1
|
He J, Hu Q. Progress in the clinical application of immune checkpoint inhibitors in small cell lung cancer. Front Immunol 2023; 14:1126582. [PMID: 37063927 PMCID: PMC10090448 DOI: 10.3389/fimmu.2023.1126582] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Small cell lung cancer (SCLC) is a refractory cancer with poor prognosis due to its aggressive malignancy and high rates of metastasis, recurrence and drug resistance. These characteristics have also greatly impeded the identification of new treatment methods and drugs. The traditional model of SCLC treatment that has been reliant on platinum combined with etoposide for decades has been superseded by the emergence of immune checkpoint inhibitors (ICIs), which have shown significant therapeutic effects and broad application prospects as a monotherapy. This has led to the evaluation of ICIs with different mechanisms of action and their use in combination with radiotherapy or a variety of molecular targeted drugs to achieve synergy, complementary advantages, and reduce adverse reactions. Here, we review the progress in the use of ICIs as a monotherapy or in combination therapy for SCLC and consider the current limitations of these approaches as well as prospects for future developments.
Collapse
|
2
|
Evers M, Stip M, Keller K, Willemen H, Nederend M, Jansen M, Chan C, Budding K, Nierkens S, Valerius T, Meyer-Wentrup F, Eijkelkamp N, Leusen J. Anti-GD2 IgA kills tumors by neutrophils without antibody-associated pain in the preclinical treatment of high-risk neuroblastoma. J Immunother Cancer 2021; 9:jitc-2021-003163. [PMID: 34716207 PMCID: PMC8559241 DOI: 10.1136/jitc-2021-003163] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background The addition of monoclonal antibody therapy against GD2 to the treatment of high-risk neuroblastoma led to improved responses in patients. Nevertheless, administration of GD2 antibodies against neuroblastoma is associated with therapy-limiting neuropathic pain. This severe pain is evoked at least partially through complement activation on GD2-expressing sensory neurons. Methods To reduce pain while maintaining antitumor activity, we have reformatted the approved GD2 antibody ch14.18 into the IgA1 isotype. This novel reformatted IgA is unable to activate the complement system but efficiently activates leukocytes through the FcαRI (CD89). Results IgA GD2 did not activate the complement system in vitro nor induced pain in mice. Importantly, neutrophil-mediated killing of neuroblastoma cells is enhanced with IgA in comparison to IgG, resulting in efficient tumoricidal capacity of the antibody in vitro and in vivo. Conclusions Our results indicate that employing IgA GD2 as a novel isotype has two major benefits: it halts antibody-induced excruciating pain and improves neutrophil-mediated lysis of neuroblastoma. Thus, we postulate that patients with high-risk neuroblastoma would strongly benefit from IgA GD2 therapy.
Collapse
Affiliation(s)
- Mitchell Evers
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marjolein Stip
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Kaylee Keller
- Department of Pediatric Hemato-oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hanneke Willemen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Maaike Nederend
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Marco Jansen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Chilam Chan
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Kevin Budding
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands.,Department of Pediatric Hemato-oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Friederike Meyer-Wentrup
- Department of Pediatric Hemato-oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Niels Eijkelkamp
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| | - Jeanette Leusen
- Center for Translational Immunology, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Putting into Perspective the Future of Cancer Vaccines: Targeted Immunotherapy. EUROPEAN MEDICAL JOURNAL 2020. [DOI: 10.33590/emj/19-00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pre-clinical models and human clinical trials have confirmed the ability of cancer vaccines to induce immune responses that are tumour-specific and, in some cases, associated with clinical response. However, cancer vaccines as a targeted immunotherapy strategy have not yet come of age. So, why the discordance after so much research has been invested in cancer vaccines? There are several reasons for this that include: limited tumour immunogenicity (limited targeted antigen expression, antigen tolerance); antigenic heterogeneity in tumours; heterogeneity of individual immune responses; multiple mechanisms associated with suppressed functional activity of immune effector cells, the underlying rationale for the use of immune checkpoint inhibitors; and immune system exhaustion. The success of checkpoint therapy has refocussed investigations into defining relationships between tumours and host immune systems, appreciating the mechanisms by which tumour cells escape immune surveillance and reinforcing recognition of the potential of vaccines in the treatment and prevention of cancer. Recent developments in cancer immunotherapies, together with associated technologies, for instance, the unparalleled achievements by immune checkpoint inhibitors and neo-antigen identification tools, may foster potential improvements in cancer vaccines for the treatment of malignancies.
Collapse
|
4
|
MacCalman TE, Phillips-Jones MK, Harding SE. Glycoconjugate vaccines: some observations on carrier and production methods. Biotechnol Genet Eng Rev 2020; 35:93-125. [PMID: 32048549 DOI: 10.1080/02648725.2019.1703614] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glycoconjugate vaccines use protein carriers to improve the immune response to polysaccharide antigens. The protein component allows the vaccine to interact with T cells, providing a stronger and longer-lasting immune response than a polysaccharide interacting with B cells alone. Whilst in theory the mere presence of a protein component in a vaccine should be sufficient to improve vaccine efficacy, the extent of improvement varies. In the present review, a comparison of the performances of vaccines developed with and without a protein carrier are presented. The usefulness of analytical tools for macromolecular integrity assays, in particular nuclear magnetic resonance, circular dichroism, analytical ultracentrifugation and SEC coupled to multi-angle light scattering (MALS) is indicated. Although we focus mainly on bacterial capsular polysaccharide-protein vaccines, some consideration is also given to research on experimental cancer vaccines using zwitterionic polysaccharides which, unusually for polysaccharides, are able to invoke T-cell responses and have been used in the development of potential all-polysaccharide-based cancer vaccines.A general trend of improved immunogenicity for glycoconjugate vaccines is described. Since the immunogenicity of a vaccine will also depend on carrier protein type and the way in which it has been linked to polysaccharide, the effects of different carrier proteins and production methods are also reviewed. We suggest that, in general, there is no single best carrier for use in glycoconjugate vaccines. This indicates that the choice of carrier protein is optimally made on a case-by-case basis, based on what generates the best immune response and can be produced safely in each individual case.Abbreviations: AUC: analytical ultracentrifugation; BSA: bovine serum albumin; CD: circular dichroism spectroscopy; CPS: capsular polysaccharide; CRM197: Cross Reactive Material 197; DT: diphtheria toxoid; Hib: Haemophilius influenzae type b; MALS: multi-angle light scattering; Men: Neisseria menigitidis; MHC-II: major histocompatibility complex class II; NMR: nuclear magnetic resonance spectroscopy; OMP: outer membrane protein; PRP: polyribosyl ribitol phosphate; PSA: Polysaccharide A1; Sa: Salmonella; St.: Streptococcus; SEC: size exclusion chromatography; Sta: Staphylococcus; TT: tetanus toxoid; ZPS: zwitterionic polysaccharide(s).
Collapse
Affiliation(s)
- Thomas E MacCalman
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Mary K Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Nottingham, UK.,Kulturhistorisk Museum, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Guisier F, Cousse S, Jeanvoine M, Thiberville L, Salaun M. A rationale for surgical debulking to improve anti-PD1 therapy outcome in non small cell lung cancer. Sci Rep 2019; 9:16902. [PMID: 31729430 PMCID: PMC6858444 DOI: 10.1038/s41598-019-52913-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022] Open
Abstract
Anti-PD1 immunotherapy has emerged as a gold-standard treatment for first- or second-line treatment of stage IV NSCLC, with response rates ranging from 10 to 60%. Strategies to improve the disease control rate are needed. Several reports suggested that debulking surgery enhances anti-tumor immunity. We aimed at examining tumor burden as a predictive factor of anti-PD1 tretment efficacy and to evaluate the role of cytoreductive surgery in anti-PD1 treated NSCLC. Immunocompetent DBA/2 mice engrafted with various amount of allogeneic lung squamous cancer KLN-205 cells were treated with anti-PD1 monoclonal antibody. Mice engrafted with two tumors also underwent a debulking surgery or a sham procedure. Tumor volume was monitored to assess treatment efficacy. Tumor infiltrating lymphocytes were assessed by flow cytometry. In a retrospective study of 48 stage IV NSCLC patients treated with Nivolumab who underwent a 18-FDG PETscan before treatment onset, the prognostic role of metabolic tumor volume was analysed. Anti-PD1 treatment effect was greater in mice bearing smaller tumors. Treatment with higher doses of anti-PD1 antibody did not improve the outcome, independently of the size of the tumor. In mice bearing 2 tumors, excision of 1 tumor improved the anti-PD1 treatment effect on the remaining tumor. In 48 NSCLC patients receiving anti-PD1 treatment, high metabolic tumor volume was associated with poor overall survival and the absence of clinical benefit. Treg infiltration, but not effector T cells, was positively correlated to tumor volume. Taken together, our results suggest that tumor volume is a predictive factor of anti-PD1 efficacy in NSCLC. Additionally, an experimental murine model suggests that tumor debulking may improve control of residual tumor.
Collapse
Affiliation(s)
- Florian Guisier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Charles Nicolle, Rouen, France.
- LITIS QuantIF EA4108, Normadie Univ, Rouen, France.
- INSERM CIC 1404, CHU Charles Nicolle, Rouen, France.
| | - Stephanie Cousse
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Charles Nicolle, Rouen, France
- LITIS QuantIF EA4108, Normadie Univ, Rouen, France
| | - Mathilde Jeanvoine
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Charles Nicolle, Rouen, France
- LITIS QuantIF EA4108, Normadie Univ, Rouen, France
| | - Luc Thiberville
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Charles Nicolle, Rouen, France
- LITIS QuantIF EA4108, Normadie Univ, Rouen, France
- INSERM CIC 1404, CHU Charles Nicolle, Rouen, France
| | - Mathieu Salaun
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU Charles Nicolle, Rouen, France
- LITIS QuantIF EA4108, Normadie Univ, Rouen, France
- INSERM CIC 1404, CHU Charles Nicolle, Rouen, France
| |
Collapse
|
6
|
Tong W, Maira M, Roychoudhury R, Galan A, Brahimi F, Gilbert M, Cunningham AM, Josephy S, Pirvulescu I, Moffett S, Saragovi HU. Vaccination with Tumor-Ganglioside Glycomimetics Activates a Selective Immunity that Affords Cancer Therapy. Cell Chem Biol 2019; 26:1013-1026.e4. [DOI: 10.1016/j.chembiol.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
|
7
|
Abstract
Small cell lung cancer (SCLC) is a devastating and aggressive neuroendocrine carcinoma of the lung. It accounts for ~15% of lung cancer mortality and has had no improvement in standard treatment options for nearly 30 years. However, there is now hope for change with new therapies and modalities of therapy. Immunotherapies and checkpoint inhibitors are entering clinical practice, selected targeted therapies show promise, and "smart bomb"-based drug/radioconjugates have led to good response in early clinical trials. Additionally, new research insights into the genetics and tumor heterogeneity of SCLC alongside the availability of new tools such as patient-derived or circulating tumor cell xenografts offer the potential to shine light on this beshadowed cancer.
Collapse
|
8
|
|
9
|
Suzuki M, Cheung NKV. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets 2015; 19:349-62. [PMID: 25604432 DOI: 10.1517/14728222.2014.986459] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Ganglioside GD2 is found in vertebrates and invertebrates, overexpressed among pediatric and adult solid tumors, including neuroblastoma, glioma, retinoblastoma, Ewing's family of tumors, rhabdomyosarcoma, osteosarcoma, leiomyosarcoma, liposarcoma, fibrosarcoma, small cell lung cancer and melanoma. It is also found on stem cells, neurons, some nerve fibers and basal layer of the skin. AREAS COVERED GD2 provides a promising clinical target for radiolabeled antibodies, bispecific antibodies, chimeric antigen receptor (CAR)-modified T cells, drug conjugates, nanoparticles and vaccines. Here, we review its biochemistry, normal physiology, role in tumorigenesis, important characteristics as a target, as well as anti-GD2-targeted strategies. EXPERT OPINION Bridging the knowledge gaps in understanding the interactions of GD2 with signaling molecules within the glycosynapses, and the regulation of its cellular expression should improve therapeutic strategies targeting this ganglioside. In addition to anti-GD2 IgG mAbs, their drug conjugates, radiolabeled forms especially when genetically engineered to improve therapeutic index and novel bispecific forms or CARs to retarget T-cells are promising candidates for treating metastatic cancers.
Collapse
Affiliation(s)
- Maya Suzuki
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics , 1275 York Avenue, New York, NY 10065 , USA +1 646 888 2313 ; +1 631 422 0452 ;
| | | |
Collapse
|
10
|
Hajmohammadi M, Siadat SD, Ghorbani M, Shafiee Ardestani M, Teimourian S, Asgari V, Ahangari Cohan R, Hajmohammadi M, Hajmohammadi A, Behzadi R, Rajab Nezhad S, Namvar Asl N. Synthesis and characterization of a novel chemically designed (Globo)3-DTPA-KLH antigen. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:217-39. [PMID: 25565775 PMCID: PMC4278734 DOI: 10.2147/dddt.s72530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, many experiments have been conducted for the production and evaluation of anticancer glycoconjugated vaccines in developed countries and many achievements have been accomplished with Globo H derivatives. In the current experiment, a new chemically designed triplicate version of (Globo H)3–diethylenetriamine pentaacetic acid (DTPA)–KLH antigen was synthesized and characterized. Immunization with (Globo H)3-DTPA-KLH, a hexasaccharide that is a member of a family of antigenic carbohydrates that are highly expressed in various types of cancers conjugated with DTPA and KLH protein, induced a high level of antibody titer along with an elevated level of IL-4 in mice. Treatment of tumors with the collected sera from immunized mice decreased the tumor size in nude mice as well. None of the immunized mice illustrated any sign of tumor growth after injection of MCF-7 cells compared to the control animals. These findings, based on the newly presented structure of the Globo H antigen, lend exciting and promising evidence for clinical advancement in the development of a therapeutic vaccine in the future.
Collapse
Affiliation(s)
- Mehdi Hajmohammadi
- Department of Research and Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Masoud Ghorbani
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran ; Department of Virology, University of Ottawa, Ottawa, ON, Canada
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Teimourian
- Department of Medical Genetics, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Asgari
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mostafa Hajmohammadi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Hajmohammadi
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ramezan Behzadi
- Laboratory Animal Management of North Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saied Rajab Nezhad
- Department of Research and Development, Alhavi Pharmaceutical, Tehran, Iran
| | | |
Collapse
|
11
|
Kushner BH, Cheung IY, Modak S, Kramer K, Ragupathi G, Cheung NKV. Phase I trial of a bivalent gangliosides vaccine in combination with β-glucan for high-risk neuroblastoma in second or later remission. Clin Cancer Res 2014; 20:1375-82. [PMID: 24520094 DOI: 10.1158/1078-0432.ccr-13-1012] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE To report on a phase I trial designed to find the maximally tolerated dose in children of the immunologic adjuvant OPT-821 in a vaccine containing neuroblastoma-associated antigens (GD2 and GD3; Clinicaltrials.gov NCT00911560). Secondary objectives were to obtain preliminary data on immune response and activity against minimal residual disease (MRD). Treatment also included the immunostimulant β-glucan. EXPERIMENTAL DESIGN Patients with neuroblastoma in ≥2nd complete/very good partial remission received vaccine subcutaneously (weeks 1-2-3-8-20-32-52). Vaccine contained 30 μg each of GD2 and GD3 stabilized as lactones and conjugated to the immunologic carrier protein keyhole limpet hemocyanin; and OPT-821, which was dose escalated as 50, 75, 100, and 150 μg/m(2) per injection. Oral β-glucan (40 mg/kg/day, 14 days on/14 days off) started week 6. RESULTS The study was completed with 15 patients because there was no dose-limiting toxicity at 150 μg/m(2) of OPT-821 (the dosing used in adults). Thirteen of fifteen patients received the entire protocol treatment, including 12 who remain relapse-free at 24+ to 39+ (median 32+) months and 1 who relapsed (single node) at 21 months. Relapse-free survival was 80% ± 10% at 24 months. Vaccine and β-glucan were well tolerated. Twelve of fifteen patients had antibody responses against GD2 and/or GD3. Disappearance of MRD was documented in 6 of 10 patients assessable for response. CONCLUSIONS This immunotherapy program lacks major toxicity and is transportable to any outpatient clinic. Patient outcome is encouraging but the efficacy is uncertain because of the complexity and heterogeneity of prior therapies. A larger phase II trial is underway.
Collapse
Affiliation(s)
- Brian H Kushner
- Authors' Affiliations: Departments of Pediatrics and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | | | | | |
Collapse
|
12
|
Predina JD, Judy B, Fridlender ZG, Aliperti LA, Madajewski B, Kapoor V, Cheng G, Quatromoni J, Okusanya O, Singhal S. A positive-margin resection model recreates the postsurgical tumor microenvironment and is a reliable model for adjuvant therapy evaluation. Cancer Biol Ther 2012; 13:745-55. [PMID: 22617772 DOI: 10.4161/cbt.20557] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Up to 30% of cancer patients undergoing curative surgery develop local recurrences due to positive margins. Patients typically receive adjuvant chemotherapy, immunotherapy and/or radiation to prevent such relapses. Interestingly, evidence supporting these therapies is traditionally derived in animal models of primary tumors, thus failing to consider surgically induced tumor microenvironment changes that may influence adjuvant therapy efficacy. To address this consideration, we characterized a murine model of local cancer recurrence. This model was reproducible and generated a postoperative inflammatory tumor microenvironment that resembles those observed following human cancer surgery. To further validate this model, antagonists of two pro-inflammatory mediators, TGFβ and COX-2, were tested and found to be effective in decreasing the growth of recurrent tumors. We appreciated that preoperative TGFβ inhibition led to wound dehiscence, while postoperative initiation of COX-2 inhibition resulted in a loss of efficacy. In summary, although not an exact replica of all human cancer surgeries, our proposed local recurrence approach provides a biologically relevant and reliable model useful for preclinical evaluation of novel adjuvant therapies. The use of this model yields results that may be overlooked using traditional preclinical cancer models that fail to incorporate a surgical component.
Collapse
Affiliation(s)
- Jarrod D Predina
- Thoracic Surgery Research Laboratory, Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Tucker ZCG, Laguna BA, Moon E, Singhal S. Adjuvant immunotherapy for non-small cell lung cancer. Cancer Treat Rev 2012; 38:650-61. [PMID: 22226940 DOI: 10.1016/j.ctrv.2011.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 01/20/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the biggest cancer killer in the United States and worldwide. In 2011, there are estimated to be 221,130 new cases of lung cancer in the United States. Over a million people will die of lung cancer worldwide this year alone. When possible, surgery to remove the tumor is the best treatment strategy for patients with NSCLC. However, even with adjuvant (postoperative) chemotherapy and radiation, more than 40% of patients will develop recurrences locally or systemically and ultimately succumb to their disease. Thus, there is an urgent need for developing superior approaches to treat patients who undergo surgery for NSCLC to eliminate residual disease that is likely responsible for these recurrences. Our group and others have been interested in using immunotherapy to augment the efficacy of current treatment strategies. Immunotherapy is very effective against minimal disease burden and small deposits of tumor cells that are accessible by the circulating immune cells. Therefore, this strategy may be ideally suited as an adjunct to surgery to seek and destroy microscopic tumor deposits that remain after surgery. This review describes the mechanistic underpinnings of immunotherapy and how it is currently being used to target residual disease and prevent postoperative recurrences after pulmonary resection in NSCLC.
Collapse
Affiliation(s)
- Zachary C G Tucker
- Division of Thoracic Surgery, University of Pennsylvania School of Medicine, 6 White, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
14
|
Abstract
The successful identification of a range of leukaemia-specific and lymphoma-specific antigens in recent years has stimulated efforts to develop therapeutic vaccination strategies. A number of clinical trials have established the safety and immunogenicity of vaccination against tumour antigens, although there are limited data on the clinical efficacy of this approach in haematological malignancies. After encouraging results of phase I/II trials using idiotype vaccines in lymphoma, the outcome of the three phase III trials has been somewhat disappointing. Several other promising strategies are currently being developed to improve these results, including optimization of antigen delivery. In myeloid leukaemias, clinical trials of vaccination with peptides derived from a number of leukaemia antigens, including WT1, PR1, RHAMM and BCR-ABL, have shown evidence of immunogenicity, but limited data are available on the clinical efficacy of this approach. In this review, we focus on the results of clinical trials of vaccination in leukaemia and lymphoma, and discuss potential strategies to enhance the efficacy of immunotherapy in the future.
Collapse
Affiliation(s)
- Katayoun Rezvani
- Department of Haematology, Hammersmith Hospital, Imperial College, London, UK.
| | | |
Collapse
|