagy by curcumin, an autophagic stimulator, inhibited the expression of PD-L1 and enhanced cytolytic activity of NCL-specific T cells. These findings provide the potential clinical approaches targeting NCLHigh/PD-L1High TNBC cells with NCL-specific T cells in combination with a PD-L1 inhibitor or autophagic stimulator.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Niphat Jirapongwattana
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piriya Luangwattananun
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wannasiri Chiraphapphaiboon
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, International Graduate Program in Medical Biochemistry and Molecular Biology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nisa Chuangchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Doonyapat Sa-nguanraksa
- Department of Clinical Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-thai Yenchitsomanus
- Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Zhang T, Yang Y, Huang L, Liu Y, Chong G, Yin W, Dong H, Li Y, Li Y. Biomimetic and Materials-Potentiated Cell Engineering for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14040734. [PMID: 35456568 PMCID: PMC9024915 DOI: 10.3390/pharmaceutics14040734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
In cancer immunotherapy, immune cells are the main force for tumor eradication. However, they appear to be dysfunctional due to the taming of the tumor immunosuppressive microenvironment. Recently, many materials-engineered strategies are proposed to enhance the anti-tumor effect of immune cells. These strategies either utilize biomimetic materials, as building blocks to construct inanimate entities whose functions are similar to natural living cells, or engineer immune cells with functional materials, to potentiate their anti-tumor effects. In this review, we will summarize these advanced strategies in different cell types, as well as discussing the prospects of this field.
Collapse
Affiliation(s)
- Tingting Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Yushan Yang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Li Huang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Ying Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Weimin Yin
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yan Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
- Correspondence: (H.D.); (Y.L.); Tel.: +86-021-659-819-52 (H.D. & Y.L.)
| | - Yongyong Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China; (T.Z.); (Y.Y.); (L.H.); (Y.L.); (G.C.); (W.Y.); (Y.L.)
| |
Collapse
|
8
|
Tang L, Zhang R, Zhang X, Yang L. Personalized Neoantigen-Pulsed DC Vaccines: Advances in Clinical Applications. Front Oncol 2021; 11:701777. [PMID: 34381724 PMCID: PMC8350509 DOI: 10.3389/fonc.2021.701777] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
In the past few decades, great progress has been made in the clinical application of dendritic cell (DC) vaccines loaded with personalized neoantigens. Personalized neoantigens are antigens arising from somatic mutations in cancers, with specificity to each patient. DC vaccines work based on the fundamental characteristics of DCs, which are professional antigen-presenting cells (APCs), responsible for the uptake, processing, and presentation of antigens to T cells to activate immune responses. Neoantigens can exert their antitumor effects only after they are taken up by APCs and presented to T cells. In recent years, neoantigen-based personalized tumor therapeutic vaccines have proven to be safe, immunogenic and feasible treatment strategies in patients with melanoma and glioblastoma that provide new hope in the treatment of cancer patients and a new approach to cure cancer. In addition, according to ClinicalTrials.gov, hundreds of registered DC vaccine trials are either completed or ongoing worldwide, of which 9 are in early phase I, 191 in phase I, 166 in phase II and 8 in phase III. Hundreds of clinical studies on therapeutic tumor vaccines globally have proven that DC vaccines are stable, reliable and very safe. However, in this process, many other factors still limit the effectiveness of the vaccine. This review will focus on the current research progress on personalized neoantigen-pulsed DC vaccines, their limitations and future research directions of DC vaccines loaded with neoantigens. This review aims to provide a better understanding of DCs biology and manipulation of activated DCs for DCs researchers to produce the next generation of highly efficient cancer vaccines for patients.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyu Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
9
|
Eisendle K, Weinlich G, Ebner S, Forstner M, Reider D, Zelle‐Rieser C, Tripp CH, Fritsch P, Stoitzner P, Romani N, Nguyen VA. Combining chemotherapy and autologous peptide-pulsed dendritic cells provides survival benefit in stage IV melanoma patients. J Dtsch Dermatol Ges 2020; 18:1270-1277. [PMID: 33197129 PMCID: PMC7756560 DOI: 10.1111/ddg.14334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES We examined retrospectively whether the combination of standard dacarbazine (DTIC) and/or fotemustine chemotherapy and autologous peptide-loaded dendritic cell (DC) vaccination may improve survival of stage IV melanoma patients. Furthermore, a small cohort of long-term survivors was studied in more detail. PATIENTS AND METHODS Between 1998 and 2008, 41 patients were vaccinated at least three times with DCs while receiving chemotherapy and compared to all other 168 patients in our database who only received chemotherapy (1993-2008). RESULTS Median life expectancy of patients receiving additional DC-vaccination was 18 months, compared to eleven months for patients under standard chemotherapy alone. In contrast to patients with other haplotypes, the HLA-A1/A1 subset of DC-treated patients showed significantly lower median survival (12 vs. 25 months). Autoantibodies were frequently detected in serum of both vaccinated and non-vaccinated patients, and there was no correlation between titers, loss or appearance of autoantibodies and survival. Additionally, phenotyping of DCs and PBMCs also did not reveal any conspicuous correlation with survival. CONCLUSIONS Combining standard chemotherapy and DC vaccination appears superior to chemotherapy alone. The impact of HLA haplotypes on survival emphasizes the importance of a careful selection of patients with specific, well-defined HLA haplotypes for future vaccination trials using peptide-pulsed DCs, possibly combined with checkpoint inhibitors.
Collapse
Affiliation(s)
- Klaus Eisendle
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
- Department of Dermatology and VenerologyCentral Hospital of BolzanoItaly
| | - Georg Weinlich
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Susanne Ebner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
- Department of VisceralTransplant and Thoracic SurgeryMedical University of InnsbruckInnsbruckAustria
| | - Markus Forstner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Daniela Reider
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Claudia Zelle‐Rieser
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Christoph H. Tripp
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Peter Fritsch
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Patrizia Stoitzner
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Nikolaus Romani
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| | - Van Anh Nguyen
- Department of DermatologyVenereology and AllergologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
10
|
Eisendle K, Weinlich G, Ebner S, Forstner M, Reider D, Zelle‐Rieser C, Tripp CH, Fritsch P, Stoitzner P, Romani N, Nguyen VA. Kombination von Chemotherapie und autologen, Peptid‐beladenen dendritischen Zellen bringt Überlebensvorteil bei Melanompatienten im Stadium IV. J Dtsch Dermatol Ges 2020; 18:1270-1279. [DOI: 10.1111/ddg.14334_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/25/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Klaus Eisendle
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
- Abteilung Dermatologie Venerologie und Allergologie Zentrales Lehrkrankenhaus Bolzano/Bozen Südtiroler Sanitätsbetriebe Bolzano/Bozen Italia
| | - Georg Weinlich
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Susanne Ebner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
- Universitätsklinik Klinik für Visceral‐ Transplantations‐ und Thoraxchirurgie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Markus Forstner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Daniela Reider
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Claudia Zelle‐Rieser
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Christoph H. Tripp
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Peter Fritsch
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Patrizia Stoitzner
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Nikolaus Romani
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| | - Van Anh Nguyen
- Universitätsklinik für Dermatologie Venerologie und Allergologie Medizinische Universität Innsbruck Innsbruck Österreich
| |
Collapse
|
11
|
Yu L, Feng R, Zhu L, Hao Q, Chu J, Gu Y, Luo Y, Zhang Z, Chen G, Chen H. Promoting the activation of T cells with glycopolymer-modified dendritic cells by enhancing cell interactions. SCIENCE ADVANCES 2020; 6:eabb6595. [PMID: 33219021 PMCID: PMC7679162 DOI: 10.1126/sciadv.abb6595] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/08/2020] [Indexed: 05/12/2023]
Abstract
Dendritic cell (DC) modification to enhance antigen presentation is a valuable strategy in cancer immune therapy. Other than focusing on regulating interactions between DC and antigens, we intend to promote cell interactions between DC and T cell by cell surface engineering. T cell activation is greatly improved and generates higher tumor toxicity with the aid of the synthetic glycopolymer modified on the DC surface, although the glycopolymer alone shows no effect. The great promotion of DC-T cell attraction is revealed by cell image tracking in terms of both frequency and duration of contacts. Our findings provide a new method of T cell activation by these engineered "sweet DCs." This strategy is beneficial for developing more efficient DC-based vaccines.
Collapse
Affiliation(s)
- Liyin Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Ruyan Feng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Lijuan Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Qing Hao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Jiacheng Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yan Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Yan Luo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, P. R. China.
| |
Collapse
|
12
|
Harnessing the Complete Repertoire of Conventional Dendritic Cell Functions for Cancer Immunotherapy. Pharmaceutics 2020; 12:pharmaceutics12070663. [PMID: 32674488 PMCID: PMC7408110 DOI: 10.3390/pharmaceutics12070663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
The onset of checkpoint inhibition revolutionized the treatment of cancer. However, studies from the last decade suggested that the sole enhancement of T cell functionality might not suffice to fight malignancies in all individuals. Dendritic cells (DCs) are not only part of the innate immune system, but also generals of adaptive immunity and they orchestrate the de novo induction of tolerogenic and immunogenic T cell responses. Thus, combinatorial approaches addressing DCs and T cells in parallel represent an attractive strategy to achieve higher response rates across patients. However, this requires profound knowledge about the dynamic interplay of DCs, T cells, other immune and tumor cells. Here, we summarize the DC subsets present in mice and men and highlight conserved and divergent characteristics between different subsets and species. Thereby, we supply a resource of the molecular players involved in key functional features of DCs ranging from their sentinel function, the translation of the sensed environment at the DC:T cell interface to the resulting specialized T cell effector modules, as well as the influence of the tumor microenvironment on the DC function. As of today, mostly monocyte derived dendritic cells (moDCs) are used in autologous cell therapies after tumor antigen loading. While showing encouraging results in a fraction of patients, the overall clinical response rate is still not optimal. By disentangling the general aspects of DC biology, we provide rationales for the design of next generation DC vaccines enabling to exploit and manipulate the described pathways for the purpose of cancer immunotherapy in vivo. Finally, we discuss how DC-based vaccines might synergize with checkpoint inhibition in the treatment of malignant diseases.
Collapse
|
13
|
Gridelli C, Ciuleanu T, Domine M, Szczesna A, Bover I, Cobo M, Kentepozidis N, Zarogoulidis K, Kalofonos C, Kazarnowisz A, Korozan M, de Las Penas R, Majem M, Chella A, Griesinger F, Bournakis E, Sadjadian P, Kotsakis A, Chinet T, Syrigos KN, Correale P, Gallou C, Jamet JM, Vetsika EK, Kosmatopoulos K, Georgoulias V. Clinical activity of a htert (vx-001) cancer vaccine as post-chemotherapy maintenance immunotherapy in patients with stage IV non-small cell lung cancer: final results of a randomised phase 2 clinical trial. Br J Cancer 2020; 122:1461-1466. [PMID: 32210365 PMCID: PMC7217860 DOI: 10.1038/s41416-020-0785-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background The cancer vaccine Vx-001, which targets the universal tumour antigen TElomerase Reverse Transcriptase (TERT), can mount specific Vx-001/TERT572 CD8 + cytotoxic T cells; this immune response is associated with improved overall survival (OS) in patients with advanced/metastatic non-small cell lung cancer (NSCLC). Methods A randomised, double blind, phase 2b trial, in HLA-A*201-positive patients with metastatic, TERT-expressing NSCLC, who did not progress after first-line platinum-based chemotherapy were randomised to receive either Vx-001 or placebo. The primary endpoint of the trial was OS. Results Two hundred and twenty-one patients were randomised and 190 (101 and 89 patients in the placebo and the Vx-001 arm, respectively) were analysed for efficacy. There was not treatment-related toxicity >grade 2. The study did not meet its primary endpoint (median OS 11.3 and 14.3 months for the placebo and the Vx-001, respectively; p = 0.86) whereas the median Time to Treatment Failure (TTF) was 3.5 and 3.6 months, respectively. Disease control for >6months was observed in 30 (33.7%) and 26 (25.7%) patients treated with Vx-001 and placebo, respectively. There was no documented objective CR or PR. Long lasting TERT-specific immune response was observed in 29.2% of vaccinated patients who experienced a significantly longer OS compared to non-responders (21.3 and 13.4 months, respectively; p = 0.004). Conclusion Vx-001 could induce specific CD8+ immune response but failed to meet its primary endpoint. Subsequent studies have to be focused on the identification and treatment of subgroups of patients able to mount an effective immunological response to Vx-001. Clinical trial registration NCT01935154
Collapse
Affiliation(s)
| | | | | | | | | | - Manuel Cobo
- Hospital Regional Universitario Málaga, Instituto de Investigaciones Biomédicas (IBIMA), Málaga, Spain
| | | | | | | | | | | | | | | | | | | | | | | | - Athanasios Kotsakis
- Dpt of Medical Oncology, University General Hospital of Larissa, Larissa, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Therapeutic Cancer Vaccination with Ex Vivo RNA-Transfected Dendritic Cells-An Update. Pharmaceutics 2020; 12:pharmaceutics12020092. [PMID: 31979205 PMCID: PMC7076681 DOI: 10.3390/pharmaceutics12020092] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, dendritic cell (DC) vaccination has been studied extensively as active immunotherapy in cancer treatment and has been proven safe in all clinical trials both with respect to short and long-term side effects. For antigen-loading of dendritic cells (DCs) one method is to introduce mRNA coding for the desired antigens. To target the whole antigenic repertoire of a tumor, even the total tumor mRNA of a macrodissected biopsy sample can be used. To date, reports have been published on a total of 781 patients suffering from different tumor entities and HIV-infection, who have been treated with DCs loaded with mRNA. The majority of those were melanoma patients, followed by HIV-infected patients, but leukemias, brain tumors, prostate cancer, renal cell carcinomas, pancreatic cancers and several others have also been treated. Next to antigen-loading, mRNA-electroporation allows a purposeful manipulation of the DCs’ phenotype and function to enhance their immunogenicity. In this review, we intend to give a comprehensive summary of what has been published regarding clinical testing of ex vivo generated mRNA-transfected DCs, with respect to safety and risk/benefit evaluations, choice of tumor antigens and RNA-source, and the design of better DCs for vaccination by transfection of mRNA-encoded functional proteins.
Collapse
|
15
|
Lee H, Lee HW, La Lee Y, Jeon YH, Jeong SY, Lee SW, Lee J, Ahn BC. Optimization of Dendritic Cell-Mediated Cytotoxic T-Cell Activation by Tracking of Dendritic Cell Migration Using Reporter Gene Imaging. Mol Imaging Biol 2019; 20:398-406. [PMID: 29027077 DOI: 10.1007/s11307-017-1127-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. PROCEDURES A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 105, 1 × 106, and 2 × 106 DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. RESULTS Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 106 and 2 × 106 cells-injected groups. The highest BLI signal intensity was detected in 2 × 106 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 106 cell-injected group but not in other groups. Optimized cell numbers (2 × 106) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8+ T-cells in the spleen significantly increased, as the number of DC injections increases. CONCLUSIONS Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.
Collapse
Affiliation(s)
- Hongje Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk-dong 2-ga, Jung Gu, Daegu, 700-721, South Korea.,Department of Nuclear Medicine, Dongnam Institution of Radiological & Medical Sciences (DIRAMS), Busan, South Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk-dong 2-ga, Jung Gu, Daegu, 700-721, South Korea
| | - You La Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk-dong 2-ga, Jung Gu, Daegu, 700-721, South Korea
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk-dong 2-ga, Jung Gu, Daegu, 700-721, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk-dong 2-ga, Jung Gu, Daegu, 700-721, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk-dong 2-ga, Jung Gu, Daegu, 700-721, South Korea.,Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, 50, Samduk-dong 2-ga, Jung Gu, Daegu, 700-721, South Korea.
| |
Collapse
|
16
|
Koo SL, Wang WW, Toh HC. Cancer Immunotherapy – The Target is Precisely on The Cancer and Also Not. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2018. [DOI: 10.47102/annals-acadmedsg.v47n9p381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In recent years, the impressive number of cancer immunotherapy drugs approved has been unprecedented—building on over a century of understanding on how the immune system combats cancer, and how cancer evades it. Leading the charge are the immune checkpoint inhibitor monoclonal antibodies, and adoptive cell therapy with chimeric-antigen-receptor (CAR)-T cell therapy. These breakthrough therapies have led to improved survival in patients with many advanced cancers. Some of the clinical outcomes have been striking, and may even be potentially curative in some terminal cancer patients. While immune checkpoint inhibitors work by blocking regulatory immune checkpoint signals between cancer and the immune cells to awaken an effective anticancer immunity, CAR-T cell therapy targets specific molecules on cancer cells. Tumour antigens as cancer targets take many forms and may not necessarily be proteins related to known functional cellular mechanisms. The convergence of cutting edge omics, bioinformatics, protein synthesis, immunobiology and immunotherapy have led to novel, potentially highly effective cancer targeting against neoantigens, hence reviving the quest for anticancer vaccines. Early clinical trials of neoantigen vaccines have provided proof-of-principle efficacy, especially in melanoma patients. Combinations of immunotherapies through rational design are underway aiming to further improve clinical outcomes. Moving forward, cancer immunotherapy will gain even more momentum from the discovery of more cancer targets—both on the cancer itself and in the tumour microenvironment as well as the identification of biomarkers of treatment resistance and efficacy.
Key words: Checkpoint inhibitor, Microenvironment, Neoantigens, Vaccine
Collapse
Affiliation(s)
- Si Lin Koo
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Who Whong Wang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| |
Collapse
|
17
|
Ridolfi L, de Rosa F, Fiammenghi L, Petrini M, Granato AM, Ancarani V, Pancisi E, Soldati V, Cassan S, Bulgarelli J, Riccobon A, Gentili G, Nanni O, Framarini M, Tauceri F, Guidoboni M. Complementary vaccination protocol with dendritic cells pulsed with autologous tumour lysate in patients with resected stage III or IV melanoma: protocol for a phase II randomised trial (ACDC Adjuvant Trial). BMJ Open 2018; 8:e021701. [PMID: 30082356 PMCID: PMC6078243 DOI: 10.1136/bmjopen-2018-021701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Surgery is one of the treatments of choice for patients with a single metastasis from melanoma but is rarely curative. Such patients could potentially benefit from consolidation immunotherapy. Vaccination with dendritic cells (DCs) loaded with tumour antigens elicits a tumour-specific immune response. In our experience, patients who developed delayed type hypersensitivity (DTH) after DC vaccination showed a median overall survival (OS) of 22.9 monthsvs4.8 months for DTH-negative cases. A phase II randomised trial showed an advantage OS of a DC vaccine over a tumour cell-based vaccine (2-year OS 72% vs31%, respectively). Given that there is no standard therapy after surgical resection of single metastases, we planned a study to compare vaccination with DCs pulsed with autologous tumour lysate versus follow-up. METHODS AND ANALYSIS This is a randomised phase II trial in patients with resected stage III/IV melanoma. Assuming a median relapse-free survival (RFS) of 7.0 months for the standard group and 11.7 months for the experimental arm (HR 0.60), with a two-sided tailed alpha of 0.10, 60 patients per arm must be recruited. An interim futility analysis will be performed at 18 months. The DC vaccine, produced in accordance with Good Manufacturing Practice guidelines, consists of autologous DCs loaded with autologous tumour lysate and injected intradermally near lymph nodes. Vaccine doses will be administered every 4 weeks for six vaccinations and will be followed by 3 million unit /day of interleukin-2 for 5 days. Tumour restaging, blood sampling for immunological biomarkers and DTH testing will be performed every 12 weeks. ETHICS AND DISSEMINATION The protocol, informed consent and accompanying material given to patients were submitted by the investigator to the Ethics Committee for review. The local Ethics Committee and the Italian Medicines Agency approved the protocol (EudraCT code no.2014-005123-27). Results will be published in a peer-reviewed international scientific journal. TRIAL REGISTRATION NUMBER 2014-005123-27.
Collapse
Affiliation(s)
- Laura Ridolfi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Francesco de Rosa
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Laura Fiammenghi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Massimiliano Petrini
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Anna Maria Granato
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Ancarani
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elena Pancisi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Valentina Soldati
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Serena Cassan
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Jenny Bulgarelli
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Angela Riccobon
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgia Gentili
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori I(RST) IRCCS, Meldola, Italy
| | - Oriana Nanni
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori I(RST) IRCCS, Meldola, Italy
| | - Massimo Framarini
- Advanced Oncological Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Francesca Tauceri
- Advanced Oncological Surgery, Morgagni-Pierantoni Hospital, Forlì, Italy
| | - Massimo Guidoboni
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
18
|
Thomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, Decock J. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol 2018; 9:947. [PMID: 29770138 PMCID: PMC5941317 DOI: 10.3389/fimmu.2018.00947] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022] Open
Abstract
NY-ESO-1 or New York esophageal squamous cell carcinoma 1 is a well-known cancer-testis antigen (CTAs) with re-expression in numerous cancer types. Its ability to elicit spontaneous humoral and cellular immune responses, together with its restricted expression pattern, have rendered it a good candidate target for cancer immunotherapy. In this review, we provide background information on NY-ESO-1 expression and function in normal and cancerous tissues. Furthermore, NY-ESO-1-specific immune responses have been observed in various cancer types; however, their utility as biomarkers are not well determined. Finally, we describe the immune-based therapeutic options targeting NY-ESO-1 that are currently in clinical trial. We will highlight the recent advancements made in NY-ESO-1 cancer vaccines, adoptive T cell therapy, and combinatorial treatment with checkpoint inhibitors and will discuss the current trends for future NY-ESO-1 based immunotherapy. Cancer treatment has been revolutionized over the last few decades with immunotherapy emerging at the forefront. Immune-based interventions have shown promising results, providing a new treatment avenue for durable clinical responses in various cancer types. The majority of successful immunotherapy studies have been reported in liquid cancers, whereas these approaches have met many challenges in solid cancers. Effective immunotherapy in solid cancers is hampered by the complex, dynamic tumor microenvironment that modulates the extent and phenotype of the antitumor immune response. Furthermore, many solid tumor-associated antigens are not private but can be found in normal somatic tissues, resulting in minor to detrimental off-target toxicities. Therefore, there is an ongoing effort to identify tumor-specific antigens to target using various immune-based modalities. CTAs are considered good candidate targets for immunotherapy as they are characterized by a restricted expression in normal somatic tissues concomitant with a re-expression in solid epithelial cancers. Moreover, several CTAs have been found to induce a spontaneous immune response, NY-ESO-1 being the most immunogenic among the family members. Hence, this review will focus on NY-ESO-1 and discuss the past and current NY-ESO-1 targeted immunotherapeutic strategies.
Collapse
Affiliation(s)
- Remy Thomas
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Ghaneya Al-Khadairi
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| | - Jessica Roelands
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar.,Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Wouter Hendrickx
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Doha, Qatar
| | - Davide Bedognetti
- Immunology, Inflammation, and Metabolism Department, Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute, Qatar Foundation, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
19
|
Peptide-pulsed dendritic cell vaccine in combination with carboplatin and paclitaxel chemotherapy for stage IV melanoma. Melanoma Res 2018; 27:326-334. [PMID: 28263240 DOI: 10.1097/cmr.0000000000000342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, we aimed to evaluate the feasibility and efficacy of peptide-pulsed dendritic cell (DC) vaccine in combination with carboplatin and paclitaxel chemotherapy (DCCP) for patients with stage IV melanoma previously treated with dacarbazine-containing regimen. Six HLA-A24 and 3 HLA-A02 patients were treated with carboplatin (area under the curve 5) and paclitaxel (175 mg/m) on day 1 and DCs (2×10 cells) pulsed with Wilms tumor gene 1 (WT1), gp100, tyrosinase, and either MAGE-A3 (for HLA-A24) or MAGE-A2 (for HLA-A02) peptides on days 8 and 22 in 28-day cycle for up to three cycles. DCCP was well tolerated, and median progression-free survival and median overall survival were 2.3 and 12.0 months, respectively. In four of nine patients, a WT1-specific immune response (WT1-IR) was detected using the interferon-γ enzyme-linked ImmunoSpot assay and WT1/HLA tetramer assay. DCCP was more likely to elicit a WT1-IR in patients who received DCs pulsed with the HLA-A24-restricted peptide (75%) compared with patients who received DCs pulsed with the HLA-A02-restricted peptide (0%, P=0.058). Furthermore, three (75%) of four patients with a WT1-IR survived longer than 12 months, whereas only one (20%) of five patients without a WT1-IR who received the BRAF inhibitor after DCCP survived longer than 12 months. These results suggest that DCCP may be beneficial for HLA-A24 melanoma patients with a WT1-IR.
Collapse
|
20
|
Fluxá P, Rojas-Sepúlveda D, Gleisner MA, Tittarelli A, Villegas P, Tapia L, Rivera MT, López MN, Catán F, Uribe M, Salazar-Onfray F. High CD8 + and absence of Foxp3 + T lymphocytes infiltration in gallbladder tumors correlate with prolonged patients survival. BMC Cancer 2018; 18:243. [PMID: 29499656 PMCID: PMC5833069 DOI: 10.1186/s12885-018-4147-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/19/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GBC), although infrequent in industrialized countries, has high incidence rates in certain world regions, being a leading cause of death among elderly Chilean women. Surgery is the only effective treatment, and a five-year survival rate of advanced-stage patients is less than 10%. Hence, exploring immunotherapy is relevant, although GBC immunogenicity is poorly understood. This study examined the relationship between the host immune response and GBC patient survival based on the presence of tumor-infiltrating lymphocytes at different disease stages. METHODS Tumor tissues from 80 GBC patients were analyzed by immunohistochemistry for the presence of CD3+, CD4+, CD8+, and Foxp3+ T cell populations, and the results were associated with clinical stage and patient survival. RESULTS The majority of tumor samples showed CD3+ T cell infiltration, which correlated with better prognosis, particularly in advanced disease stages. CD8+, but not CD4+, T cell infiltration correlated with improved survival, particularly in advanced disease stages. Interestingly, a < 1 CD4+/CD8+ T cell ratio was related with increased survival. Additionally, the presence of Foxp3+ T cells correlated with decreased patient survival, whereas a ≤ 1 Foxp3+/CD8+ T cell ratio was associated with improved patient survival. CONCLUSIONS Depending on the disease stage, the presence of CD8+ and absence of Foxp3+ T cell populations in tumor tissues correlated with improved GBC patient survival, and thus represent potential markers for prognosis and management of advanced disease, and supports testing of immunotherapy.
Collapse
Affiliation(s)
- Paula Fluxá
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Departamento de Cirugía Oriente, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Daniel Rojas-Sepúlveda
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - María Alejandra Gleisner
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Andrés Tittarelli
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Pablo Villegas
- Unidad de Anatomía Patológica, Hospital del Salvador, 7500922, Santiago, Chile
| | - Loreto Tapia
- Unidad de Anatomía Patológica, Hospital del Salvador, 7500922, Santiago, Chile
| | - María Teresa Rivera
- Unidad de Anatomía Patológica, Hospital del Salvador, 7500922, Santiago, Chile
| | - Mercedes Natalia López
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Felipe Catán
- Departamento de Cirugía Oriente, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Mario Uribe
- Departamento de Cirugía Oriente, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, 8380453, Santiago, Chile.
| |
Collapse
|
21
|
Sachamitr P, Leishman AJ, Davies TJ, Fairchild PJ. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141 + Subset. Front Immunol 2018; 8:1935. [PMID: 29358940 PMCID: PMC5766641 DOI: 10.3389/fimmu.2017.01935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has begun to revolutionize cell therapy by providing a convenient source of rare cell types not normally available from patients in sufficient numbers for therapeutic purposes. In particular, the development of protocols for the differentiation of populations of leukocytes as diverse as naïve T cells, macrophages, and natural killer cells provides opportunities for their scale-up and quality control prior to administration. One population of leukocytes whose therapeutic potential has yet to be explored is the subset of conventional dendritic cells (DCs) defined by their surface expression of CD141. While these cells stimulate cytotoxic T cells in response to inflammation through the cross-presentation of viral and tumor-associated antigens in an MHC class I-restricted manner, under steady-state conditions CD141+ DCs resident in interstitial tissues are focused on the maintenance of homeostasis through the induction of tolerance to local antigens. Here, we describe protocols for the directed differentiation of human iPSCs into a mixed population of CD11c+ DCs through the spontaneous formation of embryoid bodies and exposure to a cocktail of growth factors, the scheduled withdrawal of which serves to guide the process of differentiation. Furthermore, we describe the enrichment of DCs expressing CD141 through depletion of CD1c+ cells, thereby obtaining a population of “untouched” DCs unaffected by cross-linking of surface CD141. The resulting cells display characteristic phagocytic and endocytic capacity and acquire an immunostimulatory phenotype following exposure to inflammatory cytokines and toll-like receptor agonists. Nevertheless, under steady-state conditions, these cells share some of the tolerogenic properties of tissue-resident CD141+ DCs, which may be further reinforced by exposure to a range of pharmacological agents including interleukin-10, rapamycin, dexamethasone, and 1α,25-dihydoxyvitamin D3. Our protocols therefore provide access to a novel source of DCs analogous to the CD141+ subset under steady-state conditions in vivo and may, therefore, find utility in the treatment of a range of disease states requiring the establishment of immunological tolerance.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison J Leishman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
23
|
Mathan TSM, Textor J, Sköld AE, Reinieren-Beeren I, van Oorschot T, Brüning M, Figdor CG, Buschow SI, Bakdash G, de Vries IJM. Harnessing RNA sequencing for global, unbiased evaluation of two new adjuvants for dendritic-cell immunotherapy. Oncotarget 2017; 8:19879-19893. [PMID: 28186996 PMCID: PMC5386730 DOI: 10.18632/oncotarget.15190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/05/2016] [Indexed: 01/05/2023] Open
Abstract
Effective stimulation of immune cells is crucial for the success of cancer immunotherapies. Current approaches to evaluate the efficiency of stimuli are mainly defined by known flow cytometry-based cell activation or cell maturation markers. This method however does not give a complete overview of the achieved activation state and may leave important side effects unnoticed. Here, we used an unbiased RNA sequencing (RNA-seq)-based approach to compare the capacity of four clinical-grade dendritic cell (DC) activation stimuli used to prepare DC-vaccines composed of various types of DC subsets; the already clinically applied GM-CSF and Frühsommer meningoencephalitis (FSME) prophylactic vaccine and the novel clinical grade adjuvants protamine-RNA complexes (pRNA) and CpG-P. We found that GM-CSF and pRNA had similar effects on their target cells, whereas pRNA and CpG-P induced stronger type I interferon (IFN) expression than FSME. In general, the pathways most affected by all stimuli were related to immune activity and cell migration. GM-CSF stimulation, however, also induced a significant increase of genes related to nonsense-mediated decay, indicating a possible deleterious effect of this stimulus. Taken together, the two novel stimuli appear to be promising alternatives. Our study demonstrates how RNA-seq based investigation of changes in a large number of genes and gene groups can be exploited for fast and unbiased, global evaluation of clinical-grade stimuli, as opposed to the general limited evaluation of a pre-specified set of genes, by which one might miss important biological effects that are detrimental for vaccine efficacy.
Collapse
Affiliation(s)
- Till S M Mathan
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Annette E Sköld
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Oncology and Pathology, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tom van Oorschot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Sonja I Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Ghaith Bakdash
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Liang X, Shangguan W, Zhang M, Mei S, Wang L, Yang R. miR-128 enhances dendritic cell-mediated anti-tumor immunity via targeting of p38. Mol Med Rep 2017; 16:1307-1313. [PMID: 29067466 PMCID: PMC5561786 DOI: 10.3892/mmr.2017.6717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 04/04/2017] [Indexed: 12/20/2022] Open
Abstract
MiRNA (miR)-128, which is a well‑recognized inhibitor of tumor growth, is involved in the anti-tumor function of dendritic cells (DCs). However, the association between miR‑128 and the DC‑mediated anti‑tumor immunity remains to be elucidated. Murine B16 melanoma cells and C57BL/6 male mice were used to obtain marrow‑derived DCs. DCs were treated with B16 cell suspension. miR‑128 mimic, miR‑128 inhibitor, p38 inhibitor or negative control oligonucleotides were transfected into DCs. After transfection, mRNA and protein expression of p38 in DCs was detected via reverse transcription‑quantitative polymerase chain reaction and western blotting. The present study demonstrated that the miR‑128 abundance in DCs was significantly attenuated by B16 (a melanoma cell line) stimulation and the protein expression level of p38 was increased. Additionally, miR‑128 inhibited the protein expression of p38 in DCs in a dose‑dependent manner, however no significant effect on the p38 mRNA level was observed. Furthermore, miR‑128 mimic or p38 inhibitor decreased the mRNA expression and secretion of interleukin (IL)‑6 and IL‑10 cytokines and increased the level of IL‑12 in DCs, whereas an miR‑128 inhibitor exhibited the opposite effects. These findings suggested that miR‑128 regulated the immune response of DCs via p38‑downstream cytokines. Furthermore, the tumor growth rate, size and weight were markedly decreased and the survival time prolonged, following injection of DCs harboring miR‑128 mimic or p38 inhibitor in C57BL/6 mice bearing B16 melanoma. The results therefore suggest that miR‑128 enhances the anti‑tumor immunity response of DCs via targeting of the p38 mitogen activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Xue Liang
- Department of Cardiology, Tianjin Key Laboratory of Ionic‑Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Wenfeng Shangguan
- Department of Cardiology, Tianjin Key Laboratory of Ionic‑Molecular Function of Cardiovascular Disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Shiyue Mei
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Liyang Wang
- Faculty of Medicine, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
25
|
Tao Z, Li S, Ichim TE, Yang J, Riordan N, Yenugonda V, Babic I, Kesari S. Cellular immunotherapy of cancer: an overview and future directions. Immunotherapy 2017; 9:589-606. [DOI: 10.2217/imt-2016-0086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The clinical success of checkpoint inhibitors has led to a renaissance of interest in cancer immunotherapies. In particular, the possibility of ex vivo expanding autologous lymphocytes that specifically recognize tumor cells has attracted much research and clinical trial interest. In this review, we discuss the historical background of tumor immunotherapy using cell-based approaches, and provide some rationale for overcoming current barriers to success of autologous immunotherapy. An overview of adoptive transfer of lymphocytes, tumor infiltrating lymphocytes and dendritic cell therapies is provided. We conclude with discussing the possibility of gene-manipulating immune cells in order to augment therapeutic activity, including silencing of the immune-suppressive zinc finger orphan nuclear receptor, NR2F6, as an attractive means of overcoming tumor-associated immune suppression.
Collapse
Affiliation(s)
- Ziqi Tao
- The Affiliated XuZhou Center Hospital of Nanjing University of Chinese Medicine, The Affiliated XuZhou Hospital of Medical College of Southeast University, Jiangsu, China
| | - Shuang Li
- Department of Endocrinology, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | | | - Junbao Yang
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Neil Riordan
- Medistem Panama, Inc., City of Knowledge, Clayton, Republic of Panama
| | - Venkata Yenugonda
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Ivan Babic
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- Department of Translational Neurosciences and Neurotherapeutics, Pacific Neuroscience Institute, John Wayne Cancer Institute, Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
- John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| |
Collapse
|
26
|
Filley AC, Dey M. Dendritic cell based vaccination strategy: an evolving paradigm. J Neurooncol 2017; 133:223-235. [PMID: 28434112 DOI: 10.1007/s11060-017-2446-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022]
Abstract
Malignant gliomas (MG), tumors of glial origin, are the most commonly diagnosed primary intracranial malignancies in adults. Currently available treatments have provided only modest improvements in overall survival and remain limited by inevitable local recurrence, necessitating exploration of novel therapies. Among approaches being investigated, one of the leading contenders is immunotherapy, which aims to modulate immune pathways to stimulate the selective destruction of malignant cells. Dendritic cells (DCs) are potent initiators of adaptive immune responses and therefore crucial players in the development and success of immunotherapy. Clinical trials of various DC-based vaccinations have demonstrated the induction of anti-tumor immune responses and prolonged survival in the setting of many cancers. In this review, we summarize current literature regarding DCs and their role in the tumor microenvironment, their application and current clinical use in immunotherapy, current challenges limiting their efficacy in anti-cancer therapy, and future avenues for developing successful anti-tumor DC-based vaccines.
Collapse
Affiliation(s)
- Anna C Filley
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahua Dey
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Purdue University Indianapolis (IUPUI), 320 W 15th Street, Neuroscience Building NB400A, Indianapolis, IN, 46202, USA.
| |
Collapse
|
27
|
Gross S, Erdmann M, Haendle I, Voland S, Berger T, Schultz E, Strasser E, Dankerl P, Janka R, Schliep S, Heinzerling L, Sotlar K, Coulie P, Schuler G, Schuler-Thurner B. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight 2017; 2:91438. [PMID: 28422751 DOI: 10.1172/jci.insight.91438] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reports on long-term (≥10 years) effects of cancer vaccines are missing. Therefore, in 2002, we initiated a phase I/II trial in cutaneous melanoma patients to further explore the immunogenicity of our DC vaccine and to establish its long-term toxicity and clinical benefit after a planned 10-year followup. METHODS Monocyte-derived DCs matured by TNFα, IL-1β, IL-6, and PGE2 and then loaded with 4 HLA class I and 6 class II-restricted tumor peptides were injected intradermally in high doses over 2 years. We performed serial immunomonitoring in all 53 evaluable patients. RESULTS Vaccine-specific immune responses including high-affinity, IFNγ-producing CD4+ and lytic polyfunctional CD8+ T cells were de novo induced or boosted in most patients. Exposure of mature DCs to trimeric soluble CD40 ligand, unexpectedly, did not further enhance such immune responses, while keyhole limpet hemocyanin (KLH) pulsing to provide unspecific CD4+ help promoted CD8+ T cell responses - notably, their longevity. An unexpected 19% of nonresectable metastatic melanoma patients are still alive after 11 years, a survival rate similar to that observed in ipilimumab-treated patients and achieved without any major (>grade 2) toxicity. Survival correlated significantly with the development of intense vaccine injection site reactions, and with blood eosinophilia after the first series of vaccinations, suggesting that prolonged survival was a consequence of DC vaccination. CONCLUSIONS Long-term survival in advanced melanoma patients undergoing DC vaccination is similar to ipilimumab-treated patients and occurs upon induction of tumor-specific T cells, blood eosinophilia, and strong vaccine injection site reactions occurring after the initial vaccinations. TRIAL REGISTRATION ClinicalTrials.gov NCT00053391. FUNDING European Community, Sixth Framework Programme (Cancerimmunotherapy LSHC-CT-2006-518234; DC-THERA LSHB-CT-2004-512074), and German Research Foundation (CRC 643, C1, Z2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter Dankerl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Pierre Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
28
|
Frankel T, Lanfranca MP, Zou W. The Role of Tumor Microenvironment in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:51-64. [PMID: 29275464 DOI: 10.1007/978-3-319-67577-0_4] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The field of tumor immunology and immunotherapy has undergone a renaissance in the past decade do in large part to a better understanding of the tumor immune microenvironment. After suffering countless successes and setbacks in the twentieth century, immunotherapy has now come to the forefront of cancer research and is recognized as an important tool in the anti-tumor armamentarium. The goal of therapy is to aid the immune system in recognition and destruction of tumor cells by enhancing its ability to react to tumor antigens. This traditionally has been accomplished by induction of adaptive immunity through vaccination or through passive delivery of immunologic effectors as in the case of adoptive cell transfer. The recent discovery of immune "checkpoints" whose purpose is to suppress immune activity and prevent auto-immunity has created a new angle by which reactivity to tumors can be enhanced. Blockers of these checkpoints have yielded impressive clinical results and have recently been approved for use in a wide variety of malignancies. With data showing increasing rates of not only treatment response, but complete remissions, immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer.
Collapse
Affiliation(s)
- Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Hutten TJA, Thordardottir S, Fredrix H, Janssen L, Woestenenk R, Tel J, Joosten B, Cambi A, Heemskerk MHM, Franssen GM, Boerman OC, Bakker LBH, Jansen JH, Schaap N, Dolstra H, Hobo W. CLEC12A-Mediated Antigen Uptake and Cross-Presentation by Human Dendritic Cell Subsets Efficiently Boost Tumor-Reactive T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2016; 197:2715-25. [DOI: 10.4049/jimmunol.1600011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/31/2016] [Indexed: 01/19/2023]
|
30
|
Elster JD, Krishnadas DK, Lucas KG. Dendritic cell vaccines: A review of recent developments and their potential pediatric application. Hum Vaccin Immunother 2016; 12:2232-9. [PMID: 27245943 DOI: 10.1080/21645515.2016.1179844] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For many cancers the use of conventional chemotherapy has been maximized, and further intensification of chemotherapy generally results in excess toxicity with little long-term benefit for cure. Many tumors become resistant to chemotherapy, making the investigation of novel approaches such as immunotherapy of interest. Because the tumor microenvironment is known to promote immune tolerance and down regulate the body's natural defense mechanisms, modulating the immune system with the use of dendritic cell (DC) therapy is an attractive approach. Thousands of patients with diverse tumor types have been treated with DC vaccines. While antigen specific immune responses have been reported, the duration and magnitude of these responses are typically weak, and objective clinical responses have been limited. DC vaccine generation and administration is a multi-step process with opportunities for improvement in source of DC for vaccine, selection of target antigen, and boosting effector cell response via administration of vaccine adjuvant or concomitant pharmacologic immunomodulation. In this review we will discuss recent developments in each of these areas and highlight elements that could be moved into pediatric clinical trials.
Collapse
Affiliation(s)
- Jennifer D Elster
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| | - Deepa K Krishnadas
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| | - Kenneth G Lucas
- a Department of Pediatrics , Hematology/Oncology, University of Louisville , Louisville , KY , USA
| |
Collapse
|
31
|
Zhu M, Xu W, Su H, Huang Q, Wang B. Addition of CpG ODN and Poly (I:C) to a standard maturation cocktail generates monocyte-derived dendritic cells and induces a potent Th1 polarization with migratory capacity. Hum Vaccin Immunother 2016; 11:1596-605. [PMID: 26039883 DOI: 10.1080/21645515.2015.1046659] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Monocyte-derived dendritic cells (DCs) are used as immunoadjuvant cells in cancer vaccines and have made great progress. However, an optimal DCs subset is vital for this treatment effect, the current 'gold standard' cytokine cocktail DCs have a shortcoming in their cytokines secretion, especially IL-12p70, mainly because of the existence of PGE2. Therefore, it is necessary to find an appropriate DCs-based immunotherapeutic protocol. In this study, we compared a novel 'improved' maturation cytokine cocktail with the current 'gold standard' maturation cytokine cocktail used for generating standard DCs. The 'improved' maturation cytokine cocktail DCs showed a higher levels surface markers expression (CD80, CD83, CD86 and HLA-DR), the chemokine receptors CXCR4 and CCR7 and chemokine CCL19, CCL21 and CXCL21, whereas CCR5 expression was reduced. Most importantly, in contrast to 'gold standard' DCs, which secrete little IL-12p70 and as a result induce mainly Th2 immunity, 'improved' cytokine cocktail DCs secreted higher levels IL-12p70 and also secreted similar concentration IL-10. To removal of PGE2 from the 'improved' DCs did increase the IL-12p70 production. In conclusion, we here present the 'improved' DCs, as an optimal maturation cocktail protocol, can induce high migratory potential, generate immunostimulatory DCs, produce higher levels IL-12p70 with superior capacity to induce Th1 immunity, when compared with the 'gold standard' DCs.
Collapse
Affiliation(s)
- Mei Zhu
- a Department of Laboratory Medicine ; Affiliated Provincial Hospital of Anhui Medical University ; Hefei , Anhui , China
| | | | | | | | | |
Collapse
|
32
|
Zhang L, Xu Y, Shen J, He F, Zhang D, Chen Z, Duan Y, Sun J. Feasibility study of DCs/CIKs combined with thoracic radiotherapy for patients with locally advanced or metastatic non-small-cell lung cancer. Radiat Oncol 2016; 11:60. [PMID: 27097970 PMCID: PMC4839093 DOI: 10.1186/s13014-016-0635-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The combination of dendritic cells (DCs) and cytokine-induced killer cells (CIKs) can induce the anti-tumor immune response and radiotherapy may promote the activity. We aimed to explore the feasibility of DCs/CIKs combined with thoracic radiotherapy (TRT) for patients with locally advanced or metastatic non-small-cell lung cancer (NSCLC). METHOD In this study, patients with unresectable stage III/IV NSCLC and an Eastern Cooperative Oncology Group performance status (ECOG PS) of 0-2 and previously receiving two or more cycles of platinum-based doublet chemotherapy without disease progression received TRT plus DCs/CIKs or TRT alone until disease progression or unacceptable toxicity. The primary endpoint was median progression-free survival (mPFS). In treatment group, patients received four-cycle autologous DCs/CIKs infusion starting from the 6(th) fraction of irradiation. RESULTS From Jan 13, 2012 to June 30, 2014, 82 patients were enrolled, with 21 patients in treatment group and 61 in control group. The mPFS in treatment group was longer than that in control group (330 days vs 233 days, hazard ratio 0.51, 95 % CI 0.27-1.0, P < 0.05), and the objective response rate (ORR) of treatment group (47.6 %) was significantly higher that of control group (24.6 %, P < 0.05). There was no significant difference in disease control rate (DCR) and median overall survival (mOS) between two groups (P > 0.05). The side effects in treatment group were mild and there was no treatment-related deaths. CONCLUSION The combination of DCs/CIKs with TRT could be a feasible regimen in treating locally advanced or metastatic NSCLC patients. Further investigation of the regimen is warranted.
Collapse
Affiliation(s)
- Luping Zhang
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yanmei Xu
- Oncology Department, Leshan People's Hospital, Sichuan, 614000, China
| | - Jie Shen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Feng He
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Dan Zhang
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Zhengtang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuzhong Duan
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Jianguo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
33
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
34
|
Fairchild PJ, Leishman A, Sachamitr P, Telfer C, Hackett S, Davies TJ. Dendritic cells and pluripotency: unlikely allies in the pursuit of immunotherapy. Regen Med 2016; 10:275-86. [PMID: 25933237 DOI: 10.2217/rme.15.6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
As the fulcrum on which the balance between the opposing forces of tolerance and immunity has been shown to pivot, dendritic cells (DC) hold significant promise for immune intervention in a variety of disease states. Here we discuss how the directed differentiation of human pluripotent stem cells may address many of the current obstacles to the use of monocyte-derived DC in immunotherapy, providing a novel source of previously inaccessible DC subsets and opportunities for their scale-up, quality control and genetic modification. Indeed, given that it is the immunological legacy DC leave behind that is of therapeutic value, rather than their persistence per se, we propose that immunotherapy should serve as an early target for the clinical application of pluripotent stem cells.
Collapse
Affiliation(s)
- Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | | | | | | | | | |
Collapse
|
35
|
Simo KA, Halpin LE, McBrier NM, Hessey JA, Baker E, Ross S, Swan RZ, Iannitti DA, Martinie JB. Multimodality treatment of intrahepatic cholangiocarcinoma: A review. J Surg Oncol 2016; 113:62-83. [DOI: 10.1002/jso.24093] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 10/31/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Kerri A. Simo
- Hepatobiliary and Pancreas Surgery; ProMedica Health System; Toledo Ohio
- ProMedica Cancer Institute; ProMedica Health System; Toledo Ohio
- Department of Surgery; University of Toledo Medical College; Toledo Ohio
| | - Laura E. Halpin
- Department of Surgery; University of Toledo Medical College; Toledo Ohio
| | - Nicole M. McBrier
- Hepatobiliary and Pancreas Surgery; ProMedica Health System; Toledo Ohio
- ProMedica Cancer Institute; ProMedica Health System; Toledo Ohio
| | | | - Erin Baker
- Hepatobiliary and Pancreas Surgery; Carolinas Medical Center; Charlotte North Carolina
| | - Samuel Ross
- Hepatobiliary and Pancreas Surgery; Carolinas Medical Center; Charlotte North Carolina
| | - Ryan Z. Swan
- Hepatobiliary and Pancreas Surgery; Carolinas Medical Center; Charlotte North Carolina
| | - David A. Iannitti
- Hepatobiliary and Pancreas Surgery; Carolinas Medical Center; Charlotte North Carolina
| | - John B. Martinie
- Hepatobiliary and Pancreas Surgery; Carolinas Medical Center; Charlotte North Carolina
| |
Collapse
|
36
|
Thomann S, Boscheinen JB, Vogel K, Knipe DM, DeLuca N, Gross S, Schuler-Thurner B, Schuster P, Schmidt B. Combined cytotoxic activity of an infectious, but non-replicative herpes simplex virus type 1 and plasmacytoid dendritic cells against tumour cells. Immunology 2015; 146:327-38. [PMID: 26194553 DOI: 10.1111/imm.12509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/26/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023] Open
Abstract
Malignant melanoma is an aggressive tumour of the skin with increasing incidence, frequent metastasis and poor prognosis. At the same time, it is an immunogenic type of cancer with spontaneous regressions. Most recently, the tumoricidal effect of plasmacytoid dendritic cells (pDC) and their capacity to overcome the immunosuppressive tumour microenvironment are being investigated. In this respect, we studied the effect of the infectious, but replication-deficient, herpes simplex virus 1 (HSV-1) d106S vaccine strain, which lacks essential immediate early genes, in pDC co-cultures with 11 melanoma cell lines. We observed a strong cytotoxic activity, inducing apoptotic and necrotic cell death in most melanoma cell lines. The cytotoxic activity of HSV-1 d106S plus pDC was comparable to the levels of cytotoxicity induced by natural killer cells, but required only a fraction of cells with effector : target ratios of 1 : 20 (P < 0·05). The suppressive activity of cell-free supernatants derived from virus-stimulated pDC was significantly neutralized using antibodies against the interferon-α receptor (P < 0·05). In addition to type I interferons, TRAIL and granzyme B contributed to the inhibitory effect of HSV-1 d106S plus pDC to a minor extent. UV-irradiated viral stocks were significantly less active than infectious particles, both in the absence and presence of pDC (P < 0·05), indicating that residual activity of HSV-1 d106S is a major component and sensitizes the tumour cells to interferon-producing pDC. Three leukaemic cell lines were also susceptible to this treatment, suggesting a general anti-tumour effect. In conclusion, the potential of HSV-1 d106S for therapeutic vaccination should be further evaluated in patients suffering from different malignancies.
Collapse
Affiliation(s)
- Sabrina Thomann
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan B Boscheinen
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karin Vogel
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - David M Knipe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Neal DeLuca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stefanie Gross
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Beatrice Schuler-Thurner
- Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Schuster
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| |
Collapse
|
37
|
Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting. Nat Commun 2015; 6:8009. [PMID: 26284300 PMCID: PMC4568295 DOI: 10.1038/ncomms9009] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 07/08/2015] [Indexed: 01/17/2023] Open
Abstract
Cell-based therapy exploits modified human cells to treat diseases but its targeted application in specific tissues, particularly those lying deep in the body where direct injection is not possible, has been problematic. Here we use a magnetic resonance imaging (MRI) system to direct macrophages carrying an oncolytic virus, Seprehvir, into primary and metastatic tumour sites in mice. To achieve this, we magnetically label macrophages with super-paramagnetic iron oxide nanoparticles and apply pulsed magnetic field gradients in the direction of the tumour sites. Magnetic resonance targeting guides macrophages from the bloodstream into tumours, resulting in increased tumour macrophage infiltration and reduction in tumour burden and metastasis. Our study indicates that clinical MRI scanners can not only track the location of magnetically labelled cells but also have the potential to steer them into one or more target tissues. Cell therapy requires the targeting of cells to specific sites in the body. Here Muthana et al. use a standard MRI scanner to direct oncolytic macrophages, labelled with magnetic nanoparticles, to primary and metastatic tumour sites in mice, and demonstrate that this leads to reduced tumour growth.
Collapse
|
38
|
Wu C, Xu Y, Yang L, Wu J, Zhu W, Li D, Cheng Z, Xia C, Guo Y, Gong Q, Song B, Ai H. Negatively Charged Magnetite Nanoparticle Clusters as Efficient MRI Probes for Dendritic Cell Labeling and In Vivo Tracking. ADVANCED FUNCTIONAL MATERIALS 2015; 25:3581-3591. [DOI: 10.1002/adfm.201501031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell labeling and tracking via magnetic resonance imaging (MRI) has drawn much attention for its noninvasive property and longitudinal monitoring functionality. Employing of imaging probes with high labeling efficiency and good biocompatibility is one of the essential factors that determine the outcome of tracking. In this study, negatively charged superparamagnetic iron oxide (PAsp‐PCL/SPIO) nanoclusters are developed for dendritic cell (DC) labeling and tracking in vivo. PAsp‐PCL/SPIO has a diameter of 124 ± 41 nm in DLS, negatively charged surface (zeta potential = −27 mV), and presents highT2relaxivity (335.6 Fe mm−1s−1) and good DC labeling efficiency. Labeled DCs are unaffected in their viability, proliferation, and differentiation capacity, and have an excellent MR imaging sensitivity in vitro. To monitor the migration of DCs into lymphoid tissues in vivo, which will be related to the final immunotherapy results,T2‐wighted andT2‐map imaging of popliteal nodes at different points in time are acquired under a clinical 3 T scanner after subcutaneous injection of a certain number of labeled DCs at hindleg footpads of mice. The signal intensities decreasing andT2values shortening of ipsilateral popliteal nodes are significant and display a time‐ and dose‐dependence, showing DCs' migration to the draining lymph nodes.
Collapse
Affiliation(s)
- Changqiang Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Ye Xu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
- Department of Radiology Children's Hospital Chongqing Medical University Chongqing 400014 China
| | - Li Yang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Jun Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Wencheng Zhu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Danyang Li
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Zhuzhong Cheng
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Chunchao Xia
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| | - Yingkun Guo
- Department of Medical Imaging West China Second University Hospital Sichuan University Chengdu 610041 China
| | - Qiyong Gong
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| | - Bin Song
- Department of Radiology West China Hospital Sichuan University Chengdu 610041 China
| | - Hua Ai
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
- Department of Radiology Children's Hospital Chongqing Medical University Chongqing 400014 China
| |
Collapse
|
39
|
Sundarasetty BS, Chan L, Darling D, Giunti G, Farzaneh F, Schenck F, Naundorf S, Kuehlcke K, Ruggiero E, Schmidt M, von Kalle C, Rothe M, Hoon DSB, Gerasch L, Figueiredo C, Koehl U, Blasczyk R, Gutzmer R, Stripecke R. Lentivirus-induced 'Smart' dendritic cells: Pharmacodynamics and GMP-compliant production for immunotherapy against TRP2-positive melanoma. Gene Ther 2015; 22:707-20. [PMID: 25965393 PMCID: PMC4561294 DOI: 10.1038/gt.2015.43] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Monocyte-derived conventional dendritic cells (ConvDCs) loaded with melanoma antigens showed modest responses in clinical trials. Efficacy studies were hampered by difficulties in ConvDC manufacturing and low potency. Overcoming these issues, we demonstrated higher potency of lentiviral vector (LV)-programmed DCs. Monocytes were directly induced to self-differentiate into DCs (SmartDC-TRP2) upon transduction with a tricistronic LV encoding for cytokines (granulocyte macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4)) and a melanoma antigen (tyrosinase-related protein 2 (TRP2)). Here, SmartDC-TRP2 generated with monocytes from five advanced melanoma patients were tested in autologous DC:T cell stimulation assays, validating the activation of functional TRP2-specific cytotoxic T lymphocytes (CTLs) for all patients. We described methods compliant to good manufacturing practices (GMP) to produce LV and SmartDC-TRP2. Feasibility of monocyte transduction in a bag system and cryopreservation following a 24-h standard operating procedure were achieved. After thawing, 50% of the initial monocyte input was recovered and SmartDC-TRP2 self-differentiated in vitro, showing uniform expression of DC markers, detectable LV copies and a polyclonal LV integration pattern not biased to oncogenic loci. GMP-grade SmartDC-TRP2 expanded TRP2-specific autologous CTLs in vitro. These results demonstrated a simpler GMP-compliant method of manufacturing an effective individualized DC vaccine. Such DC vaccine, when in combination with checkpoint inhibition therapies, might provide higher specificity against melanoma.
Collapse
Affiliation(s)
- B S Sundarasetty
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - L Chan
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - D Darling
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - G Giunti
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - F Farzaneh
- Department of Hematological Medicine, Cell and Gene Therapy at King's, The Rayne Institute, King's College London, London, UK
| | - F Schenck
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - S Naundorf
- EUFETS GmbH, Idar-Oberstein, Heidelberg, Germany
| | - K Kuehlcke
- EUFETS GmbH, Idar-Oberstein, Heidelberg, Germany
| | - E Ruggiero
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Schmidt
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - C von Kalle
- Division of Translational Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - M Rothe
- Department of Experimental Hematology, Hannover, Germany
| | - D S B Hoon
- John Wayne Cancer Institute, Santa Monica, CA, USA
| | - L Gerasch
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - C Figueiredo
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - U Koehl
- Institute for Cell Therapeutics and GMP core facility IFB-Tx, Hannover Medical School, Hannover, Germany
| | - R Blasczyk
- Department of Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - R Gutzmer
- Department of Dermatology and Allergy, Skin Cancer Center Hannover, Hannover Medical School, Hannover, Germany
| | - R Stripecke
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
40
|
Rozera C, Cappellini GA, D'Agostino G, Santodonato L, Castiello L, Urbani F, Macchia I, Aricò E, Casorelli I, Sestili P, Montefiore E, Monque D, Carlei D, Napolitano M, Rizza P, Moschella F, Buccione C, Belli R, Proietti E, Pavan A, Marchetti P, Belardelli F, Capone I. Intratumoral injection of IFN-alpha dendritic cells after dacarbazine activates anti-tumor immunity: results from a phase I trial in advanced melanoma. J Transl Med 2015; 13:139. [PMID: 25933939 PMCID: PMC4438625 DOI: 10.1186/s12967-015-0473-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/23/2015] [Indexed: 02/06/2023] Open
Abstract
Background Advanced melanoma patients have an extremely poor long term prognosis and are in strong need of new therapies. The recently developed targeted therapies have resulted in a marked antitumor effect, but most responses are partial and some degree of toxicity remain the major concerns. Dendritic cells play a key role in the activation of the immune system and have been typically used as ex vivo antigen-loaded cell drugs for cancer immunotherapy. Another approach consists in intratumoral injection of unloaded DCs that can exploit the uptake of a wider array of tumor-specific and individual unique antigens. However, intratumoral immunization requires DCs endowed at the same time with properties typically belonging to both immature and mature DCs (i.e. antigen uptake and T cell priming). DCs generated in presence of interferon-alpha (IFN-DCs), due to their features of partially mature DCs, capable of efficiently up-taking, processing and cross-presenting antigens to T cells, could successfully carry out this task. Combining intratumoral immunization with tumor-destructing therapies can induce antigen release in situ, facilitating the injected DCs in triggering an antitumor immune response. Methods We tested in a phase I clinical study in advanced melanoma a chemo-immunotherapy approach based on unloaded IFN-DCs injected intratumorally one day after administration of dacarbazine. Primary endpoint of the study was treatment safety and tolerability. Secondary endpoints were immune and clinical responses of patients. Results Six patients were enrolled, and only three completed the treatment. The chemo-immunotherapy was well tolerated with no major side effects. Three patients showed temporary disease stabilization and two of them showed induction of T cells specific for tyrosinase, NY-ESO-1 and gp100. Of interest, one patient showing a remarkable long-term disease stabilization kept showing presence of tyrosinase specific T cells in PBMC and high infiltration of memory T cells in the tumor lesion at 21 months. Conclusion We tested a chemo-immunotherapeutic approach based on IFN-DCs injected intratumorally one day after DTIC in advanced melanoma. The treatment was well tolerated, and clinical and immunological responses, including development of vitiligo, were observed, therefore warranting additional clinical studies aimed at evaluating efficacy of this approach. Trial registration Trial Registration Number not publicly available due to EudraCT regulations: https://www.clinicaltrialsregister.eu/doc/EU_CTR_FAQ.pdf
Collapse
Affiliation(s)
- Carmela Rozera
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Giancarlo Antonini Cappellini
- IV Dermatology Oncology Unit, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), via Monti Creta 104, Rome, 00167, Italy.
| | - Giuseppina D'Agostino
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Laura Santodonato
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Luciano Castiello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Francesca Urbani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Iole Macchia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Eleonora Aricò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Ida Casorelli
- Immunohematology and Transfusion Medicine Unit, Sapienza University of Rome, Sant'Andrea Hospital, via di Grottarossa 1035, Rome, 00189, Italy.
| | - Paola Sestili
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Enrica Montefiore
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Domenica Monque
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Davide Carlei
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Mariarosaria Napolitano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Paola Rizza
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Federica Moschella
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Carla Buccione
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Roberto Belli
- National AIDS Center, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Enrico Proietti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Antonio Pavan
- Immunohematology and Transfusion Medicine Unit, Sapienza University of Rome, Sant'Andrea Hospital, via di Grottarossa 1035, Rome, 00189, Italy.
| | - Paolo Marchetti
- IV Dermatology Oncology Unit, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), via Monti Creta 104, Rome, 00167, Italy. .,Department of Oncology, Sapienza University of Rome, Sant'Andrea Hospital, via di Grottarossa 1035, Rome, 00189, Italy.
| | - Filippo Belardelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| | - Imerio Capone
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, 00161, Italy.
| |
Collapse
|
41
|
van der Waart AB, Fredrix H, van der Voort R, Schaap N, Hobo W, Dolstra H. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice. Cancer Immunol Immunother 2015; 64:645-54. [PMID: 25724840 PMCID: PMC4412509 DOI: 10.1007/s00262-015-1668-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) can be a curative therapy for patients suffering from hematological malignancies. The therapeutic efficacy is based on donor-derived CD8+ T cells that recognize minor histocompatibility antigens (MiHAs) expressed by patient’s tumor cells. However, these responses are not always sufficient, and persistence and recurrence of the malignant disease are often observed. Therefore, application of additive therapy targeting hematopoietic-restricted MiHAs is essential. Adoptive transfer of MiHA-specific CD8+ T cells in combination with dendritic cell (DC) vaccination could be a promising strategy. Though effects of DC vaccination in anti-cancer therapy have been demonstrated, improvement in DC vaccination therapy is needed, as clinical responses are limited. In this study, we investigated the potency of program death ligand (PD-L) 1 and 2 silenced DC vaccines for ex vivo priming and in vivo boosting of MiHA-specific CD8+ T cell responses. Co-culturing CD8+ T cells with MiHA-loaded DCs resulted in priming and expansion of functional MiHA-specific CD8+ T cells from the naive repertoire, which was augmented upon silencing of PD-L1 and PD-L2. Furthermore, DC vaccination supported and expanded adoptively transferred antigen-specific CD8+ T cells in vivo. Importantly, the use of PD-L silenced DCs improved boosting and further expansion of ex vivo primed MiHA-specific CD8+ T cells in immunodeficient mice. In conclusion, adoptive transfer of ex vivo primed MiHA-specific CD8+ T cells in combination with PD-L silenced DC vaccination, targeting MiHAs restricted to the hematopoietic system, is an interesting approach to boost GVT immunity in allo-SCT patients and thereby prevent relapse.
Collapse
Affiliation(s)
- Anniek B. van der Waart
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Hanny Fredrix
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Robbert van der Voort
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Nicolaas Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Geert Grooteplein 8, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
42
|
Abstract
MicroRNAs are increasingly being recognized to play an important role in finely tuning gene expression; therefore, their dysregulation in cancer has been investigated extensively. In terms of melanoma, they are involved in the regulation of many genes and pathways impacting invasiveness, dissemination, and disease progression. Many microRNAs also target genes regulating ontogenesis and functions of the immune system. Indeed, fine-tuning of gene expression by microRNAs is necessary for normal differentiation of the various components of the immune system and for mounting an effective innate and cell-mediated response, which has been shown to be able to control tumor growth. Dendritic cells, by presenting antigens to and activating naive T cells, constitute a critical aspect and have been therefore been used in many studies of cancer vaccination with promising results. Many genes regulating functions and plasticity of dendritic cells are indeed targeted by microRNAs, whose expression is also dependent on maturation status. Therefore, microRNAs could provide new potential therapeutic targets both on the tumor and on the immune system, and could also be used to characterize dendritic cells utilized in immunotherapy trials.
Collapse
|
43
|
Tucci M, Stucci S, Passarelli A, Giudice G, Dammacco F, Silvestris F. The immune escape in melanoma: role of the impaired dendritic cell function. Expert Rev Clin Immunol 2014; 10:1395-404. [DOI: 10.1586/1744666x.2014.955851] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
de Rosa F, Ridolfi L, Ridolfi R, Gentili G, Valmorri L, Nanni O, Petrini M, Fiammenghi L, Granato AM, Ancarani V, Pancisi E, Soldati V, Cassan S, Riccobon A, Parisi E, Romeo A, Turci L, Guidoboni M. Vaccination with autologous dendritic cells loaded with autologous tumor lysate or homogenate combined with immunomodulating radiotherapy and/or preleukapheresis IFN-α in patients with metastatic melanoma: a randomised "proof-of-principle" phase II study. J Transl Med 2014; 12:209. [PMID: 25053129 PMCID: PMC4223722 DOI: 10.1186/1479-5876-12-209] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/02/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vaccination with dendritic cells (DC) loaded with tumor antigens elicits tumor-specific immune responses capable of killing cancer cells without inducing meaningful side-effects. Patients with advanced melanoma enrolled onto our phase II clinical studies have been treated with autologous DC loaded with autologous tumor lysate/homogenate matured with a cytokine cocktail, showing a clinical benefit (PR + SD) in 55.5% of evaluable cases to date. The beneficial effects of the vaccine were mainly restricted to patients who developed vaccine-specific immune response after treatment. However, immunological responses were only induced in about two-thirds of patients, and treatments aimed at improving immunological responsiveness to the vaccine are needed. METHODS/DESIGN This is a phase II, "proof-of-principle", randomized, open-label trial of vaccination with autologous DC loaded with tumor lysate or homogenate in metastatic melanoma patients combined with immunomodulating RT and/or preleukapheresis IFN-α. All patients will receive four bi-weekly doses of the vaccine during the induction phase and monthly doses thereafter for up to a maximum of 14 vaccinations or until confirmed progression. Patients will be randomized to receive:(1.) three daily doses of 8 Gy up to 12 Gy radiotherapy delivered to one non-index metastatic field between vaccine doses 1 and 2 and, optionally, between doses 7 and 8, using IMRT-IMAT techniques;(2.) daily 3 MU subcutaneous IFN-α for 7 days before leukapheresis;(3.) both 1 and 2;(4.) neither 1 nor 2.At least six patients eligible for treatment will be enrolled per arm. Daily 3 MU IL-2 will be administered subcutaneously for 5 days starting from the second day after each vaccine dose. Serial DTH testing and blood sampling to evaluate treatment-induced immune response will be performed. Objective response will be evaluated according to immune-related response criteria (irRC). DISCUSSION Based upon the emerging role of radiotherapy as an immunologic modifier, we designed a randomized phase II trial adding radiotherapy and/or preleukapheresis IFN-α to our DC vaccine in metastatic melanoma patients. Our aim was to find the best combination of complementary interventions to enhance anti-tumor response induced by DC vaccination, which could ultimately lead to better survival and milder toxicity.
Collapse
Affiliation(s)
| | - Laura Ridolfi
- Immunotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei, Tumori (IRST) IRCCS, Meldola, FC, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baek S, Kim YM, Kim SB, Kim CS, Kwon SW, Kim Y, Kim H, Lee H. Therapeutic DC vaccination with IL-2 as a consolidation therapy for ovarian cancer patients: a phase I/II trial. Cell Mol Immunol 2014; 12:87-95. [PMID: 24976269 DOI: 10.1038/cmi.2014.40] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 12/16/2022] Open
Abstract
While ovarian cancer (OvCa) responds well to surgery and conventional chemotherapy, a high recurrence rate of advanced OvCa is observed. In this phase I/II study, 10 OvCa patients with minimal residual disease were treated with autologous dendritic cells (DCs) and IL-2 to evaluate the safety and feasibility of this therapeutic strategy and to characterize the antigen-specific immune alterations induced through this treatment. Approximately 4 months after initial debulking and chemotherapy, patients received two subcutaneous doses of autologous monocyte-derived DCs pulsed with autologous tumor lysate and keyhole limpet hemocyanin (KLH) at 4-week intervals. After each DC inoculation, low-dose (200 mIU) IL-2 was introduced for 14 consecutive days as an immune adjuvant. The vaccination was well tolerated. In three out of 10 patients, the inclusion status after the initial therapy showed the maintenance of complete remission (CR) after DC vaccination for 83, 80.9 and 38.2 months without disease relapse. One patient with stable disease (SD) experienced the complete disappearance of tumor after DC vaccination, and this status was maintained for 50.8 months until tumor recurrence. In two patients with partial response (PR) was not responding to DC vaccination and their disease recurred. In the three patients with disease free long-term survival, significant immune alterations were observed, including increased natural killer (NK) activity, IFN-γ-secreting T cells, immune-stimulatory cytokine secretion and reduced immune-suppressive factor secretion after DC vaccination. Thus, in patients with NED status and increased overall survival, DC vaccination induced tumor-related immunity, potentially associated with long-term clinical responses against OvCa.
Collapse
Affiliation(s)
- Soyoung Baek
- Office of Biomedical Professors, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Man Kim
- Department of Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korean
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korean
| | - Seog-Woon Kwon
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Hyunah Lee
- Office of Biomedical Professors, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Zhang X, Su Y, Song H, Yu Z, Zhang B, Chen H. Attenuated A20 expression of acute myeloid leukemia-derived dendritic cells increased the anti-leukemia immune response of autologous cytolytic T cells. Leuk Res 2014; 38:673-81. [DOI: 10.1016/j.leukres.2014.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 11/26/2022]
|
47
|
Lin B, Zhao H, Fan J, Xie F, Wang W, Ding X. B16 cell lysates plus polyinosinic-cytidylic acid effectively eradicate melanoma in a mouse model by acting as a prophylactic vaccine. Mol Med Rep 2014; 10:911-6. [PMID: 24840631 DOI: 10.3892/mmr.2014.2241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 03/17/2014] [Indexed: 11/06/2022] Open
Abstract
Th1 antigen-specific T cells secrete interferon-γ, which is able to kill antigen-specific cancer cells and is helpful for cancer vaccines. The aim of the present study was to explore whether B16 cell lysates plus polyinosinic-cytidylic acid (poly I:C) can effectively inhibit the progression of melanoma in an animal model. In the present study, C57BL/6 mice were divided into three groups, with each group containing more than six mice. The groups of mice were immunized twice with B16 cell lysates plus poly I:C, B16 cell lysates, or phosphate-buffered saline only, respectively. The in vivo results demonstrated that splenocytes from the mice immunized with B16 cell lysates plus poly I:C contained higher percentages of CD3+CD8+ T lymphocytes and CD3+CD4+ T lymphocytes, which were detected by a fluorescence-activated cell sorter, and produced higher levels of antigen-specific splenocyte proliferation activity, as detected by MTT assay. The splenocytes from the mice immunized with B16 cell lysates in combination with poly I:C produced higher levels of interferon‑γ, as detected by quantitative polymerase chain reaction and ELISA, as well as cytotoxic T lymphocyte activity when stimulated in vitro with B16 lysates. Additionally, subcutaneous immunization of the C57BL/6 mice with B16 cell lysates plus poly I:C conferred greater protection against tumor-forming B16 melanoma cells than that of the mice immunized with injection of B16 cell lysate alone. In conclusion, the cancer vaccine of B16 cell lysates plus poly I:C exerts potently protective effects that polarize responses toward Th1 and elicit antitumor immunity.
Collapse
Affiliation(s)
- Biwen Lin
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua Zhao
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jianfeng Fan
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Fang Xie
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiangyu Ding
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
48
|
Cicchelero L, de Rooster H, Sanders NN. Various ways to improve whole cancer cell vaccines. Expert Rev Vaccines 2014; 13:721-35. [PMID: 24758597 DOI: 10.1586/14760584.2014.911093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapy based on whole cancer cell vaccines is regarded as a promising avenue for cancer treatment. However, limited efficacy in the first human clinical trials calls for more optimized whole cancer cell vaccines and better patient selection. It is suggested that whole cancer cell vaccines consist preferably of immunogenically killed autologous cancer stem cells associated with dendritic cells. Adjuvants should stimulate both immune effector cells and memory cells, which could be achieved through their correct dosage and timing of administration. There are indications that whole cancer cell vaccination is less effective in patients who are immunocompromised, who have specific genetic defects in their immune or cancer cells, as well as in patients in an advanced cancer stage. However, such patients form the bulk of enrolled patients in clinical trials, prohibiting an objective evaluation of the true potential of whole cancer cell immunotherapy. Each key point will be discussed.
Collapse
Affiliation(s)
- Laetitia Cicchelero
- Laboratory of Gene Therapy, Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, B-9820 Merelbeke, Belgium
| | | | | |
Collapse
|
49
|
Sachamitr P, Hackett S, Fairchild PJ. Induced pluripotent stem cells: challenges and opportunities for cancer immunotherapy. Front Immunol 2014; 5:176. [PMID: 24860566 PMCID: PMC4029000 DOI: 10.3389/fimmu.2014.00176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/03/2014] [Indexed: 12/22/2022] Open
Abstract
Despite recent advances in cancer treatment over the past 30 years, therapeutic options remain limited and do not always offer a cure for malignancy. Given that tumor-associated antigens (TAA) are, by definition, self-proteins, the need to productively engage autoreactive T cells remains at the heart of strategies for cancer immunotherapy. These have traditionally focused on the administration of autologous monocyte-derived dendritic cells (moDC) pulsed with TAA, or the ex vivo expansion and adoptive transfer of tumor-infiltrating lymphocytes (TIL) as a source of TAA-specific cytotoxic T cells (CTL). Although such approaches have shown some efficacy, success has been limited by the poor capacity of moDC to cross present exogenous TAA to the CD8+ T-cell repertoire and the potential for exhaustion of CTL expanded ex vivo. Recent advances in induced pluripotency offer opportunities to generate patient-specific stem cell lines with the potential to differentiate in vitro into cell types whose properties may help address these issues. Here, we review recent success in the differentiation of NK cells from human induced pluripotent stem (iPS) cells as well as minor subsets of dendritic cells (DCs) with therapeutic potential, including CD141+XCR1+ DC, capable of cross presenting TAA to naïve CD8+ T cells. Furthermore, we review recent progress in the use of TIL as the starting material for the derivation of iPSC lines, thereby capturing their antigen specificity in a self-renewing stem cell line, from which potentially unlimited numbers of naïve TAA-specific T cells may be differentiated, free of the risks of exhaustion.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology , University of Oxford, Oxford , UK
| | - Simon Hackett
- Sir William Dunn School of Pathology , University of Oxford, Oxford , UK
| | | |
Collapse
|
50
|
Wimmers F, Schreibelt G, Sköld AE, Figdor CG, De Vries IJM. Paradigm Shift in Dendritic Cell-Based Immunotherapy: From in vitro Generated Monocyte-Derived DCs to Naturally Circulating DC Subsets. Front Immunol 2014; 5:165. [PMID: 24782868 PMCID: PMC3990057 DOI: 10.3389/fimmu.2014.00165] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/28/2014] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy employs the patients’ immune system to fight neoplastic lesions spread over the entire body. This makes it an important therapy option for patients suffering from metastatic melanoma, which is often resistant to chemotherapy. However, conventional cellular vaccination approaches, based on monocyte-derived DCs (moDCs), only achieved modest response rates despite continued optimization of various vaccination parameters. In addition, the generation of moDCs requires extensive ex vivo culturing conceivably hampering the immunogenicity of the vaccine. Recent studies, thus, focused on vaccines that make use of primary DCs. Though rare in the blood, these naturally circulating DCs can be readily isolated and activated thereby circumventing lengthy ex vivo culture periods. The first clinical trials not only showed increased survival rates but also the induction of diversified anti-cancer immune responses. Upcoming treatment paradigms aim to include several primary DC subsets in a single vaccine as pre-clinical studies identified synergistic effects between various antigen-presenting cells.
Collapse
Affiliation(s)
- Florian Wimmers
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Annette E Sköld
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - I Jolanda M De Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands ; Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| |
Collapse
|