1
|
Wang Y, Xiang Z, An M, Jia H, Bu C, Xue Y, Wei Y, Li R, Qi X, Cheng F, Zhao C, Xue J, Yang P. Livin promotes Th2-type immune response in airway allergic diseases. Immunol Res 2022; 70:624-632. [PMID: 35717553 PMCID: PMC9499890 DOI: 10.1007/s12026-022-09294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVES To investigate the effects of livin on the Th2 immune response in airway allergic diseases (AAD) and explore the interaction among livin, GATA3, IL-4 in peripheral blood CD4+ T cells of AAD patients. METHODS WT mice and livin KO mice were developed for model of AAD. Th2 cell levels in the lung tissues and spleen were assessed by flow cytometry. Also, it was assessed in the culture after exposing to livin inhibitor (Lp-15); the protein and mRNA levels of livin, GATA3 and IL-4 in peripheral blood CD4+ T cells isolated from patients with or without AAD were measured by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Finally, Co-immunoprecipitation (Co-IP) was employed to identify the interaction between livin and GATA3. RESULTS Compared with WT mouse, Th2 cell frequency in lung tissues and spleen was significantly decreased in livin KO mouse; after adding Lp-15, the differentiation from Naive CD4+T cells in spleen to Th2 cells was blocked; the protein and mRNA levels of livin, GATA3 and IL-4 in AAD group were higher than that in control group. The levels of livin were positively correlated with IL-4, and GATA3 was also positively correlated with IL-4 and livin. GATA3 was detected in the protein complex co-precipitated with livin antibody, and livin was also detected in the protein complex co-precipitated by GATA3 antibody. CONCLUSION Livin increases the expression of IL-4 and facilitates naive CD4+ T cells to differentiate into Th2 cells, which triggers airway allergy.
Collapse
Affiliation(s)
- Yue Wang
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Zhiyu Xiang
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Miaomiao An
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Huijing Jia
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Chunyan Bu
- Department of Otolaryngology, Head & Neck Surgery, The First Hospital of Yulin, Yulin, China
| | - Yanfeng Xue
- Special Needs Ward, Shanxi Cancer Hospital, Taiyuan, China
| | - Yao Wei
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Ruiying Li
- Department of Otolaryngology, Head & Neck Surgery, The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xueping Qi
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Fengli Cheng
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Changqing Zhao
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China
| | - Jinmei Xue
- Department of Otolaryngology, Head & Neck Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China.
- Key Research Laboratory of Airway Neuroimmunology, Shanxi Province, Taiyuan, China.
| | - Pingchang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, China.
| |
Collapse
|
2
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Soluble Factors and Receptors Involved in Skin Innate Immunity-What Do We Know So Far? Biomedicines 2021; 9:biomedicines9121795. [PMID: 34944611 PMCID: PMC8698371 DOI: 10.3390/biomedicines9121795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/25/2022] Open
Abstract
The pattern recognition receptors, complement system, inflammasomes, antimicrobial peptides, and cytokines are innate immunity soluble factors. They sense, either directly or indirectly, the potential threats and produce inflammation and cellular death. High interest in their modulation has emerged lately, acknowledging they are involved in many cutaneous inflammatory, infectious, and neoplastic disorders. We extensively reviewed the implication of soluble factors in skin innate immunity. Furthermore, we showed which molecules target these factors, how these molecules work, and how they have been used in dermatological practice. Cytokine inhibitors have paved the way to a new era in treating moderate to severe psoriasis and atopic dermatitis.
Collapse
|
4
|
Udompholkul P, Baggio C, Gambini L, Alboreggia G, Pellecchia M. Lysine Covalent Antagonists of Melanoma Inhibitors of Apoptosis Protein. J Med Chem 2021; 64:16147-16158. [PMID: 34705456 DOI: 10.1021/acs.jmedchem.1c01459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently reported on Lys-covalent agents that, based on aryl-sulfonyl fluorides, were designed to target binding site Lys 311 in the X-linked inhibitor of apoptosis protein (XIAP). Similar to XIAP, melanoma-IAP (ML-IAP), a less well-characterized IAP family protein, also presents a lysine residue (Lys 135), which is in a position equivalent to that of Lys 311 of XIAP. On the contrary, two other members of the IAP family, namely, cellular-IAPs (cIAP1 and cIAP2), present a glutamic acid residue in that position. Hence, in the present work, we describe the derivation and characterization of the very first potent ML-IAP Lys-covalent inhibitor with cellular activity. The agent can be used as a pharmacological tool to further validate ML-IAP as a drug target and eventually for the development of ML-IAP-targeted therapeutics.
Collapse
Affiliation(s)
- Parima Udompholkul
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Carlo Baggio
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Luca Gambini
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Giulia Alboreggia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Maurizio Pellecchia
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
5
|
Yin SJ, Qian GY, Yang JM, Lee J, Park YD. Detection of melanogenesis- and anti-apoptosis-associated melanoma factors: Array CGH and PPI mapping integrating study. Protein Pept Lett 2021; 28:1408-1424. [PMID: 34749602 DOI: 10.2174/0929866528666211105112927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/02/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND We investigated melanogenesis- and anti-apoptosis-related melanoma factors in melanoma cells (TXM1, TXM18, A375P, and A375SM). OBJECTIVE To find melanoma associated hub factor, high-throughput screening-based techniques integrating with bioinformatics were investigated. METHODS Array CGH analysis was conducted with a commercial system. Total genomic DNAs prepared individually from each cell line with control DNA were properly labeled with Cy3-dCTP and Cy5-dCTP and hybridizations and subsequently performed data treatment by the log2 green (G; test) to red (R; reference) fluorescence ratios (G/R). Gain or loss of copy number was judged by spots with log2-transformed ratios. PPI mapping analysis of detected candidate genes based on the array CGH results was conducted using the human interactome in the STRING database. Energy minimization and a short molecular dynamics (MD) simulation using the implicit solvation model in CHARMM were performed to analyze the interacting residues between YWHAZ and YWHAB. RESULTS Three genes (BMP-4, BFGF, LEF-1) known to be involved in melanogenesis were found to lose chromosomal copy numbers, and Chr. 6q23.3 was lost in all tested cell lines. Ten hub genes (CTNNB1, PEX13, PEX14, PEX5, IFNG, EXOSC3, EXOSC1, EXOSC8, UBC, and PEX10) were predicted to be functional interaction factors in the network of the 6q23.3 locus. The apoptosis-associated genes E2F1, p50, BCL2L1, and BIRC7 gained, and FGF2 lost chromosomal copy numbers in the tested melanoma cell lines. YWHAB, which gained chromosomal copy numbers, was predicted to be the most important hub protein in melanoma cells. Molecular dynamics simulations for binding YWHAB and YWHAZ were conducted, and the complex was predicted to be energetically and structurally stable through its 3 hydrogen-bond patterns. The number of interacting residues is 27. CONCLUSION Our study compares genome-wide screening interactomics predictions for melanoma factors and offers new information for understanding melanogenesis- and anti-apoptosis-associated mechanisms in melanoma. Especially, YWHAB was newly detected as a core factor in melanoma cells.
Collapse
Affiliation(s)
- Shang-Jun Yin
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| | - Guo-Ying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| | - Jun-Mo Yang
- Department of Dermatology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul 135-710. Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro, Yuseong-gu, Daejeon, 34141. Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100. China
| |
Collapse
|
6
|
Zhu H, Li Y, Liu Y, Han B. Bivalent SMAC Mimetics for Treating Cancer by Antagonizing Inhibitor of Apoptosis Proteins. ChemMedChem 2019; 14:1951-1962. [DOI: 10.1002/cmdc.201900410] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Hongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese Medicine 1166 Liutai Avenue Chengdu 611137 China
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Yi Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of AntibioticsChengdu University 168 Huaguan Road Chengdu 610052 China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of PharmacyChengdu University of Traditional Chinese Medicine 1166 Liutai Avenue Chengdu 611137 China
| |
Collapse
|
7
|
Immunity to X-linked inhibitor of apoptosis protein (XIAP) in malignant melanoma and check-point blockade. Cancer Immunol Immunother 2019; 68:1331-1340. [PMID: 31317218 DOI: 10.1007/s00262-019-02370-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
Expression of inhibitors of apoptosis protein (IAP) family members is associated with poor prognosis in cancer patients. Immunity to ML-IAP (livin) and survivin has been well studied in patients with a variety of tumors. XIAP, the most potent inhibitor of apoptosis, is widely expressed in melanoma. To better define its potential role as an immunogenic target, cellular and humoral responses to XIAP were investigated in patients with advanced melanoma. An overlapping peptide library covering the full length of the XIAP protein was used to screen T cell responses of peripheral blood mononuclear cells (PBMC) from stage-IV melanoma patients treated with or without anti-CTLA4 (ipilimumab). The screen identified an array of peptides that predominantly induced CD4+ T cell responses. XIAP epitope-specific CD4+ T cells revealed proliferative responses to melanoma cells that express XIAP. Humoral responses to XIAP were also explored. Cellular and humoral responses to XIAP were associated with beneficial clinical outcomes after ipilimumab-based treatment, supporting XIAP as a potential therapeutic target.
Collapse
|
8
|
Yang Y, Sun P, Xu W, Xia W. High BIRC7 Expression Might Be an Independent Prognostic Indicator of Poor Recurrence-Free Survival in Patients With Prostate Cancer. Technol Cancer Res Treat 2019; 17:1533033818809694. [PMID: 30376767 PMCID: PMC6210628 DOI: 10.1177/1533033818809694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background: BIRC7, which encodes Baculoviral inhibitor of apoptosis (IAP) repeat-containing protein 7, is an oncogene in multiple types of cancer. In this study, we examined the association between BIRC7 expression and the clinicopathological characteristics of prostate cancer, the independent prognostic value of BIRC7 in terms of recurrence-free survival, and the molecular mechanisms of its dysregulation. Methods: Data mining was performed using data from The Cancer Genome Atlas. The patients were divided into high and low BIRC7 expression groups according to the Youden index determined by receiver operating characteristic curves for recurrence. Subgroup analysis was performed according to T stages and Gleason score. Results: BIRC7 was significantly upregulated in prostate cancer tissues (N = 497) than in normal prostate tissues (N = 52). High BIRC7 expression group had lower ratios of overall response rate and medium-grade (Gleason score 6-7) tumors and higher proportions of nodal invasion and recurrence after surgery. Although Kaplan-Meier curves showed that high BIRC7 expression was generally associated with poor recurrence-free survival, the following subgroup analysis only confirmed the association in T3/T4 and medium-grade tumors. Multivariate analysis showed that BIRC7 expression was not an independent indicator of recurrence-free survival in T2 or high-grade tumors, but was independently associated with poor recurrence-free survival in T3/T4 tumors (hazard ratio: 4.249, 95% confidence interval: 1.563-11.546, P = .005) and in medium-grade tumors (hazard ratio: 6.041, 95% confidence interval: 1.763-20.703, P = .004). DNA amplification was associated with significantly upregulated BIRC7 expression. There was also a weak negative correlation between BIRC7 expression and its DNA methylation (Pearson r = −0.23). Conclusion: Based on these findings, we infer that BIRC7 upregulation might serve as a valuable biomarker of increased recurrence risk in advanced T stages and medium-grade prostate cancer. Its expression is at least regulated by both copy number alteration and DNA methylation.
Collapse
Affiliation(s)
- Yi Yang
- 1 Department of Endocrinology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Peng Sun
- 2 Department of Urology, Shandong Provincial Hospital, Jinan, China
| | - Wei Xu
- 2 Department of Urology, Shandong Provincial Hospital, Jinan, China
| | - Wei Xia
- 1 Department of Endocrinology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Mahmoud F, Shields B, Makhoul I, Avaritt N, Wong HK, Hutchins LF, Shalin S, Tackett AJ. Immune surveillance in melanoma: From immune attack to melanoma escape and even counterattack. Cancer Biol Ther 2017; 18:451-469. [PMID: 28513269 DOI: 10.1080/15384047.2017.1323596] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pharmacologic inhibition of the cytotoxic T lymphocyte antigen 4 (CTLA4) and the programmed death receptor-1 (PD1) has resulted in unprecedented durable responses in metastatic melanoma. However, resistance to immunotherapy remains a major challenge. Effective immune surveillance against melanoma requires 4 essential steps: activation of the T lymphocytes, homing of the activated T lymphocytes to the melanoma microenvironment, identification and episode of melanoma cells by activated T lymphocytes, and the sensitivity of melanoma cells to apoptosis. At each of these steps, there are multiple factors that may interfere with the immune surveillance machinery, thus allowing melanoma cells to escape immune attack and develop resistance to immunotherapy. We provide a comprehensive review of the complex immune surveillance mechanisms at play in melanoma, and a detailed discussion of how these mechanisms may allow for the development of intrinsic or acquired resistance to immunotherapeutic modalities, and potential avenues for overcoming this resistance.
Collapse
Affiliation(s)
- Fade Mahmoud
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Bradley Shields
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Issam Makhoul
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Nathan Avaritt
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Henry K Wong
- c Department of Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Laura F Hutchins
- a Department of Internal Medicine, Division of Hematology/Oncology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Sara Shalin
- d Departments of Pathology and Dermatology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| | - Alan J Tackett
- b Department of Biochemistry and Molecular Biology , University of Arkansas for Medical Sciences , Little Rock , Arkansas , USA
| |
Collapse
|
10
|
Finlay D, Teriete P, Vamos M, Cosford NDP, Vuori K. Inducing death in tumor cells: roles of the inhibitor of apoptosis proteins. F1000Res 2017; 6:587. [PMID: 28529715 PMCID: PMC5414821 DOI: 10.12688/f1000research.10625.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/17/2022] Open
Abstract
The heterogeneous group of diseases collectively termed cancer results not just from aberrant cellular proliferation but also from a lack of accompanying homeostatic cell death. Indeed, cancer cells regularly acquire resistance to programmed cell death, or apoptosis, which not only supports cancer progression but also leads to resistance to therapeutic agents. Thus, various approaches have been undertaken in order to induce apoptosis in tumor cells for therapeutic purposes. Here, we will focus our discussion on agents that directly affect the apoptotic machinery itself rather than on drugs that induce apoptosis in tumor cells indirectly, such as by DNA damage or kinase dependency inhibition. As the roles of the Bcl-2 family have been extensively studied and reviewed recently, we will focus in this review specifically on the inhibitor of apoptosis protein (IAP) family. IAPs are a disparate group of proteins that all contain a baculovirus IAP repeat domain, which is important for the inhibition of apoptosis in some, but not all, family members. We describe each of the family members with respect to their structural and functional similarities and differences and their respective roles in cancer. Finally, we also review the current state of IAPs as targets for anti-cancer therapeutics and discuss the current clinical state of IAP antagonists.
Collapse
Affiliation(s)
- Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peter Teriete
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Mitchell Vamos
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
11
|
Inhibitor of apoptosis protein expression in glioblastomas and their in vitro and in vivo targeting by SMAC mimetic GDC-0152. Cell Death Dis 2016; 7:e2325. [PMID: 27490930 PMCID: PMC5108315 DOI: 10.1038/cddis.2016.214] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 01/29/2023]
Abstract
Glioblastomas (GBMs) are the most aggressive primary brain tumors in adult and remain a therapeutic challenge. Targeting key apoptosis regulators with the ultimate aim to restore apoptosis in tumor cells could be an interesting therapeutic strategy. The inhibitors of apoptosis proteins (IAPs) are regulators of cell death and represent attractive targets, especially because they can be antagonized by SMAC mimetics. In this study, we first investigated the expression of cIAP1, cIAP2, XIAP and ML-IAP in human GBM samples and in four different cell lines. We showed that all GBM samples and GBM cell lines expressed all these IAPs, although the expression of each IAP varied from one case to another. We then showed that high level of ML-IAP predicted worse progression-free survival and overall survival in both univariate and multivariate analyses in two independent cohorts of 58 and 43 primary human GBMs. We then used GDC-0152, a SMAC mimetic that antagonizes these IAPs and confirmed that GDC-0152 treatment in vitro decreased IAPs in all the cell lines studied. It affected cell line viability and triggered apoptosis, although the effect was higher in U87MG and GL261 than in GBM6 and GBM9 cell lines. In vivo, GDC-0152 effect on U87MG orthotopic xenografts was dose dependent; it postponed tumor formation and slowed down tumor growth, significantly improving survival of GBM-bearing mice. This study revealed for the first time that ML-IAP protein expression correlates with GBM patient survival and that its antagonist GDC-0152 improves outcome in xenografted mouse.
Collapse
|
12
|
McCarron CE, Ernst S, Cao JQ, Zaric GS. Population-based estimates of survival and cost for metastatic melanoma. ACTA ACUST UNITED AC 2015; 22:326-32. [PMID: 26628865 DOI: 10.3747/co.22.2557] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fewer than half of all patients with metastatic melanoma survive more than 1 year. Standard treatments have had little success, but recent therapeutic advances offer the potential for an improved prognosis. In the present study, we used population-based administrative data to establish real-world baseline estimates of survival outcomes and costs against which new treatments can be compared. METHODS Data from administrative databases and patient registries were used to find a cohort of patients with metastatic melanoma in Ontario. To identify individuals most likely to receive new treatments, we focused on patients eligible for second-line treatment. The identified cohort had two characteristics: no surgical resection beyond primary skin excision, and receipt of first-line systemic therapy. RESULTS Patient characteristics, Kaplan-Meier survival curves, and mean costs are reported. Of the 33,585 patients diagnosed with melanoma in Ontario from 1 January 1991 to 31 December 2010, 278 met the study inclusion criteria. Average age was 63 years, and 62% of the patients were men. Overall survival was estimated to be 19%, 12%, and 6% at 12, 24, and 60 months respectively. Mean survival time was 11.5 months, and mean cost was $30,685. CONCLUSIONS Our baseline estimates indicate that survival outcomes are poor and costs are high for patients receiving standard treatment. Understanding the relative improvement accruing from any new treatment requires a comparison with the existing standard of care.
Collapse
Affiliation(s)
- C E McCarron
- Ivey Business School at Western University, London, ON
| | - S Ernst
- London Regional Cancer Program, London, ON
| | - J Q Cao
- London Regional Cancer Program, London, ON
| | - G S Zaric
- Ivey Business School at Western University, London, ON
| |
Collapse
|
13
|
Current position of TNF-α in melanomagenesis. Tumour Biol 2015; 36:6589-602. [DOI: 10.1007/s13277-015-3639-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 06/03/2015] [Indexed: 12/19/2022] Open
|
14
|
Xie J, Guo X, Liu F, Luo J, Duan F, Tao X. In vitro antitumor immune response induced by dendritic cells transduced with human livin α recombinant adenovirus. Cell Immunol 2015; 297:46-52. [PMID: 26140980 DOI: 10.1016/j.cellimm.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/14/2015] [Accepted: 06/14/2015] [Indexed: 12/22/2022]
Abstract
Transduction with recombinant, replication-defective adenoviral (rAd) vectors encoding a transgene is an efficient method for gene transfer into human dendritic cells (DCs). Livin is a good candidate for cancer immunotherapy since it is overexpressed in most common human cancers, poorly expressed in most normal adult tissues. Two splicing variants of livin, designated livin α and livin β, have been identified. In this study, we used human livin α recombinant adenovirus (rAd-hlivin α) to transduced DCs. We found that DCs transduced with rAd-hlivin α (rAd-hlivin α DCs) could effectively induce human livin α specific cytotoxic T lymphocytes (CTL) in vitro against various tumor cell lines.
Collapse
Affiliation(s)
- Junping Xie
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Xiaolin Guo
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; The Key Laboratory of Molecular Medicine of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fangfang Liu
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China; The Key Laboratory of Molecular Medicine of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Junming Luo
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fengying Duan
- Department of Respiratory Disease, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaonan Tao
- Department of Respiratory Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Goldberg JM, Fisher DE, Demetri GD, Neuberg D, Allsop SA, Fonseca C, Nakazaki Y, Nemer D, Raut CP, George S, Morgan JA, Wagner AJ, Freeman GJ, Ritz J, Lezcano C, Mihm M, Canning C, Hodi FS, Dranoff G. Biologic Activity of Autologous, Granulocyte-Macrophage Colony-Stimulating Factor Secreting Alveolar Soft-Part Sarcoma and Clear Cell Sarcoma Vaccines. Clin Cancer Res 2015; 21:3178-86. [PMID: 25805798 DOI: 10.1158/1078-0432.ccr-14-2932] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE Alveolar soft-part sarcoma (ASPS) and clear cell sarcoma (CCS) are rare mesenchymal malignancies driven by chromosomal translocations that activate members of the microphthalmia transcription factor (MITF) family. However, in contrast to malignant melanoma, little is known about their immunogenicity. To learn more about the host response to ASPS and CCS, we conducted a phase I clinical trial of vaccination with irradiated, autologous sarcoma cells engineered by adenoviral-mediated gene transfer to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF). EXPERIMENTAL DESIGN Metastatic tumors from ASPS and CCS patients were resected, processed to single-cell suspensions, transduced with a replication-defective adenoviral vector encoding GM-CSF, and irradiated. Immunizations were administered subcutaneously and intradermally weekly three times and then every other week. RESULTS Vaccines were successfully manufactured for 11 of the 12 enrolled patients. Eleven subjects received from three to 13 immunizations. Toxicities were restricted to grade 1-2 skin reactions at inoculation sites. Vaccination elicited local dendritic cell infiltrates and stimulated T cell-mediated delayed-type hypersensitivity reactions to irradiated, autologous tumor cells. Antibody responses to tissue-type plasminogen activator (tTPA) and angiopoietins-1/2 were detected. Tumor biopsies showed programmed death-1 (PD-1)-positive CD8(+) T cells in association with PD ligand-1 (PD-L1)-expressing sarcoma cells. No tumor regressions were observed. CONCLUSIONS Vaccination with irradiated, GM-CSF-secreting autologous sarcoma cell vaccines is feasible, safe, and biologically active. Concurrent targeting of angiogenic cytokines and antagonism of the PD-1-negative regulatory pathway might intensify immune-mediated tumor destruction.
Collapse
Affiliation(s)
- John M Goldberg
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Pediatrics, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - David E Fisher
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts. Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Donna Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts. Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Stephen A Allsop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Catia Fonseca
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yukoh Nakazaki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David Nemer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Suzanne George
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Morgan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrew J Wagner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Cecilia Lezcano
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martin Mihm
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Christine Canning
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - F Stephen Hodi
- Ludwig Center at Harvard, Harvard Medical School, Boston, Massachusetts. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts. Cancer Vaccine Center, Center for Immuno-oncology, and Melanoma Disease Center, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
16
|
Zhou J, Gupta M, Wu X, Yoon C, Giobbie-Hurder A, Hodi FS. Immunity to the vacuolar ATPase complex accessory unit ATP6S1 in patients with malignant melanoma. Cancer Immunol Res 2014; 3:59-67. [PMID: 25387894 DOI: 10.1158/2326-6066.cir-14-0184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The augmentation of high-titer antibodies to ATP6S1 is associated with favorable clinical outcomes in patients who received vaccination with autologous, irradiated tumor cells engineered to secrete GM-CSF and allogeneic bone marrow transplantation. Cellular immune responses to ATP6S1 are unknown. To define its role as an immune target, examination of cellular responses to ATP6S1 and immunity related to current therapies such as checkpoint blockade is needed. We used an overlapping peptide library representing the full-length ATP6S1 protein to screen for cellular responses from the peripheral blood of patients with stage III and IV melanoma. Reactive peptide pools were used to determine the individual peptide activity and epitopes. Recombinant ATP6S1 protein was used in an ELISA to assess potential correlation with humoral immune responses and changes in immunity related to CTLA-4 blockade with ipilimumab in these patients. We observed a broad array of CD4(+) and CD8(+) cellular responses against ATP6S1, including the identification of several MHC class I and II ATP6S1 epitopes. The generation of specific CD4(+) and cytotoxic T cells revealed potent functional capability elicited by ipilimumab treatment in patients with metastatic melanoma, which revealed potent functional capability, including cytokine production, proliferation responsiveness to melanoma cell lines, and tumor-cell killing. Furthermore, the augmented humoral immune responses to ATP6S1 as a function of ipilimumab treatment were associated with beneficial clinical outcomes. These results support the continued development of ATP6S1 as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Meghna Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Xinqi Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Charles Yoon
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Department of Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts. Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
17
|
Mohana-Kumaran N, Hill DS, Allen JD, Haass NK. Targeting the intrinsic apoptosis pathway as a strategy for melanoma therapy. Pigment Cell Melanoma Res 2014; 27:525-39. [PMID: 24655414 DOI: 10.1111/pcmr.12242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/17/2014] [Indexed: 01/02/2023]
Abstract
Melanoma drug resistance is often attributed to abrogation of the intrinsic apoptosis pathway. Targeting regulators of apoptosis is thus considered a promising approach to sensitizing melanomas to treatment. The development of small-molecule inhibitors that mimic natural antagonists of either antiapoptotic members of the BCL-2 family or the inhibitor of apoptosis proteins (IAPs), known as BH3- or SMAC-mimetics, respectively, are helping us to understand the mechanisms behind apoptotic resistance. Studies using BH3-mimetics indicate that the antiapoptotic BCL-2 protein MCL-1 and its antagonist NOXA are particularly important regulators of BCL-2 family signaling, while SMAC-mimetic studies show that both XIAP and the cIAPs must be targeted to effectively induce apoptosis of cancer cells. Although most solid tumors, including melanoma, are insensitive to these mimetic drugs as single agents, combinations with other therapeutics have yielded promising results, and tests combining them with BRAF-inhibitors, which have already revolutionized melanoma treatment, are a clear priority.
Collapse
Affiliation(s)
- Nethia Mohana-Kumaran
- The Centenary Institute, Newtown, NSW, Australia; School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | | | |
Collapse
|
18
|
Grossardt C, Engeland CE, Bossow S, Halama N, Zaoui K, Leber MF, Springfeld C, Jaeger D, von Kalle C, Ungerechts G. Granulocyte-macrophage colony-stimulating factor-armed oncolytic measles virus is an effective therapeutic cancer vaccine. Hum Gene Ther 2014; 24:644-54. [PMID: 23642239 DOI: 10.1089/hum.2012.205] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oncolytic measles viruses (MV) derived from the live attenuated vaccine strain have been engineered for increased antitumor activity, and are currently under investigation in clinical phase 1 trials. Approaches with other viral vectors have shown that insertion of immunomodulatory transgenes enhances the therapeutic potency. In this study, we engineered MV for expression of the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). For the first time, therapeutic efficacy and adaptive immune response in the context of MV oncolysis could be evaluated in the previously established immunocompetent murine colon adenocarcinoma model MC38cea. MC38cea cells express the human carcinoembryonic antigen (CEA), allowing for infection with retargeted MV. Intratumoral application of MV-GMCSF significantly delayed tumor progression and prolonged median overall survival compared with control virus-treated mice. Importantly, more than one-third of mice treated with MV-GMCSF showed complete tumor remission and rejected successive tumor reengraftment, demonstrating robust long-term protection. An enhanced cell-mediated tumor-specific immune response could be detected by lactate dehydrogenase assay and interferon-γ enzyme-linked immunospot assay. Furthermore, MV-GMCSF treatment correlated with increased abundance of tumor-infiltrating CD3(+) lymphocytes analyzed by quantitative microscopy of tumor sections. These findings underline the potential of oncolytic, GM-CSF-expressing MV as an effective therapeutic cancer vaccine actively recruiting adaptive immune responses for enhanced therapeutic impact and tumor elimination. Thus, the treatment benefit of this combined immunovirotherapy approach has direct implications for future clinical trials.
Collapse
Affiliation(s)
- Christian Grossardt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ) , D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mocellin S, Nitti D. CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2013; 1836:187-96. [PMID: 23748107 DOI: 10.1016/j.bbcan.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
Abstract
Cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) plays a key role in restraining the adaptive immune response of T-cells towards a variety of antigens including tumor associated antigens (TAAs). The blockade of this immune checkpoint elicits an effective anticancer immune response in a range of preclinical models, suggesting that naturally occurring (or therapeutically induced) TAA specific lymphocytes need to be "unleashed" in order to properly fight against malignant cells. Therefore, investigators have tested this therapeutic hypothesis also in humans: the favorable results obtained with this strategy in patients with advanced cutaneous melanoma are revolutionizing the management of this highly aggressive disease and are fueling new enthusiasm on cancer immunotherapy in general. Here we summarize the biology of CTLA-4, overview the experimental data supporting the rational for targeting CTLA-4 to treat cancer and review the main clinical findings on this novel anticancer approach. Moreover, we critically discuss the current challenges and potential developments of this promising field of cancer immunotherapy.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy.
| | | |
Collapse
|
20
|
Hartman ML, Czyz M. Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett 2013; 331:24-34. [PMID: 23340174 DOI: 10.1016/j.canlet.2013.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/18/2012] [Accepted: 01/07/2013] [Indexed: 12/30/2022]
Abstract
Apoptosis plays a pivotal role in sustaining proper tissue development and homeostasis. Evading apoptosis by cancer cells is a part of their adaption to microenvironment and therapies. Cellular integrity is predominantly maintained by pro-survival members of Bcl-2 family and IAPs. Melanoma cells are characterized by a labile and stage-dependent phenotype. Pro-survival molecules can protect melanoma cells from apoptosis and mediate other processes, thus enhancing aggressive phenotype. The essential role of Bcl-2, Mcl-1, Bcl-X(L), livin, survivin and XIAP was implicated for melanoma, often in a tumor stage-dependent fashion. In this review, the current knowledge of pro-survival machinery in melanoma is discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, Poland
| | | |
Collapse
|
21
|
Verschraegen C. The monoclonal antibody to cytotoxic T lymphocyte antigen 4, ipilimumab, in the treatment of melanoma. Cancer Manag Res 2012; 4:1-8. [PMID: 22346364 PMCID: PMC3278204 DOI: 10.2147/cmar.s15551] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an inhibitory regulator of the T-cell immune response against tumor cells. Ipilimumab is a monoclonal antibody directed against CTLA-4. OBJECTIVE This review describes the basic mechanism of ipilimumab and discusses data available to date with regards to its safety and efficacy profile. METHODS Data from clinical trials including abstracts was reviewed using the PubMed Database, as well as the American Society of Clinical Oncology Abstract Database. CONCLUSION CTLA-4 inhibition with a monoclonal antibody is usually well tolerated and has efficacy as a therapeutic agent in a variety of cancers. The classical response interpretation has changed because of the delayed mechanism of action. The toxicities are autoimmune events and guidelines for treatment of these effects are discussed. Therapy with ipilimumab leads to durable responses. The first two Phase III randomized studies showed an improvement of survival at 1, 2, and 3 years. Other studies are currently underway to better understand the optimal treatment administration of ipilimumab in melanoma.
Collapse
Affiliation(s)
- Claire Verschraegen
- Professor of Medicine, Division of Hematology Oncology, University of Vermont, Vermont Cancer Center, VT, USA
| |
Collapse
|